用matlab编程实现法计算多自由度体系的动力响应样本
- 格式:doc
- 大小:187.00 KB
- 文档页数:11
Science and Technology &Innovation ┃科技与创新2020年第17期·67·文章编号:2095-6835(2020)17-0067-03基于MATLAB 的二自由度和四自由度汽车振动模型分析金琦珺,罗骞*(武汉理工大学汽车工程学院,湖北武汉430070)摘要:以普通乘用车为例,将汽车简化成独立悬架整车二自由度与四自由度动力学模型,根据牛顿第二定律求出系统的运动微分方程,并利用MATLAB 研究了汽车振动的频率响应特性,求解得到该振动系统的固有频率和各主振型,绘制出车身、前后轴振动对前后轮激励的频率响应曲线图。
并着重研究了轮胎阻尼对汽车平顺性的影响。
该研究能够对减轻汽车振动及提高汽车行驶平顺性提供一定有益的参考。
关键词:MATLAB ;二自由度:四自由度;自由振动中图分类号:TH701文献标识码:A DOI :10.15913/ki.kjycx.2020.17.0261引言机械振动对于人类的生产生活来说是一把双刃剑,既可以服务于人类,又对人类的生产活动有重大危害。
机械振动既有有利的一面也有有害的一面。
需对振动进行动态分析,通过研究物体偏离平衡位置的位移、速度、加速度等的动态变化来达到目的。
在物体的平衡点附近出现的物体的来回运动,有线性和非线性两种振动模式。
由于外界对系统的激励或作用,使得机械设备产生噪声及有损于机械结构的动载荷,从而影响设备的工作性能和寿命。
尤其是发生共振情况时,可能使机器设备受到损坏,所以急需对机械振动的相关原理进行研究。
为了合理减小振动对设备的危害,充分利用振动进行机器运作,对机械振动产生的规律进行了探讨和研究。
随着计算机智能系统的快速发展,相关的仿真技术都出现了极大的提升空间,在日常的生产活动中,人们经常用到的相关软件有adams 、abaqus 等。
目前MATLAB 计算机软件在计算机的仿真方面使用更加广泛一些,MATLAB 是一款拥有强大绘图能力的工程计算高级计算机语言。
基于 MATLAB 实现对结构动力响应的几种算法的验证1. 算例首先,本文给出一算例, 结构在外力谐振荷载 P (t ) = P 0 sin θt 作用下,分别利用理论解法,杜哈梅积分, Wilson-θ 法求出该结构的位移时程反应。
其中:m = 3.5×103 kg , P 0 = 1.0×104 N , k =1.3584515×107 ,ξ=0.05 ,θ=52.3s −1 ,ω=62.3s −1 ,⋅D ω= ω 1-ξ2=62.222 ,初始位移、速度v (0) = 0 ,v (0) = 0 ;2. 算法验证2.1 理论解法运动方程为: mv+cv+kv=0P sin t ϑ由线性代数解出其理论解为:]cos 2)sin -[(]4)-[(t]sin )-(2cos [2]4)-[(t]sin )0()0(cos )0([2222222202222222222t t m P t m P e v v t v e v D DD tD DD t θξωθθθωθωξθωωωθωωξωξωθωξθωθωωξωωξωξω-++-+⋅++++=--由于初始位移v(0) =0 ,v(0) =0 ;则:]cos 2)sin -[(]4)-[(t]sin )-(2cos [2]4)-[(2222222202222222222t t m P t m P e v D DD tθξωθθθωθωξθωωωθωωξωξωθωξθωθξω-++-+⋅+=-v(t ) =-3.115te⋅ 1.05269898×410-⋅[6.230cos62.222t −18.106sin 62.222t]+2.012808757 610-⨯⋅[1146sin 52.3t −325.829cos52.3t]可以用 MA TLAB 进行编程分析,画图位移时程图,详细程序见附录。
2.2Wilson-θ法Wilson-θ法是Wilson 于1966年基于线性加速度法的基础上提出一种无条件收敛的计算方法。
用matlab编程实现Newmark-β法计算多自由度体系的动力响应姓名:***学号:**************专业:结构工程用matlab 编程实现Newmark -β法 计算多自由度体系的动力响应一、Newmark -β法的基本原理Newmark-β法是一种逐步积分的方法,避免了任何叠加的应用,能很好的适应非线性的反应分析。
Newmark-β法假定:t u u u ut t t t t t ∆ββ∆∆]}{}){1[(}{}{+++-+= (1-1)2]}{}){21[(}{}{}{t u u t uu u t t t t t t ∆γγ∆∆∆+++-++= (1-2) 式中,β和γ是按积分的精度和稳定性要求进行调整的参数。
当β=0.5,γ=0.25时,为常平均加速度法,即假定从t 到t +∆t 时刻的速度不变,取为常数)}{}({21t t t u u ∆++ 。
研究表明,当β≥0.5, γ≥0.25(0.5+β)2时,Newmark-β法是一种无条件稳定的格式。
由式(2-141)和式(2-142)可得到用t t u ∆+}{及t u }{,t u}{ ,t u }{ 表示的t t u ∆+}{ ,t t u ∆+}{ 表达式,即有t tt t t t t u u t u u t u}){121(}{1)}{}({1}{2----=++γ∆γ∆γ∆∆ (1-3) t t t t t t t u t uu u t u}{)21(}){1()}{}({}{ ∆γβγβ∆γβ∆∆-+-+-=++ (1-4) 考虑t +∆t 时刻的振动微分方程为:t t t t t t t t R u K u C uM ∆∆∆∆++++=++}{}]{[}]{[}]{[ (1-5) 将式(2-143)、式(2-144) 代入(2-145),得到关于u t +∆t 的方程t t t t R u K ∆∆++=}{}]{[ (1-6)式中][][1][][2C t M tK K ∆γβ∆γ++= )}{)12(}){1(}{]([)}){121(}{1}{1]([}{}{2t t t t t t t t u t uu t C u u t u tM R R ∆γβγβ∆γβγ∆γ∆γ∆-+-++-+++=+求解式(2-146)可得t t u ∆+}{,然后由式(2-143)和式(2-144)可解出t t u∆+}{ 和t t u ∆+}{ 。
用matlab 编程实现Newmark -β法计算多自由度体系的动力响应用matlab 编程实现Newmark -β法 计算多自由度体系的动力响应一、Newmark -β法的基本原理Newmark-β法是一种逐步积分的方法,避免了任何叠加的应用,能很好的适应非线性的反应分析。
Newmark-β法假定:t u u u ut t t t t t ∆ββ∆∆]}{}){1[(}{}{+++-+= (1-1)2]}{}){21[(}{}{}{t u u t uu u t t t t t t ∆γγ∆∆∆+++-++= (1-2) 式中,β和γ是按积分的精度和稳定性要求进行调整的参数。
当β=0.5,γ=0.25时,为常平均加速度法,即假定从t 到t +∆t 时刻的速度不变,取为常数)}{}({21t t t u u ∆++ 。
研究表明,当β≥0.5, γ≥0.25(0.5+β)2时,Newmark-β法是一种无条件稳定的格式。
由式(2-141)和式(2-142)可得到用t t u ∆+}{及t u }{,t u}{ ,t u }{ 表示的t t u ∆+}{ ,t t u ∆+}{ 表达式,即有t tt t t t t u u t u u t u}){121(}{1)}{}({1}{2----=++γ∆γ∆γ∆∆ (1-3) t t t t t t t u t uu u t u}{)21(}){1()}{}({}{ ∆γβγβ∆γβ∆∆-+-+-=++ (1-4) 考虑t +∆t 时刻的振动微分方程为:t t t t t t t t R u K u C uM ∆∆∆∆++++=++}{}]{[}]{[}]{[ (1-5) 将式(2-143)、式(2-144) 代入(2-145),得到关于u t +∆t 的方程t t t t R u K ∆∆++=}{}]{[ (1-6)式中][][1][][2C t M tK K ∆γβ∆γ++= )}{)12(}){1(}{]([)}){121(}{1}{1]([}{}{2t t t t t t t t u t uu t C u u t u tM R R ∆γβγβ∆γβγ∆γ∆γ∆-+-++-+++=+求解式(2-146)可得t t u ∆+}{,然后由式(2-143)和式(2-144)可解出t t u∆+}{ 和t t u ∆+}{ 。
暨南大学研究生课程论文课程:结构动力学姓名:许可悦学号:1634361002学院:力学与建筑工程学院专业:建筑与土木工程任课教师:李雪艳基于MATLAB的四层框架结构动力响应与研究许可悦(暨南大学理工学院力学与土木工程学院,广州 51063)摘要:本文用MATLAB语言对四层建筑结构进行编程,计算结构的自振频率、振型,分析该结构在自由振动和一般激励下的动力响应。
采用了Newmark-β法计算了在简谐正弦激励作用下结构的位移响应,并以此为初始条件结合瑞利阻尼矩阵计算了结构在简谐正弦荷载卸载后的结构自由振动的位移响应。
关键词:MATLAB、Newmark-β法、瑞利阻尼矩The four layers of frame structure dynamic responsebased on MATLAB and researchXu Keyue(Jinan university institute of mechanics and civil engineering department, Guangzhou)Abstract:This paper uses MATLAB language to program the the four layers of frame structure , calculates the self-vibration frequency and vibration mode of the structure, and analyzes the dynamic response of the structure under free vibration and general excitation. Adopted the Newmark - beta method to calculate the displacement of the structure under the action of a harmonic sine excitation response, and the initial conditions in combination with the Rayleigh damping matrix to calculate the structure in the structure of harmonic sine load after unloading free vibration displacement response.Key words:MATLAB; Newmark-βmethod;Rayleigh orthogonal damping1 引言在社会发展的今天,很多科技人员都会遇到数值分析计算机应用等问题,一些传统的高级程序语言如FORTRAN 等虽然能在一定程度上减轻计算量,但它们要求应用人员要具有较强的编程能力和对算法有深入的研究. 另外,在运用这些高级程序语言进行计算结果的可视化分析及图形处理方面,对非计算机专业的普通用户来说,存在着很大的难度. MATLAB 正是在这一应用要求背景下产生的数学类科技应用软件。
多自由度体系模态分析1. 模态分析原理单自由度体系运动方程为()()()()10D s f t f t f t P t +++= (1)其中()()1g f t m u u =-+ (2)()D f t cu =- (3) ()()1g f t m u u =-+ (4)由单自由度体系运动方程推广到多自由度体系,则有(){}(){}(){}(){}{}10Dsf t f t f t P t +++= (5)其中(){}[]{}{}()1()()gf t M u t ut I =-+ (6)(){}[]{}()Df t C u t =- (7)(){}[]{}()Sf t K u t =- (8)综合上式并忽略阻尼项和外力项,可得到无阻尼多自由度体系自由振动方程:[]{}[]{}{}()()0M u t K u t += (9)设方程的解为如下简谐振动形式:{}{}()sin()u t t φωθ=+ (10)式中{}φ是与时间无关的N 阶向量,N 是体系自由度数量,ω是振动圆频率,θ是相位。
对式(10)求二阶导数,可得到结构的加速度:{}{}(){}22()sin()u t t u t ωφωθω=-+=- (11)将式(10) 和式(11)带入式(9)中,可得到:[]{}[]{}{}0K M φλφ-= (12)上式称为N 阶广义特征值问题,式中2λω=,刚度矩阵[]K 和质量矩阵[]M 是N 阶正定或半正定的对称矩阵。
上式也可以写为:[][](){}{}0K M λφ-= (13)根据齐次非线性方程组的特性,上式有非零解的充要条件是系数行列式等于零,即:()[][]0p K M λλ=-= (14)式(14)是一个关于λ的一元N 次方程,称为多自由度体系的频率方程。
求解可得N 个特征根()1,2,...,i i N λ= 。
将N 个特征根i λ分别代入式(13),可求得相应的N 个特征向量{}()1,2,...,i i N φ=。
用matlab编程实现法计算多自由度体系的动力响应
Newmark-β法计算多自由度体系的动用matlab编程实现
力响应
姓名:
学号:
班级:
专业:
用matlab编程实现Newmark-β法
计算多自由度体系的动力响应
一、Newmark -β法的基本原理 Newmark-法是一种逐步积分的方法,避免了任何叠加的应用,能很好的适应非线性的反应分析。
Newmark-法假定:
t u u u u t t t t t t ∆ββ∆∆]}{}){1[(}{}{+++-+=&&&&&& (1-1)
2]}{}){21[(}{}{}{t u u t u u u t t t t t t ∆γγ∆∆∆+++-++=&&&&& (1-2) 式中,
和是按积分的精度和稳定性要求进行调整的参数。
当=0.5,=0.25时,为常平均加速度法,即假定从t 到t +t 时
刻的速度不变,取为常数)}{}({21
t t t u u ∆++&&&&。
研究表明,当≥0.5,
≥0.25(0.5+)2时,Newmark-法是一种无条件稳定的格式。
由式(2-141)和式(2-142)可得到用t t u ∆+}{及t u }{,t u
}{&,t u }{&&表示的t t u ∆+}{&,t t u ∆+}{&&表示式,即有
t t t t t t t u u t u u t u }){121(}{1)}{}({1}{2
&&&&&----=++γ∆γ∆γ∆∆ (1-3) t t t t t t t u t u u u t u }{)21(}){1()}{}({}{&&&&∆γ
βγβ∆γβ∆∆-+-+-=++ (1-4) 考虑t +t 时刻的振动微分方程为:
t t t t t t t t R u K u C u M ∆∆∆∆++++=++}{}]{[}]{[}]{[&&& (1-5)
将式(2-143)、式(2-144) 代入(2-145),得到关于u t +t 的方程
t t t t R u K ∆∆++=}{}]{[ (1-6)
式中
][][1][][2C t M t K K ∆γβ∆γ++= )}{)12(}){1(}{]([)}){121(}{1}{1](
[}{}{2t t t t t t t t u t u u t C u u t u t M R R &&&&&&∆γβγβ∆γβγ∆γ∆γ∆-+-++-+++=+
求解式(2-146)可得t t u ∆+}{,然后由式(2-143)和式(2-144)可解出t t u
∆+}{&和t t u
∆+}{&&。
由此,Newmark-法的计算步骤如下:
1.初始计算:
(1)形成刚度矩阵[K ]、质量矩阵[M ]和阻尼矩阵[C ];
(2)给定初始值0}{u , 0}{u
&和0}{u &&; (3)选择积分步长
t 、参数、,并计算积分常数 201
t ∆γα=,t ∆γβα=
1,t ∆γα12=,1213-=γα, 14-=γβα,)2(25-=γ
β∆αt ,)1(6β∆α-=t ,t ∆βα=7; (4)形成有效刚度矩阵][][][][10C M K K αα++=;
2.对每个时间步的计算:
(1)计算t +t 时刻的有效荷载:
)
}{}{}{]([)}{}{}{]([}{}{541320t t t t t t t t t t u u u C u u u M F F &&&&&&αααααα∆∆++++++=++ (2)求解t +t 时刻的位移:
[]t t t t F u K ∆+∆+=}{}{
(3)计算t +t 时刻的速度和加速度:
t t t t t t t u u u u u }{}{)}{}({}{320&&&&&ααα∆∆---=++
t t t t t t u u u u ∆∆αα++++=}{}{}{}{76&&&&&& Newmark-方法是一种无条件稳定的隐式积分格式,时间步长
t 的大小不影响解的稳定性,
t 的选择主要根据解的精度确定。
二、 本文用Newmark -β法计算的基本问题 四层框架结构在顶部受一个简谐荷载014
=sin()t F F t π的作用,力的作用时间1t =5s ,计算响应的时间为100s ,分 步完成。
阻尼矩阵由Rayleigh 阻尼构造。
具体数据如下图:
图一:结构基本计算简图
三、 计算Newmark -β法的源程序。