实验五移位寄存器及其应用共10页文档
- 格式:doc
- 大小:299.50 KB
- 文档页数:9
移位寄存器实验报告移位寄存器和计数器的设计实验室:实验台号:日期:专业班级:姓名:学号:一、实验目的1. 了解二进制加法计数器的工作过程。
2. 掌握任意进制计数器的设计方法。
二、实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。
三、实验原理图1.由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2.测试74LS161的功能3.熟悉用74LS161设计十进制计数器的方法。
①利用置位端实现十进制计数器。
②利用复位端实现十进制计数器。
四、实验结果及数据处理1.左移寄存器实验数据记录表要求:输入二进制:111100002.画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路。
8进制利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。
2. 设计十进制计数器时将如何去掉后6个计数状态的?答:通过置位端实现时,将Q0、Q3 接到与非门上,输出连接到置位控制端。
当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。
3. 谈谈电子实验的心得体会,希望同学们提出宝贵意见。
答:通过这学期的电子实验,我对电子电路有了更加深入地了解。
初步了解了触发器、寄存器、计数器等电子元件的使用。
将理论与实践相结合,更加深入的了解了电子技术,学到了很多,对这学期的电子实验十分满意。
实验五移位寄存器及其应用一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、实验原理1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图10-1所示。
图10-1 CC40194的逻辑符号及引脚功能其中 D0、D1、D2、D3为并行输入端;Q、Q1、Q2、Q3为并行输出端;SR为右移串行输入端,SL 为左移串行输入端;S1、S为操作模式控制端;R C为直接无条件清零端;CP为时钟脉冲输入端。
CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q),保持及清零。
S 1、S和R C端的控制作用如表10-1。
2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。
本实验研究移位寄存器用作环形计数器和数据的串、并行转换。
(1)环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图10-2所示,把输出端 Q3和右移串行输入端SR相连接,设初始状态QQ1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表10-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。
图10-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。
实训八移位寄存器及其应用一、实训目的1.掌握移位寄存器74LS194的逻辑功能及其测试方法;2.熟悉移位寄存型的典型应用电路。
二、实训内容1.移位寄存器74LS194的功能测试;2.74LS194构成8位数的序列信号发生器。
三、实训主要元件1.74LS194(4位双向移位寄存器)外引线排列图(详细资料见后附表)四、实训原理、步骤及要求(一)原理:1.74LS194(4位双向移位寄存器)74LS194(4位双向移位寄存器)是一种功能很强的通用寄存器,其逻辑功能如附表所示。
从功能表中可见,它具有并行输入、并行输出、左移和右移及保持等功能。
这些功能均通过模式控制端M0、M1来确定。
当M0=M1=0时,寄存器处于保持状态;当M0=M1=1时,寄存器处于并行输入并行输出功能,即在CP上升沿作用下,加到并行数据输入(D0~D3)的数据被送到Q0~Q3;当M0=0、M1=1时,寄存器处于左移操作(Q3向Q0方向),数据从左移串行数据输入(D SL)送入;当M0=1、M1=0时,寄存器处于右移操作(Q0向Q3方向),数据从右移串行数据输入(D SR)送入。
(二)实训步骤及要求1.74LS194(4位双向移位寄存器)的功能测试表1 74LS194功能表将CP端接逻辑开关,其它需要设置和改变状态的端,可通过临时改变电位(接+5V电源为高电平,接地为低电平)来实现不同状态,Q0~Q3输出端接(LED管)。
先设定有确定取值的输入端的状态,然后,送入时钟脉冲,观察LED管状态,确定Q0~Q3输出端的状态。
通过Q0~Q3输出端的现态与次态或输入端D0~D3、D SR、D SL的关系,从而确定寄存器实现的逻辑功能。
2.74LS194构成8位数的序列信号发生器(1)利用74LS194循环寄存的功能,再通过特定的反馈电路,将一个反馈信号送到串行输入端,则可实现特定的序列信号。
序列信号的长度和数值与移位寄存器的位数及反馈信号的逻辑功能值有关。
实验移位寄存器及其应用一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、实验原理1、寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下一次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
2、本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图所示。
其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输入端,S L为左移串行输入端;S1、S0为操作模式控制端;C R为直接无条件清零端;CP为时钟脉冲输入端。
功能见表8-1。
表8-1CC40194功能表功能输入输出CP R C S1S0S R S L D0D1D2D3Q0Q1Q2Q3清除×0××××××××0000送数↑111××a b c d a b c d右移↑101D SR×××××D SR Q0Q1Q2左移↑110×D SL××××Q1Q2Q3D SL保持↑100××××××Q0n Q1n Q2n Q3n保持↓1××××××××Q0n Q1n Q2n Q3n3、移位寄存器的应用可构成移位寄存器形计数器;:顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据等。
实验五寄存器和移位寄存器实验类型:综合性一、实验目的1.测试中规模四位双向移位寄存器逻辑功能;2.研究由移位寄存器构成的环形计数器和串行累加器的工作原理。
二、实验内容(见实验指导书223-225页) 1、移位寄存器移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为74LS194,其逻辑符号及引脚排列如图5-1所示。
图5-1 74LS194逻辑符号及引脚排列其中,3D 、2D 、1D 、0D 为并行输入端;3Q 、2Q 、1Q 、0Q 为并行输出端;R S 为右移串行输入端;L S 为左移串行输入端;1S 、0S 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。
74LS194有5种不同操作模式:并行送数寄存;右移(方向由3Q →0Q );左移(方向由0Q →3Q );保持及清零。
表5-174LS194逻辑功能表2、逻辑功能验证: (1). 并行输入:1). 从电子仿真软件Multisim9基本界面左侧左列真实元件工具条的“TTL ”元件库中调出74LS194;从“Basic ”元件库中调出单刀双掷开关8只;从“Source ”元件库中调出Vcc 和地线,将它们放置在电子平台上。
2). 从电子仿真软件Multisim9基本界面左侧右列虚拟元件工具条的指示器元件列表中调出红色指示灯4只,将它们放置在电子平台上。
3). 按图5-2连成仿真电路。
4). 打开仿真开关,用1J 实现“异步清0”功能;再根据“并行输入”功能要求,将1S 、0S 使能端置于“1、1”状态,A 、B 、C 、D 数据输入端分别设为“1011”,观察CLK 端加单脉冲CP 时,输出端指示灯变化情况,并填写表5-2。
计算机组成原理实验(五)-运算器扩展实验实验项目名: 移位寄存器实验实验要求:通过实验,理解移位操作的重要的作用;熟悉实验台上移位寄存器部件的硬件连线和移位操作的控制信号;掌握移位寄存器的控制方法;验证移位运算的意义。
实验内容:(1)完成电路连接。
将运算器单元、输入模块和输出模块挂接到总线上,连接好时序启停模块,为运算器工作提供基本的时序参考信号。
(2)分析运算器单元的移位寄存器的数据通路,确定通过该寄存器实现一次移位操作所需的控制序号序列,根据其发生的先后时序关系,写出相应的微控制信号序列。
(3)通过实验台的微控制输入开关,逐条的输入微控制信号,通过输入单元输入运算数据,在控制信号和时序信号的作用下,利用单步工作模式,控制移位寄存器工作,观察输出的计算结果。
通过实验完成以下内容:A、验证各种移位操作的控制方法,记录结果。
B、设计控制信号,充分利用移位操作,实现以下运算:详细说明:(1)实验中使用的移位寄存器位于运算器单元,是由一片74LS299芯片构造的移位寄存器,通过内部逻辑连接,该移位寄存器可以实现对数据的循环左、右移和带进位CN的循环左、右移。
充分利用各种提供的移位方式,配合上次实验课学过的运算单元,可以实现简单的乘法和除法运算。
下面看下利用移位器进行运算的基本方法和步骤:(a)移位操作的实现方法:✶通过输入模块将待操作的数据送到总线(SW-B);✶将总线上的数据打入移位寄存器(移位寄存器装数操作,见表1);✶对数据进行移位操作(根据表1的说明,合理的设置控制信号)✶将移位结果送到总线上,以便观察或其它使用(299-B);(b)移位运算与加法运算的配合:由于实验台的硬件限制,要实现简单的乘法运算,可以手动根据乘数的对应位值配置加法和移位操作实现。
✶将DR1寄存器作为部分积寄存器,初始化清零;✶将DR2寄存器作为被乘数寄存器,初始化为被乘数的绝对值;✶从乘数(绝对值)的最低位开始,根据对应位的值,控制ALU作DR1+DR2或者不加;✶将加运算的结果送入299移位寄存器,做带进位的循环右移操作,将移位结果重新送回DR1寄存器;根据移位操作执行后CN标志,记录乘积的的最低位;✶重复上述第3-5步,直到所有的乘数位都已考虑,完成乘法运算,乘积为DR1(部分积寄存器)的值(高位)和记录的所有移出CN位(低位)的合并;(2各模块控制信号说明:①输入模块:✶SW-B,开关输入信息送数据总线控制信号。
移位寄存器实验报告参考(一)实验原理移位寄存器是用来寄存二进制数字信息并且能进行信息移位的时序逻辑电路。
根据移位寄存器存取信息的方式可分为串入串出、串入并出、并入串出、并入并出 4 种形式。
74194 是一种典型的中规模集成移位寄存器,由 4 个 RS触发器和一些门电路构成的 4 位双向移位寄存器。
该移位寄存器有左移,右移、并行输入数据,保持及异步清零等 5 种功能。
有如下功能表CLRN CLK S1工作状态0×S0清零10×保持1↑×并行置数, Q为ABCD1↑×串行右移,移入数据位×为 SRS11↑1串行左移,移入数据位1为 SLS11↑0保持11(二)实验框图串行输入并行输入ABCD清零输入模式控制输入时钟脉冲输入(三)实验内容1.按如下电路图连接电路74194移位寄存器并行输出QA 、QB 、 QC、QD十个输入端,四个输出端,主体为74194.2.波形图参数设置:End time :2us Grid size:100ns波形说明:clk: 时钟信号;clrn:置0s1s0: 模式控制端sl_r:串行输入端abcd:并行输入qabcd:并行输出结论:clrn优先级最高,且低有效高无效;s1s0 模式控制, 01 右移, 10 左移,00 保持, 11 置数重载; sl_r控制左移之后空位补0 或补 1。
3.数码管显示移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102clk:122clk0:125clrn:95q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72sl_r:82,83结论:下载结果与仿真结果一致,下载正确。
一、实验日志1.移位寄存器的实验真的挺纠结的,本来想用 7449 的,但是下载结果出现了错误,想到它在这个电路图中的功能比较单一,就自己写了一个my7449,终于对了。
电学实验报告模板实验原理移位寄存器是逻辑电路中的一种重要逻辑部件,它能存储数据,还可以用来实现数据的串行-并行转换、数据的运算和处理。
1.寄存器(1)D触发器图1 D触发器图1所示D触发器。
每来一个CLK脉冲,触发器都在该CLK脉冲的上升沿时刻,接收输入数据D,使之作为触发器的新状态。
D触发器的特性方程为(2)用D触发器构成并行寄存器图2 用D触发器构成并行寄存器图2所示为用D触发器构成四位并行寄存器。
为异步清零控制端,高电平有效。
当时,各触发器输出端Q的状态,取决于CLK上升沿时刻的D端状态。
2.移位寄存器(1)用D触发器构成移位寄存器图3 用D触发器构成4位串行移位寄存器图3所示为用D触发器构成的4位串行移位寄存器。
其中左边第一个触发器的输入端接收输入数据,其余的每一个触发器的输入端均与左边相邻的触发器的Q端连接。
当时钟信号CLK的上升沿时刻,各触发器同时接收输入数据。
四位寄存器的所存数据右移一位。
(2)双向移位寄存器74LS194图4 双向移位寄存器74LS194逻辑框图图4 所示为集成电路芯片双向移位寄存器74LS194逻辑框图。
为便于扩展逻辑功能,在基本移位寄存器的基础上增加了左右移控制、并行输入、保持和异步清零等功能。
74LS194的逻辑功能如表1所列。
表13.用移位寄存器构成计数器(1)环形计数器图5 环形计数器如果将移位寄存器的串行移位输出端接回到串行移位输入端,如图5所示。
那么,在时钟CLK的作用下,寄存器里的数据将不断循环右移。
例如,电路的初始状态为,则电路的状态转换图如图6所示。
可以认为,这是一个模4计数器。
图6 环形计数器状态转换图实验内容及步骤1. 用两片74LS74构成四位移位寄存器(1)74LS74引脚图图10 74LS74引脚图(2)用74LS74构成四位移位寄存器图11 用74LS74构成四位移位寄存器实验电路按照图11连接电路。
首先设置,使寄存器清零。
然后,设置,在CLK输入端输入单次脉冲信号当作时钟信号,通过输出端的发光二极管观察的状态,判断移位的效果。
207二、实验原理时序功能组件常用的有计数器和移位寄存器等,借助于器件手册提供的功能表和工作波形图,就能正确地使用这些器件。
对于一个使用者,关键在于合理地选用器件,灵活地使用器件的各控制输入端,运用各种设计技巧,完成任务要求的功能,在使用MSI 器件时,各控制输入端必须按照逻辑要求接入电路,不允许悬空。
1.移位寄存器74LS194是一个4位双向移位寄存器,它的逻辑符号如图3.6.1所示,功能表见表3.6.1,其中D 0D 1D 2D 3和Q 0Q 1Q 2Q 3是并行数据输入端和输出端;CP 是时钟输入端;CR 是直接清零端;D SR 和D SL 分别是右移和左移时的串行数据输入端;S 1和S 0是工作状态控制输入端。
移位寄存器还可用来构成计数器,典型的有环形计数器和扭环形计数器。
三、实验仪器1.数字逻辑实验箱 一台 2.双踪示波器 一台3.数字万用表 一块 图3.6.1 74LS194逻辑符号 4.集成块若干表3.6.1 74LS194功能表四、实验任务及步骤1.双向移位寄存器⑴逻辑功能测试①清除:先将CR端接+5V,检查Q端输出情况,再将CR端接0电平,所有Q 端输出应为0,清零后再将CR端接+5V。
②并行输入:S1S置入11,D端置入一组代码(如1011),给 CP端送单次脉冲,观察 Q端的状态。
此时若将DSL 或DSR置入1或0,Q端的状态是否改变?③右移:令S1S=“01”,CP接1Hz方波脉冲,再令DSL=“0”,观察Q端的变化,待4个LED全灭以后(此时输入的串行码是什么?),再令DSR=“l”,观察此时Q端LED点亮的次序。
当 4个LED都点亮时,输入的串行码又如何?若要串行输入代码1010(或其它非全0、非全1码),在DSR端置入一位数码(低位先送),给 CP端送单次脉冲,经过4个脉冲之后立即将S置成0以使寄存器工作于保存状态。
④左移:令S1S=“10”,CP=1Hz,代码1010由DSL端置入,其它步骤与右移相同。
移位寄存器实验报告篇一:移位寄存器实验报告移位寄存器实验报告(一)实验原理移位寄存器是用来寄存二进制数字信息并且能进行信息移位的时序逻辑电路。
根据移位寄存器存取信息的方式可分为串入串出、串入并出、并入串出、并入并出4种形式。
74194是一种典型的中规模集成移位寄存器,由4个RS触发器和一些门电路构成的4位双向移位寄存器。
该移位寄存器有左移,右移、并行输入数据,保持及异步清零等5种功能。
有如下功能表(三)实验内容1. 按如下电路图连接电路十个输入端,四个输出端,主体为74194. 2. 波形图参数设置:End time:2usGrid size:100ns 波形说明:clk:时钟信号;clrn:置0 s1s0:模式控制端 sl_r:串行输入端 abcd:并行输入 qabcd:并行输出结论:clrn优先级最高,且低有效高无效;s1s0模式控制,01右移,10左移,00保持,11置数重载;sl_r控制左移之后空位补0或补1。
3. 数码管显示移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102 clk:122 clk0:125 clrn:95 q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72 sl_r:82,83 结论:下载结果与仿真结果一致,下载正确。
一、实验日志1.移位寄存器的实验真的挺纠结的,本来想用7449的,但是下载结果出现了错误,想到它在这个电路图中的功能比较单一,就自己写了一个my7449,终于对了。
五、思考题(1)简单说明移位寄存器的概念及应用情况?概念:移位寄存器是用来寄存二进制数字信息且能进行信息移动的时序逻辑电路。
根据移位寄存器存取信息的方式不同可以分为串入串出,串入并出,并入串出,并入并处4种形式。
应用:移位寄存器可以构成计数器,顺序脉冲发生器,串行累加器,串并转换,并串转换等。
实验五 移位寄存器及其应用
一、实验目的
1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用 — 实现数据的串行、并行转换和构成环形计数器。
二、实验原理
1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图10-1所示。
图10-1 CC40194的逻辑符号及引脚功能
其中 D 0、D 1 、D 2 、D 3为并行输入端;Q 0、Q 1、Q 2、Q 3为并行输出端;S R 为右移串行输入端,S L 为左移串行输入端;S 1、S 0 为操作模式控制端;
R C 为直接无条件清零端;CP 为时钟脉冲输入端。
CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q 0→Q 3),左移(方向由Q 3→Q 0),保持及清零。
S 1、S 0和R C 端的控制作用如表10-1。
表10-1
2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。
本实验研究移位寄存器用作环形计数器和数据的串、并行转换。
(1)环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,
如图10-2所示,把输出端 Q
3和右移串行输入端S
R
相连接,设初始状态
Q
0Q
1
Q
2
Q
3
=1000,则在时钟脉冲作用下Q
Q
1
Q
2
Q
3
将依次变为0100→0010→0001
→1000→……,如表10-2所示,可见它是一个具有四个有效状态的计数
器,这种类型的计数器通常称为环形计数器。
图10-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。
表10-2
图 10-2 环形计数器
如果将输出Q
O 与左移串行输入端S
L
相连接,即可达左移循环移位。
(2)实现数据串、并行转换
①串行/并行转换器
串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。
图10-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。
图10-3 七位串行 / 并行转换器
电路中S
0端接高电平1,S
1
受Q
7
控制,二片寄存器连接成串行输入右移
工作模式。
Q
7是转换结束标志。
当Q
7
=1时,S
1
为0,使之成为S
1
S
=01的串
入右移工作方式,当Q
7=0时,S
1
=1,有S
1
S
=10,则串行送数结束,标志
着串行输入的数据已转换成并行输出了。
串行/并行转换的具体过程如下:
转换前,R C 端加低电平,使1、2两片寄存器的内容清0,此时S 1S 0=11,寄存器执行并行输入工作方式。
当第一个CP 脉冲到来后,寄存器的输出状态Q 0~Q 7为01111111,与此同时S 1S 0变为01,转换电路变为执行串入右移工作方式,串行输入数据由1片的S R 端加入。
随着CP 脉冲的依次加入,输出状态的变化可列成表10-3所示。
表10-3
由表10-3可见,右
移操作七次之后,Q 7变为0,S 1S 0又变为11,说明串行输入结束。
这时,串行输入的数码已经转换成了并行输出了。
当再来一个CP 脉冲时,电路又重新执行一次并行输入,为第二组串行数码转换作好了准备。
② 并行/串行转换
器
并行/串行转换器是指并行输入的数码经转换电路之后,换成串行输出。
图10-4是用两片CC40194(74LS194)组成的七位并行/串行转换电路,
它比图10-3多了两只与非门G 1和G 2,电路工作方式同样为右移。
图10-4 七位并行 / 串行转换器
寄存器清“0”后,加一个转换起动信号(负脉冲或低电平)。
此时,由于方式控制S 1S 0为11,转换电路执行并行输入操作。
当第一个CP 脉冲到来后,Q 0Q 1Q 2Q 3Q 4Q 5Q 6Q 7的状态为0D 1D 2D 3D 4D 5D 6D 7,并行输入数码存入寄存器。
从而使得G 1输出为1,G 2输出为0,结果,S 1S 2变为01,转换电路随着CP 脉冲的加入,开始执行右移串行输出,随着CP 脉冲的依次加入,输出状态依次右移,待右移操作七次后,Q 0~Q 6的状态都为高电平1,与非门G 1输出为低电平,G 2门输出为高电平,S 1S 2又变为11,表示并/串行转换结束,且为第二次并行输入创造了条件。
转换过程如表10-4所示。
表10-4
中规模集成移位寄存器,其位数往往以4位居多,当需要的位数多于4位时,可把几片移位寄存器用级连的方法来扩展位数。
三、实验设备及器件
1、 +5V 直流电源
2、 单次脉冲源
3、 逻辑电平开关
4、 逻辑电平显示器
5、 CC40194×2(74LS194) CC4011(74LS00) CC4068(74LS30) 四、实验内容
1 、测试CC40194(或74LS194)的逻辑功能 按图10-5接线,R C 、S 1、S 0、S L 、
S R 、D 0、D 1、D 2、D 3输出插口;Q 0、Q 1、Q 2、Q 3显示输入插口。
CP 表10-5试。
图10-5 CC40194逻
辑功能测试
(1) 清除:令R C =0,其它输入均为任意态,这时寄存器输出Q 0、Q 1、Q 2、
Q 3应均为0。
清除后,置R C =1 。
(2)送数:令R C =S 1=S 0=1 ,送入任意4位二进制数,如D 0D 1D 2D 3=abcd ,加CP 脉冲,观察CP =0 、CP 由0→1、CP 由1→0三种情况下寄存器输出状态的变化,观察寄存器输出状态变化是否发生在CP 脉冲的上升沿。
(2)右移:清零后,令R C =1,S 1=0,S 0=1,由右移输入端S R 送入二
进
制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。
(4) 左移:先清零或予置,再令R C=1,S
1=1,S
=0,由左移输入端
S
L
送入二进制数码如1111,连续加四个CP脉冲,观察输出端情况,记录之。
(5) 保持:寄存器予置任意4位二进制数码abcd,令R C=1,S
1=S
=0,
加CP脉冲,观察寄存器输出状态,记录之。
2、环形计数器
自拟实验线路用并行送数法予置寄存器为某二进制数码(如0100),然后进行右移循环,观察寄存器输出端状态的变化,记入表10-6中。
表10-5
表10-6
3、实现数据的串、并行转换
(1)串行输入、并行输出
按图10-3接线,进行右移串入、并出实验,串入数码自定;改接线路用左移方式实现并行输出。
自拟表格,记录之。
(2)并行输入、串行输出
按图10-4接线,进行右移并入、串出实验,并入数码自定。
再改接线路用左移方式实现串行输出。
自拟表格,记录之。
五、实验预习要求
1、复习有关寄存器及串行、并行转换器有关内容。
2、查阅CC40194、CC4011及CC4068 逻辑线路。
熟悉其逻辑功能及引脚排列。
3、在对CC40194进行送数后,若要使输出端改成另外的数码,是否一
定要使寄存器清零?
4、使寄存器清零,除采用R C输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?
5、若进行循环左移,图10-4接线应如何改接?
6、画出用两片CC40194构成的七位左移串/ 并行转换器线路。
7、画出用两片CC40194构成的七位左移并/ 串行转换器线路。
六、实验报告
1、分析表10-4的实验结果,总结移位寄存器CC40194的逻辑功能并写入表格功能总结一栏中。
1、根据实验内容2 的结果,画出4位环形计数器的状态转换图及波形
图。
2、分析串/ 并、并/ 串转换器所得结果的正确性。
3、希望以上资料对你有所帮助,附励志名言3条:
4、1、宁可辛苦一阵子,不要苦一辈子。
5、2、为成功找方法,不为失败找借口。
6、3、蔚蓝的天空虽然美丽,经常风云莫测的人却是起落无从。
但他
往往会成为风云人物,因为他经得起大风大浪的考验。
7、。