第四章 解析函数的幂级数表示方法
- 格式:doc
- 大小:1.04 MB
- 文档页数:23
第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。
按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。
设0z 是一个复常数。
如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。
如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。
令0z a ib =+,其中a 和b 是实数。
由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式:,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。
注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。
注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。
定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。
定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。
幂级数的知识点总结一、幂级数的定义与基本概念1. 幂级数定义幂级数是指形如 $\sum_{n=0}^{\infty} a_nx^n$ 的级数,其中 $a_n$ 是常数,$x$ 是变量。
我们将 $a_nx^n$ 称为幂级数的通项。
当 $x=0$ 时,幂级数收敛,此时幂级数的值为 $a_0$。
当 $x\neq0$ 时,幂级数可能发散,也可能收敛。
2. 幂级数的收敛半径幂级数的收敛半径是指所有幂级数都收敛的 $x$ 范围。
收敛半径 $R$ 的计算公式为\[R = \lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}\]当 $R=0$ 时,幂级数只在 $x=0$ 处收敛;当 $R=\infty$ 时,幂级数在整个实数范围都收敛;当 $0<R<\infty$ 时,幂级数在 $(-R,R)$ 范围内收敛。
3. 幂级数的收敛域幂级数的收敛域是指其收敛的 $x$ 区间范围。
我们可以通过比较 $|x|<R$ 和 $|x|=R$ 以及$|x|>R$ 的情况来判断幂级数的收敛域。
二、幂级数的性质1. 幂级数的加法性与乘法性若 $\sum_{n=0}^{\infty} a_nx^n$ 和 $\sum_{n=0}^{\infty} b_nx^n$ 是两个幂级数,由于级数的加法与乘法遵循线性性质,因此这两个幂级数的和与乘积仍然是幂级数,它们的收敛性与原幂级数相同。
2. 幂级数的导数与积分幂级数在其收敛域内可以进行导数与积分运算,这是因为这些运算不会改变收敛性质。
具体来说,对于 $\sum_{n=0}^{\infty} a_nx^n$,它的导数等于 $\sum_{n=1}^{\infty}na_nx^{n-1}$,它的不定积分等于 $\sum_{n=0}^{\infty} \frac{a_n}{n+1}x^{n+1}+C$。
三、幂级数的收敛性与收敛域判断1. 幂级数的收敛性判定判断幂级数 $\sum_{n=0}^{\infty} a_nx^n$ 的收敛性时,我们可以使用比值判别法、根式定理、韦达定理等方法。
函数展成幂级数的公式在数学中,幂级数是一种特殊的函数表示方法,它可以用无限多个幂次项的和来表示一个函数。
幂级数的形式可以写为:f(x)=a₀+a₁x+a₂x²+a₃x³+...其中,a₀,a₁,a₂,a₃等是系数,可以是实数或复数,x是自变量。
幂级数的展开系数a₀,a₁,a₂,a₃等根据函数的性质不同而有所不同。
下面介绍几个常见函数的幂级数展开公式。
1. 指数函数(exp(x)的幂级数展开):指数函数exp(x)可以展开为无限和的形式:exp(x) = 1 + x + (x²/2!) + (x³/3!) + ...其中,n!表示n的阶乘。
2. 正弦函数(sin(x)的幂级数展开):正弦函数sin(x)可以展开为无限和的形式:sin(x) = x - (x³/3!) + (x⁵/5!) - (x⁷/7!) + ...3. 余弦函数(cos(x)的幂级数展开):余弦函数cos(x)可以展开为无限和的形式:cos(x) = 1 - (x²/2!) + (x⁴/4!) - (x⁶/6!) + ...4. 自然对数函数(ln(x)的幂级数展开):自然对数函数ln(x)可以展开为无限和的形式:ln(x) = (x-1) - (x-1)²/2 + (x-1)³/3 - (x-1)⁴/4 + ...以上仅列举了几个常见函数的幂级数展开公式,实际上,许多其他函数也可以通过幂级数展开来表示,例如三角函数的反函数、双曲函数、指数函数的反函数等。
幂级数展开的优点是可以用有限项的和来近似计算一个函数的值,特别是在自变量比较接近展开点的情况下,保留有限项可以获得较高的精度。
此外,幂级数展开也有助于理解函数的性质和行为。
在实际应用中,幂级数展开在物理、工程、计算机科学等领域有重要的应用,例如在信号处理、图像处理、优化求解等方面都得到了广泛应用。
总之,幂级数是一种重要的函数展示方法,在数学和应用领域都有着重要的地位。
第四章解析函数的幂级数表示法§1.复级数的基本性质1.(定理4.1)复级数收敛的充要条件:实部虚部分别收敛。
2.(定理4.2)复级数收敛的充要条件(用定义):对任给的>0,存在正整数N(),当n>N且p为任何正整数时,注1:收敛级数通项必趋近于零;注2:收敛级数各项必有界;注3:级数省略有限个项不改变敛散性。
3.(定理4.3)收敛4.(定理4.4)(1)绝对收敛的复级数可任意重排,不改变收敛性,不改变和;(2)两个绝对收敛的复级数可按对角线方法得出乘积(柯西积)级数,也绝对收敛于。
5.一致收敛的定义:对任给的>0以及给定的,存在正整数N=N(,z),当n>N时,有式中6.不一致收敛的定义7.(定理4.5 柯西一致收敛准则):级数收敛的充要条件是:任给>0,存在正整数N=N(),使当n>N时,对一切,均有8.(定理4.5’不一致收敛准则):9.(优级数准则):如果有正数列,使对一切,有|)|≤,且正项级数收敛复级数在集E上绝对收敛且一致收敛。
10.优级数定义:称为的优级数。
11.(定理4.6)级数各项在点集E上连续,且一致收敛于f(z),则和函数也在E上连续。
12.(定理4.7 积分求和符号可交换)级数的各项在曲线C上连续,且一致收敛于f(z),则沿C可逐项积分13.内闭一致收敛:有界闭集上一致收敛14.(定理4.8)在圆K:|z-a|<R内闭一致收敛的充要条件:对任意正整数,只要<R,级数在闭圆上一致收敛。
15.(定理4.9 魏尔斯特拉斯定理):设(1)函数在区域D内解析;(2)在D内内闭一致收敛于函数f(z):则:(1)f(z)在D内解析;(2)(3)在D内内闭一致收敛于§2.幂级数1.(定理4.10 阿贝尔定理):幂级数在某点(≠a)收敛它必在圆K:|z-a|<|-a|(以a为圆心,圆周通过的圆)内绝对收敛且内闭一致收敛。
高等数学 第四册(第三版) 数学物理方法 答案(完整版)第一章 复数与复变函数(1)1.计算)(1)2;i i i i i -=-=-()122(12)(34)(2)5102122.;345(34)(34)591655i i i i i i i i i i i i +-++--+++=+=-=---+-+5551(3).;(1)(2)(3)(13)(3)102i i i i i i i ===------4222(4).(1)[(1)](2)4;i i i -=-=-=-1122())]a bi =+=112224sin )]()(cossin );22i a b i θθθθ=+=++3.设1z=2;z i =试用三角形式表示12z z 及12z z 。
解:121cossin;(cos sin );44266z i z i ππππ=+=+121155[cos()sin()](cos sin );2464621212z z i i ππππππ=+++=+ 122[cos()sin()]2(cos sin );46461212z i i z ππππππ=-+-=+11.设123,,z z z 三点适合条件1230z z z ++=及1231;z z z ===试证明123,,z z z 是一个内接于单位圆z =1的正三角形的顶点。
证明:1230;zz ++=z 123231;312;;z z z z z z z z z ∴=--=--=--122331;z z z z z z ∴-=-=-123,,z z z ∴所组成的三角形为正三角形。
1231z z z ===123,,z z z ∴为以z 为圆心,1为半径的圆上的三点。
即123z ,z ,z 是内接于单位圆的正三角形。
.17.证明:三角形内角和等于π。
证明:有复数的性质得:3213213arg;arg ;arg ;z z z z z z αβγ---=== 21z z z z -•-arg(1)2;k αβγπ∴++=-+0;k ∴=;αβγπ∴++=第一章 复数与复变函数(2)7.试解方程()4400z a a +=>。
复变函数论第四版钟玉泉
目录
第一章复数与复变函数
第二章解析函数
第三章复变函数的积分
第四章解析函数的幂级数表示法
第五章解析函数的洛朗(Laurent)展式与孤立奇点
第六章留数理论及其应用
第七章共形映射
大学生必备资源库为大学生提供网课答案、大学课后答案、软件安装、大学考试考证资源以及学习资料、影视资源等,大学生必备资源库致力于为大学生打造全面的大学学习服务,感谢您的支持与厚爱!
我们的答案体系、软件安装体系、学习资源体系三大体系都在不断更新和完善之中,可能有些资源资料答案您无法找到,请您耐心向公众号平台后台留言,我们将第一时间为大家提供最多人所需求的资料资源。
我们大多数资源来源于互联网查找整理和搜集,不对资源内容附带任何法律责任,特此声明。
起初,公众平台由一人打理现在逐渐变为多人打理,内容资源将不断持续更新丰富,更加有条理、有逻辑、有内涵,以满足广大大学生对美好知识的向往,以解决大学生对知识向往与大学资源不平衡不充分的矛盾。
再次感谢各位一如既往的支持与厚爱!。
中国海洋大学数学系教案
------《数学物理方法》
课程英文名称:Methods of Mathematical Physics
课程总学时:85
总学分:5
教材:高等数学(四)
编者:四川大学数学系
出版社:高等教育出版社
出版时间及版次:1985年6月第2版
授课对象:全校理工科学生
撰写人:尹彦彬赵元章王丽萍
撰写时间:2006年3月
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案。
第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。
按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。
设0z 是一个复常数。
如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。
如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。
令0z a ib =+,其中a 和b 是实数。
由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式:,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。
注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。
注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。
定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。
定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。
注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下121321()()...()...n n z z z z z z z -+-+-++-+则序列{}n z 的敛散性和此级数的敛散性相同。
注2级数nz∑收敛于σ的N ε-定义可以叙述为:0,0,,N n N ε∀>∃>>使得当时有1||nk k z σε=-<∑,注3如果级数n z ∑收敛,那么1lim lim ()0,n n n n n z σσ+→+∞→+∞=-=注4令Re ,Re ,Im ,Re ,Im n n n n n n a z a z b z a b σσ=====,我们有 11n nn k k k k a i b σ===+∑∑因此,级数n z ∑收敛于σ的充分与必要条件是:级数n a ∑收敛于a 以及级数n b ∑收敛于b 。
注5关于实数项级数的一些基本结果,可以不加改变地推广到复数项级数,例如下面的柯西收敛原理:定理4.2柯西收敛原理(复数项级数):级数n z ∑收敛必要与充分条件是:任给0ε>,可以找到一个正整数N ,使得当n>N ,p=1,2,3,…时,12|...|n n n p z z z ε++++++<柯西收敛原理(复数序列):序列{}n z 收敛必要与充分条件是:任给0ε>,可以找到一个正整数N ,使得当m 及n>N ,||n m z z ε-<对于复数项级数n z ∑,我们也引入绝对收敛的概念: 定义4.2如果级数12||||...||...n z z z ++++收敛,我们称级数n z ∑绝对收敛。
非绝对收敛的收敛级数称为条件收敛复级数n z ∑收敛的一个充分条件为级数n z ∑收敛注1、级数n z ∑绝对收敛必要与充分条件是:级数n a ∑以及n b ∑绝对收敛:事实上,有11111||||||||||,nn n nkk nk k k k k nk k k k ab z a b ======≤=≤+∑∑∑∑∑及注2、若级数n z ∑绝对收敛,则n z ∑一定收敛。
例4.1当||1α<时,21......n ααα+++++绝对收敛;并且有12111...,lim 01n nn n αααααα++→+∞-++++==-我们有,当||1α<时,211.......1n αααα+++++=-定理4.1如果复数项级数'n z ∑及"n z ∑绝对收敛,并且它们的和分别为',"αα,那么级数'"'"'"12111(...)n n n n z z z z z z +∞-=+++∑ 也绝对收敛,并且它的和为'"αα。
2、复变函数项级数和复变函数序列:定义4.3 设{()}(1,2,...)n f z n =在复平面点集E 上有定义,那么:...)(...)()(21++++z f z f z f n是定义在点集E 上的复函数项级数,记为1()n n f z +∞=∑,或()n f z ∑。
设函数f(z)在E 上有定义,如果在E 上每一点z ,级数()n f z ∑都收敛于()f z ,那么我们说此复函数项级数在E 上收敛于()f z ,或者此级数在E 上有和函数()f z ,记作),()(1z f z fn n=∑+∞=设),...(),...,(),(21z f z f z f n是E 上的复函数列,记作+∞=1)}({n n z f 或)}({z f n 。
设函数)(z ϕ在E 上有定义,如果在E 上每一点z ,序列)}({z f n 都收敛于)(z ϕ,那么我们说此复函数序列在E 上收敛于)(z ϕ,或者此序列在E 上有极限函数)(z ϕ,记作),()(lim z z f n n ϕ=+∞→注1、复变函数项级数∑)(z f n 收敛于()f z 的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|1ε<-∑=z f z f nk k注2、复变函数序列)}({z f n 收敛于)(z ϕ的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|εϕ<-z z f n定义4.4如果任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数()N N ε=,使得当E z N n ∈>,时,有.|)()(|1ε<-∑=z f z f nk k或 .|)()(|εϕ<-z z f n那么我们说级数∑)(z f n 或序列)}({z f n 在E 上一致收敛于()f z 或)(z ϕ。
注解1、和实变函数项级数和序列一样,我们也有相应的柯西一致收敛原理:定理4.5柯西一致收敛原理(复函数项级数):复函数项级数∑)(z f n 在E 上一致收敛必要与充分条件是:任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数)(εN N =,使得当E z N n ∈>,,p =1,2,3,…时,有.|)(...)()(|21ε<++++++z f z f z f p n n n柯西一致收敛原理(复函数序列):复变函数序列)}({z f n 在E 上一致收敛必要与充分条件是:任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数)(εN N =,使得当E z N n m ∈>,,时,有.|)()(|ε<-z f z f m n注2、一致收敛的魏尔斯特拉斯判别法(优级数准则):设,...)2,1)}(({=n z f n 在复平面点集E 上有定义,并且设是一个收敛的正项级数。
设在E 上,,...),2,1( |)(|=≤n a z f n n那么级数∑)(z f n 在E 上绝对收敛且一致收敛。
这样的正项级数1n n a ∞=∑称为复函数项级数∑)(z f n 的优级数.定理 4.6 设复平面点集E 表示区域、闭区域或简单曲线。
设,...)2,1)}(({=n z f n 在集E 上连续,并且级数∑)(z f n 或序列)}({z f n 在E 上一致收敛于()f z 或)(z ϕ,那么f (z )或)(z ϕ在E 上连续。
定理4.7 设,...)2,1)((=n z f n 在简单曲线C 上连续,并且级数∑)(z f n 或序列)}({z f n 在C 上一致收敛于()f z 或)(z ϕ,那么......21++++n a a a,)()(1⎰∑⎰=+∞=Cn Cn dz z f dz z f或.)()(⎰⎰=CCn dz z dz z f ϕ注1、在研究复函数项级数和序列的逐项求导的问题时,我们一般考虑解析函数项级数和序列;注2、我们主要用莫勒拉定理及柯西公式来研究和函数与极限函数的解析性及其导数。
定义4.5设函数,...)2,1)}(({=n z f n 在复平面C 上的区域D 内解析。
如果级数∑)(z f n 或序列)}({z f n 在D 内任一有界闭区域(或在一个紧集)上一致收敛于()f z 或)(z ϕ,那么我们说此级数或序列在D 中内闭(或内紧)一致收敛于()f z 或)(z ϕ。
定理4.9(魏尔斯特拉斯定理)设函数,...)2,1)((=n z f n 在区域D 内解析,并且级数∑)(z f n 或序列)}({z f n 在D 内闭一致收敛于函数()f z 或)(z ϕ,那么()f z 或)(z ϕ在区域D 内解析,并且在D 内,)()(1)()(∑+∞==n k n k z f z f或,...).3,2,1(),(lim )()()(==+∞→k z f z k n n k ϕ证明:先证明()f z 在D 内任一点0z 解析,取0z 的一个邻域U ,使其包含在D 内,在U 内作一条简单闭曲线C 。
由定理4.7以及柯西定理,,0)()(1==∑⎰⎰+∞=n Cn Cdz z f dz z f因为根据莫勒拉定理,可见()f z 在U 内解析。
再由于0z 是D 内任意一点,因此()f z 在D 内解析。
其次,设U 的边界即圆K 也在D 内,于是∑+∞=+-110)()(n k n z z z f , 对于K z ∈一致收敛于10)()(+-k z z z f 。