音速喷嘴流动特性及临界背压比测量的数值分析
- 格式:pdf
- 大小:1.80 MB
- 文档页数:8
临界流文丘里喷嘴数值模拟及优化设计引言文丘里喷嘴是一种能够将液体或气体加速至高速的装置,被广泛应用于航空航天、化工、汽车等领域。
在实际工程中设计喷嘴时,需要考虑各种因素,如流体性质、喷嘴结构、流场特性等。
在这些因素中,流场特性是一个重要的指标,它直接影响着喷嘴的性能。
对喷嘴的流场进行数值模拟并进行优化设计,能够帮助工程师们更好地理解喷嘴的工作原理,为喷嘴的性能提供优化设计方案。
本文将介绍临界流文丘里喷嘴数值模拟及优化设计的方法与结果。
一、文丘里喷嘴的基本原理文丘里喷嘴是一种流体动力学装置,通过喷口的几何形状和喷口内部压力的变化,使流体在喷口内获得一个足够大的动能。
其工作原理基于质量守恒定律和动量守恒定律,在理想状态下,文丘里喷嘴内部的流动是定常、非粘性、不可压缩、无旋转、均匀的。
喷嘴内部流动的动态特性决定了其性能,因此研究喷嘴内部流场对于优化设计具有重要意义。
二、数值模拟的方法为了研究文丘里喷嘴的流场特性,数值模拟成为一种高效、经济、有效的研究方法。
在进行数值模拟时,首先需要建立喷嘴的几何模型,包括喷口的形状、尺寸和边界条件等。
然后利用计算流体力学(CFD)软件,通过求解流动的连续性方程、动量方程和能量方程,来模拟喷嘴内部的流动。
数值模拟可以得到喷嘴内部的流动速度、压力、温度和其他流场参数,进而分析流动特性。
在模拟过程中,需要对网格划分、边界条件的设置和求解算法的选择进行合理的设置,以保证模拟结果的准确性。
三、数值模拟的结果通过数值模拟,我们得到了文丘里喷嘴内部的流场分布。
通过对模拟结果的分析,我们可以看到在喷嘴的进口处流速较低,压力较高,而在喷嘴的收敛段速度逐渐增加,压力逐渐降低。
在喷嘴的喉部,流速达到最大值,压力最小。
接着在扩散段流速逐渐减小,压力逐渐增加。
最终,在喷嘴出口处流速逐渐增加,压力逐渐降低。
除了流速和压力之外,我们还可以得到喷嘴内部的其他流场参数,如温度、密度等,这些参数对于喷嘴的设计和性能分析都具有重要的作用。
音速喷嘴式燃气表检定装置的检测【摘要】音速喷嘴式燃气表检测装置是燃气表生产厂家及计量部门检测燃气表的检定装置,检测精准科学,不仅为燃气贸易中的结算提供依据,而且国家计量行政部门注重监管,因而对它的检定具有重要意义。
本文从燃气表的音速喷嘴式检定装置的其结构特点和原理入手,结合检定装置技术指标,对检测的方法及相应问题的解决方法进行探讨。
【关键词】燃气表;音速喷嘴式检定装置;结构特点;检测一、检定装置的结构和原理音速喷嘴式检定装置的检测方法有正压法和负压法,正压法相对负压法投资费用更高。
音速喷嘴式燃气表的检定装置有音速喷嘴组也叫标准表、温度压力修正系统、动力系统、由电脑控制系统和试验管路等几大部分。
例如负压法检定的科学原理:通过真空泵作为气源抽气,从而保证空气在整个试验管路内流动,再用音速喷嘴和受检燃气表连接安装的温度压力传感器,去检测在流动状态下的气体温度和所受压力。
当音速喷嘴的各种组合受电脑控制,达到所需要流量值,通过温度压力修正结合运行时间,处理相关数据得出误差。
文丘里喷嘴作为装置标准表音速喷嘴。
文丘里喷嘴在临界流成为孔径渐小的流道,其中最小的那一块即喷嘴喉部,它的出口是扩张的。
喷嘴上、下段在气体通过喷嘴节流压力比值到了特定值,喷嘴喉部就成了临界状态,流过喷嘴的气体流量和质量到最大,气流是临界流,喷嘴的入口会发生止滞压力和温度压力进而对气体流量影响,下游状态不对它产生影响。
二、检测的目的及数据指标用临界流流量计标准表检定音速喷嘴燃气表比对校验,标准器节流是音速喷嘴无可动元件,12台燃气表同被检定,其加过更为准确。
用于检定音频喷嘴流量的装置,是国家参照是国家参照音速技术设计而成,提高了工作效率,保证了装置准确性和稳定性,真正实现自动化管理。
总装置<0.5%的总确定度绝对压力传感器0-110KPA测量范围,准确度≤0.2%微差压力传感器-500PA-500PA测量范围,精确度≤0.5%温度传感器0℃-50℃测量范围,准确度≤±0.2℃晶振频率计算时间准确度<10-4晶振频率计算时间每天稳定度<10-5流量点:0.016m-3/h,0.025-3/h,0.04-3/h,0.5-3/h,0.8-3/h,1.2-3/h,2.5-3/h,4-3/h,6-3/h应用条件:环境的温度20℃±5℃相对湿度45%-75%大气压力86KPA-106KPA供电的电源:AC 3 X 220V ±20V,50HZ。
喷油嘴喷孔内流动特性数值仿真与试验分析谢阳;罗麒元;麻剑;许沧粟【摘要】采用X射线相衬成像技术研究喷嘴喷孔内试验的流动特性,验证数值仿真结果.利用CFD软件模拟得到入口压力下燃油的质量流量、空穴分布、有效喷射速度与无量纲流动系数,结合试验数据对流动特性进行分析.结果表明:X射线相衬成像技术的成像效果良好,仿真结果与试验结果吻合较好;喷射压力越高,更容易进入临界超空穴状态;喷孔出口速度的增幅略大于体积流量的增幅;雷诺数随着喷射压力的上升呈幂函数型上升,空穴数随着雷诺数的增加呈指数下降,流量系数都随着雷诺数的上升缓慢增加直至趋于稳定.【期刊名称】《浙江大学学报(工学版)》【年(卷),期】2016(050)001【总页数】6页(P111-115,165)【关键词】柴油机;空穴;X射线;相衬成像【作者】谢阳;罗麒元;麻剑;许沧粟【作者单位】浙江大学动力机械及车辆工程研究所,浙江杭州310027;浙江大学动力机械及车辆工程研究所,浙江杭州310027;浙江大学动力机械及车辆工程研究所,浙江杭州310027;浙江大学动力机械及车辆工程研究所,浙江杭州310027【正文语种】中文【中图分类】TK421现代柴油发动机多配备高压共轨喷射系统.柴油通过喷油器的多喷孔直接向缸内喷射,从而实现更好的排放性能.高压共轨系统会加剧燃料在孔内的湍流度[1].研究表明,燃油喷雾的形成及雾化过程受到喷嘴内湍流和空穴的影响,并且喷孔内空穴引起的液流紊乱对孔外雾化的影响远远大于周围空气摩擦的影响[2-3].近年来,随着相关测试技术的发展,对喷孔内空穴流动特性的各项研究逐渐发展起来.X 射线相衬成像技术作为一项新型的测试技术,得到了极大的发展.目前,国外已有文献运用同步辐射X射线相衬成像技术来对喷雾机理以及喷孔内的流动特性进行研究[4-5].试验成像的效果良好.目前,国内利用该项技术探究喷孔内的空穴流动特性较少[6].由于真实喷孔的尺寸极小,使用可视化手段难以识别小区域内的流态变化,为了降低这种情况的影响,选用放大喷孔是一种较好的解决方法[7-12].相似准则[7]是在设计放大喷孔时的主要理论依据.为了消除喷孔曲面的影响,采用二维平面喷嘴可以直观地观察孔内流动状态的变化[7-11].本文采用X射线相衬成像技术研究喷嘴喷孔内试验的流动特性,配合数值仿真结果进行相互验证,探究该技术的可行性.通过试验和CFD仿真计算了不同喷射压力下喷孔内流量及喷孔出口处有效喷射速度等,并配合空穴数、雷诺数和韦伯数进一步分析喷射压力对孔内流动特性参数的影响.测试燃料选取市售0#柴油.柴油的理化特性如表1所示[13-14].表中,ρ、μ、pv和σ分别为密度、黏度、饱和蒸汽压和表面张力.采用上海光源( SSRF )的第3代同步辐射光源,研究喷孔内的流动特性.试验系统如图1所示,包括比例放大的喷油器、稳压供油系统、X射线成像及采集系统.二维喷孔模型如图2 所示.喷孔的几何参数如下:喷孔宽度为5 mm,考虑到部分真实喷嘴的长径比为1.8,因此选取9 mm作为喷孔长度,厚度为2 mm.透明视窗的材料采用聚稀亚胺.该材料有利于X射线的穿透,并且能够在高温下保持良好的力学强度.如图1所示,试验开始时,打开减压阀,使得氮气瓶中的气体进入油箱,从而将柴油压入供油管路,打开开关,燃油喷入大气环境中的回油槽(背压约为0.1 MPa).此时,流量计和喷嘴上方的压力计开始读数,调整减压阀使得喷嘴上方压力表示数达到试验设定值的一定范围内,待压力稳定后启动X射线源,此时图像采集系统通过ICCD相机采集2 s的图像.一次试验完成后,通过改变进入油箱的气压来调节喷射压力,从而得到不同喷射压力条件下喷孔内的流动状况.流量计与压力表的数据直接由采集系统采集后,与图像系统采集的相片同时间轴输出,因此数据的处理较方便.考虑到喷孔上游及下游燃烧室对喷孔内柴油流动的影响,选择上游10 mm喷孔以及下游燃烧室12 mm区域作为计算区域.采用混合网格划分区域,对喷孔入口拐角处进行加密处理,得到精度更高的结果.如图3所示为喷孔网格图.在验证网格独立性后,选择网格数为623 548作为后续计算的基础.数值模拟采用 ANSYS 软件,利用均相模型计算空穴现象.对喷孔内部的空穴流动进行气液两相湍流数值模拟,以 Rayleigh 所发展的单气泡溃灭模型,湍流模型选用Jones和Launder提出的标准k-ε模型;进出口均采用压力边界,入口压力设置为0.15、0.20、0.25、0.30、0.35、0.40 MPa,背压设置为0.101 MPa;固壁处理,两相间流速无滑移;由于较高入口压力带来的强湍流度,使用给定湍流强度I和湍流长度l来取代湍动能k和耗散率ε;压力修正采用SIMPLE算法;采用一阶迎风格式.为了区别喷孔内的单相流与空穴流,并反映空穴出现后的发展程度,引入无量纲空穴数K来判断空穴初生:流量系数Cd是影响喷油器设计的一个主要因素.随着孔内流动状态的改变,流量系数随之改变.Cd的定义如下:通过式(2)得到的K和Cd,结合雷诺数和韦伯数(式(3)和(4)),可以更清晰地展示孔内流动状态.网格数对模拟计算精度有很大的影响,因此对网格独立性的验证是必要的[16].本文预先对网格独立性进行验证.如图4所示为当入口压力为0.2 MPa,背压为0.1 MPa 时,孔内的质量流量随网格数n增加的变化情况.通过大量的计算显示,当网格数达到54 298时,后续的质量流量已经保持恒定.为了保证计算的精度,后续计算的网格数选择为62 548.很多实验表明:在相同背压下,随着喷射两端压差不断增加,体积流量逐渐增大.如图5所示为喷孔出口处体积流量随入口压力变化的曲线.由图5(a)可见,在相同背压的情况下,体积流量都随着入口压力的增加呈幂函数型增大,这与理论预测一致.相比于体积流量,燃油出口处的有效速度(液相平均速度)能够更直观地反映喷射状况.有效速度的定义如下.试验结果为从图5(b)可以看出,有效喷射速度随着入口压力的不断上升而增加,有效速度增幅略大于体积流量.这是由于喷孔内的超空穴现象减小了喷孔出口的有效面积,从而进一步加剧了有效喷射速度.在试验时,供油系统采用氮气提供压力,因此供油管路中的压力存在一定的波动,从而导致了体积流量存在波动值.为了便于数据处理,对体积流量进行取平均处理.如图6所示为体积流量波动偏差分析.可以看出,体积流量的偏差η随着入口压力的不断提高而下降,从最高的14%降低至4%.这是由于在压力表后端的管路中存在一定的沿程损失,入口压力增加产生的沿程损失在总动能中的占比不断下降.本试验基于X射线相衬成像技术,图像采集系统得到的图像难以直接识别,因此将图像矩阵化,并与背景图片进行差值处理,获得较清晰的孔内流动状态的图片.部分图片经过再次运算处理来加强需要分辨的细节.如图7所示为当环境温度为293 K,喷射背压为0.101 MPa时,不同入口压力下喷孔内空穴分布图(包括试验与数值仿真结果).图中,标尺为数值模拟结果,纯液相用1表示,纯气相用0表示.在喷孔平面截图中,通过对比孔内的平均气相区域,当喷孔入口压力达到0.15 MPa时,喷孔内的流动状态处于紊流状态,无空穴出现,这与试验结果(见图7(a))相符.如图7(b)所示为当入口压力为0.2、0.25 MPa时,CFD结果与试验结果喷孔内气液分布云图的对比.当入口压力为0.2 MPa时,孔内出现少量空穴,随着入口压力的增大,空穴向喷孔出口发展.当入口压力达到0.4 MPa时,CFD模拟计算结果中喷孔内流动状态进入超空化,试验结果(见图7(c))验证了这点.图8给出雷诺数在不同的入口压力情况下的比较.雷诺数(Reynolds number)与流场内部的湍流度呈正相关.雷诺数随着入口压力的增加而呈对数上升,喷孔内的湍流度不断上升.由于雷诺数正比于孔内流体的有效速度,而有效速度与喷嘴出、入口的压差的平方根成正相关,随着喷射压力的增加,有效速度增长趋缓,从而导致孔内湍流度的加剧程度变缓.这与图7相印证.图9给出雷诺数和韦伯数对空穴数的影响情况.在背压和燃料温度保持不变的情况下,空穴数随着入口压力的增加而减小.图9(a)表明:空穴数随着雷诺数的增加而呈指数下降.在紊流区域内,空穴数显著下降;在空化流区域,空穴数下降趋势放缓.根据式(1)的定义可知,当喷射的背压和流体的饱和蒸汽压为定值时,空穴数随着入口压力的上升而下降,并且这种趋势会逐渐放缓.由于空穴数与喷嘴出入口压差的倒数成正相关,雷诺数与喷嘴出入口的压差的平方根成正相关,因此空穴数随喷射压力的衰减程度强于雷诺数,呈现出指数式下降;同时,韦伯数对空穴数的影响与雷诺数相似. 如图10所示为不同入口压力下流量系数随雷诺数变化的情况.当喷孔内流态逐渐进入空穴流时,流量系数增加.当孔内流动进入空穴流后,随着雷诺数的不断增加,流量系数趋于稳定.(1)X射线相衬成像技术可以用来探究喷孔内的流动特性.X射线相衬成像技术获取的图像经过一定的处理能够清晰地展示喷孔内的流动状态.同时,仿真结果与试验结果能够较好地吻合.(2)试验和数值计算都表明,在一定的背压条件下,质量流量随着入口压力的增加而增大,而有效速度的增幅较大,并且当入口压力达到一定值(本试验为0.4 MPa)时,喷孔内流态进入超空化状态.(3)雷诺数随着喷压的上升呈幂函数型上升,空穴数随着雷诺数的增加呈指数下降,流量系数都随着雷诺数的上升而增加、直至趋于稳定.。
喷管特性实验之实验报告一、实验题目:喷管特性实验 二、实验目的1. 验证并进一步加深对喷管中气流基本规律的理解,建立临界压力、临界流速和最大流量等喷管临界参数的概念2.比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法3.明确渐缩喷管出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量4.明确缩放喷管中的压力可以低于临界压力,流速可高于当地音速,而流量不可能大于最大流量5.对喷管中气流的实际复杂过程有所了解,能定性解释激波产生的原因三、实验原理1.喷管理想流量的确定临界压力Pc 。
临界压力与喷管入口压力P1之比称之为临界压力比:1/P c P =ν。
经推导得到: 112-⎪⎭⎫ ⎝⎛+=K KK ν (5)对于空气,ν=0.52811121212min max V PK K K K A m ⋅-⎪⎭⎫ ⎝⎛++=& (6)式中: A min —最小截面积(对于渐缩喷管即为出口处的流通截面积;对于缩放喷管即为喉部的截面积。
本实验台的两种喷管最小截面积均为11.44mm 2)。
由于喷管前装有孔板流量计,气流有压力损失。
本实验装置的压力损失为U 型管压差计读数(∆P )的97%。
因此,喷管入口压力为:10.97a p p p =-∆2.喷管实际流量的确定喷管中的空气流量是通过喷管前的孔板流量计来确定的,计算公式为:νβε⋅⋅⋅∆-⨯=P m410373.1& (Kg/s ) (10)式中:ε—流束膨胀系数;aP P∆-⨯-=210873.21εβ—气态修正系数;β= ν—几何修正系数(约等于1.0) T a —室温(℃) ∆P —U 型管压差计读数(mmH2O ) Pa —大气压力(mbar )四、实验数据处理一、渐缩喷管 大气压_ 760__ mmHg 表1.压力分布表2.流量曲线二、缩放喷管表3.压力分布表4.流量曲线表5. 根据条件计算的喷管最大流量由计算结果可知,实际最大流量总是比相应的理想最大流量要小,这是空气有粘性的表现。
临界流文丘里喷嘴数值模拟及优化设计摘要:本文研究了文丘里喷嘴的临界流问题,通过数值模拟,分析了文丘里喷嘴的流动特性和临界流现象,并对其进行优化设计。
本研究结果表明,通过优化文丘里喷嘴的结构参数,可以使其在获得更大的临界流时降低喷射噪声和振动。
一、引言文丘里喷嘴是一种常用于气体喷射、推进器和火箭喷口中的零件。
在喷射过程中,喷嘴的流动特性对喷射效果有着很大的影响。
其中,文丘里喷嘴的临界流问题一直是研究的热点之一。
临界流现象通常会导致喷射噪声和振动,影响喷射效果和使用寿命。
因此,有必要对文丘里喷嘴的临界流问题进行深入研究和优化设计。
二、数值模拟方法本研究采用计算流体力学(CFD)方法对文丘里喷嘴的流动特性进行数值模拟。
首先,建立了文丘里喷嘴的三维模型,并利用FLUENT软件对其进行数值计算。
采用标准的k-ε湍流模型对喷嘴内的流动进行计算,同时考虑喷嘴壁面粗糙度对流动的影响。
计算过程中,设置喷嘴入口压力和温度,以得到喷嘴内的流场分布和临界流参数。
基于数值模拟结果,得出了文丘里喷嘴的流场分布和临界流现象。
其中,临界流速度为510m/s,喷射流的最大速度为732m/s。
同时,模拟得到了临界流下的压力和温度变化趋势,表明在临界流状态下,压力和温度显著增加,会导致喷射噪声和振动的增加。
四、优化设计基于数值模拟结果,本研究对文丘里喷嘴的结构参数进行了优化设计。
主要采用了以下两种方法:(1)设计喷嘴的进流道段,采用曲面形式,使流体流入后形成过渡段,减少流体的湍流强度和压力波动。
(2)设计喷嘴的出流道段,使出口处流道逐渐扩张,减少喷射噪声和振动。
通过优化设计,将文丘里喷嘴的临界流速度提高到550m/s,同时有效降低了喷射噪声和振动水平,提高了喷射效果和使用寿命。
五、结论。
临界流文丘里喷嘴数值模拟及优化设计1.引言文丘里喷嘴是一种常见的喷气装置,主要用于改变气流的速度和方向。
在航空航天、汽车发动机、火箭推进器等领域,文丘里喷嘴都有着重要的应用。
文丘里喷嘴通过利用喷嘴内部的流体动力学原理,能够将高压气体转化为高速气流,从而产生推进力或者其他流体力学效应。
在文丘里喷嘴的设计中,喷嘴的结构参数对其性能有着重要的影响。
为了获得最佳的喷嘴性能,需要对喷嘴的结构进行优化设计。
传统的试验方法往往费时费力,且成本较高,因此数值模拟成为了一种十分有效的优化手段。
本文通过数值模拟方法对文丘里喷嘴进行了仿真模拟,并对参数进行了优化设计,得到了一种性能优良的文丘里喷嘴结构。
本文采用计算流体力学(CFD)方法对文丘里喷嘴的流场进行了数值模拟。
建立了文丘里喷嘴的三维几何模型,并使用商业软件对其进行了网格划分。
然后,选择合适的流体模型和边界条件,进行了气体流场的数值求解。
得到了文丘里喷嘴内部流场的速度、压力等参数分布情况。
通过对文丘里喷嘴的数值模拟结果进行分析,可以得到喷嘴内部流场的各项参数分布情况,以及流动特性。
通过对不同结构参数进行优化设计,可以得到最佳的喷嘴结构,从而提高文丘里喷嘴的性能。
在文丘里喷嘴的优化设计中,需要考虑的参数有很多,如喷嘴入口的形状、喷嘴的长度、喷嘴壁面的角度等。
通过数值模拟方法,可以对这些参数进行系统的优化设计,以获得最佳的喷嘴结构。
在进行优化设计时,需要考虑的主要因素包括喷嘴的出口速度、出口压力、壁面压力分布等。
通过对这些因素进行综合考虑,可以得到最佳的喷嘴结构,从而提高文丘里喷嘴的性能。
4.结论参考文献:[1] 赵明,等.文丘里喷嘴流场数值模拟与优化设计[J].流体力学,2015,(4):10-15.[3] 张华,等.文丘里喷嘴在航空航天领域中的应用研究[J]. 西安航空大学学报,2017,(2):30-35.。
备C^S IEngineering 工程音速喷嘴法检定气体流量分析王国建(景德镇市计量测试研究所,江西景德镇333000)摘要:随着科技的进步发展,在气体流量检测方面的科学技术在迅猛发展,本文将主要对于音速喷嘴法检定气体流量 进行分析,希望能够通过本文的详细介绍,给予大家一些启发。
关键词:气体流量;检定;音速喷嘴法中图分类号:TH814 文献标识码:A文章编号:1671-0711 (2017) 02 (上)-0067-02对于气流流量的检测,一直以来都是我国在技术上存在的难题。
然而自从音速喷嘴法诞生之后,我国在气体流量方面的检测就逐渐得到了完善,检定结果也越来越准确。
但是对于音速喷嘴法,很多人都不太了解,本文将对此进行探讨,为大家提供一个详细明确的解释。
1音速喷嘴法的原理分析对音速喷嘴是一个一端半径小,另一端半径大的圆形渐缩渐放通道。
气流通过音速喷嘴的渐缩阶段时,速度会变的很快,压力也会减小,此时在喷嘴半径最小的那个界面口,就会形成音速,达到临界气流。
而在达到临界气流之后,就会进人一个渐扩阶段,此时就会将气流的速度动能转化成另外一种形式的压力能,之后便会使压力恢复。
这就是音速喷嘴的基础原理。
音速喷嘴法不只是一个两边半径不同的金属固体,它有着非常紧密细致的结构。
它包括音速喷嘴容器装置系统、真空负压站数据采集和工控机控制系统。
正是由于这四个部分的完美组合,层层递进,才诞生出了音速喷嘴法。
在这四个环节中,只要任何一个部分出现错误、纰漏、疏忽,都会严重影响到最后的测量结果,气体是一个很容易被影响到的东西,无论是外界的环境还是机械装备的缺陷,都必然会影响到气体流量的大小和技术进程中的测量,所以在运行过程中必须万分小心。
音速喷嘴装置由以下主要部件构成:真空泵、阀门、汇合容器、滞止容器、音速喷嘴、被检表和过滤器,除此之外还有各种检定的管道,在每个检定管道上,都附有温度计和压力变送器,用来收集温度和压力信号。
滞止容器里面还含有温度变速器和压力变送器,用来制止温度和压力信号。
低雷诺数下临界流文丘里喷嘴的背压比研究作者:吕运朋, 曹爱菊来源:《现代电子技术》2011年第09期摘要:通过对国外低雷诺数下临界流文丘里喷嘴研究成果的分析,并结合ISO9300:2005(E)中对低雷诺数下临界流文丘里喷嘴最大背压比的建议及圆环形喉部临界流喷嘴几何尺寸范围的有关规定,注意到扩散半角、曲率半径、面积比等对喷嘴背压比的影响,从中得到了一些启示,并提出了一套试验方案,即有关扩散角度、曲率半径对背压比影响的试验方案。
关键词:背压比; 临界流文丘里喷嘴; 扩散半角; 曲率半径; 低雷诺数中图分类号:TN911-34文献标识码:A文章编号:1004-373X(2011)09-0127-03Study on Back-pressure Ratio of Critical FlowVenturi Nozzle at Low Reynold Number -peng, CAO Ai-ju(Zhengzhou University, Zhengzhou 450001, China )Abstract: By the analysis of the foreign research results on the critical flow Venturi nozzle at low Reynolds abroad, the effect of spread half-angle, curvature radius and area ratio on the back-pressure ratio was observed in combination with some proposals on maximum back-pressure ratio of critical flow Venturi nozzle at low Reynolds number and ISO 9300:2005(E) on geometric size of toroidal throat critical flow Venturi nozzle. From the observation, some inspiration was obtained. A testing program that the back-pressure ratio is effected by spread half-angle and curvature radius is put forward.Keywords: back-pressure ratio; critical flow Venturi nozzle; spread half-angle; curvature radius; low Reynolds number0 引言关于低雷诺数下(Red1 临界流文丘里喷嘴临界流文丘里喷嘴有两种结构形式:圆环形喉部文丘里喷嘴和圆筒形喉部文丘里喷嘴,精加工的文丘里喷嘴应采用圆环形的结构,试验中用的为精加工的喷嘴,其结构如图1所示[6]。
音速喷嘴流动特性及临界背压比测量的数值分析
胡鹤鸣李春辉王池
中国计量科学研究院,北京100013
摘 要 音速喷嘴是最常用的气体标准流量计之一,结构简单,准确度高,但其内部流动特性却十分复杂。
本 文模拟了喷嘴内部的流场及温压分布,分析了临界流状态前后的流动变化,可以为喷嘴的使用者提供 一些理论参考。
临界背压比是音速啧嘴应用过程中的一个重要参数,临界背压比的测量通常可以用标 准流量计和喷嘴串联这两种方法,利用数值模拟结果对两种方法进行了分析和比较。
关键词 音速喷嘴;流动特性;临界背压比;数值模拟
音速喷嘴流动特性及临界背压比测量的数值分析作者:胡鹤鸣, 李春辉, 王池
作者单位:中国计量科学研究院,北京100013
本文链接:/Conference_7969116.aspx。