光电探测与信号处理期末复习资料总结
- 格式:doc
- 大小:376.63 KB
- 文档页数:5
一、主要的光源(1)1、热辐射源 太阳白炽灯2、气体放电光源 汞灯 氙灯 空心极灯 氘灯 利用气体放电原理制成的光源称为气体放电光源。
制作时在灯中充入发光用的气体,如氢、氦、氘、氙、氪等,或金属蒸气,如汞、镉、钠、铟、铊、镝等。
在电场作用下激励出电子和离子,气体变成导电体。
当离子向阴极、电子向阳极运动时,从电场中得到能量,当它们与气体原子或分子碰撞时会激励出新的电子和离子。
由于这一过程中有些内层电子会跃迁到高能级,引起原子的激发,受激原子回到低能级时就会发射出可见辐射或紫外、红外辐射。
这样的发光机制被称为气体放电原理。
气体放电光源具有下列共同的特点:(1)发光效率高。
比同瓦数的白炽灯发光效率高2~10倍,因此具有节能的特点;(2)结构紧凑。
由于不靠灯丝本身发光,电极可以做得牢固紧凑,耐震、抗冲击;(3)寿命长。
一般比白炽灯寿命长2~10倍;(4)光色适应性强,可在很大范围内变化。
3、固体发光源 场致发光:固体在电场的作用下将电能直接转换为光能的发光现象,也称电致发光,其有三种形态:粉末场致发光源薄膜场致发光源结型场致发光源(二极管)LED 的特性参数 (1)量子效率。
发光二极管一般用量子效率来表示表征器件这一性能的参数就是外量子效率,表示如下,其中, NT 为器件射出的光子数。
4、激光器 1.气体激光器:氦-氖激光器、 氩离子激光器、 二氧化碳激光器2.固体激光器3.染料激光器4.半导体激光器(2)光源的颜色 光源的颜色包含了两方面的含义,即色表和显色性。
色表:用眼睛直接观察光源时所看到的颜色,称为光源的色表。
显色性:当用这种光源照射物体时,物体呈现的颜色与该物体在完全辐射体照射下所呈现的颜色的一致性,称为该光源的显色性。
光源选择的基本要求:光源发光强度,稳定性及其它方面的要求;光源发光光谱特性的要求。
二、光电二极管1、正常运用时,光电二极管要加反向电压,Rsh 很大,Rs 很小,所以图b 中的V 、Rsh 、Rs 都可以不计,因而有图c 的形式;图d 又是从图c 简化来的,因为Cf 很小,除了高频情况要考虑它的分流作用外,在低频情况下,它的阻抗很大,可不计。
光电检测复习资料..简答题1、光电探测器常见的噪声有哪⼏类?分别简要说明。
(1)热噪声:由载流⼦热运动引起的电流起伏或电压起伏成为热噪声,热噪声功率与温度有关( 2)散粒噪声:随机起伏所形成的噪声(3)产⽣--复合噪声:载流⼦浓度起伏引起半导体电导率的起伏,在外加电压下,电导率的起伏是输出电流中带有产⽣--复合噪声(4)1/f噪声:这种噪声功率谱近似与频率成反⽐(5)温度噪声:是由于器件本⾝温度变化引起的噪声2、光电⼆极管与⼀般⼆极管相⽐有什么相同点和不同点?相同点:都是基于PN结的光伏效应⽽⼯作的不同点:(1)就制作衬底材料的掺杂浓度⽽⾔,⼀般⼆极管要⽐光电⼆极管浓度较⾼(2)光电⼆极管的电阻率⽐⼀般⼆极管要⾼(3)普通⼆极管在反向电压作⽤时处于截⽌状态,只能流过微弱的反向电流,光电⼆极管是在反向电压作⽤下⼯作的,(4)光电⼆极管在设计和制作时尽量使PN结的⾯积相对较⼤,以便接收⼊射光。
3、简述光电三极管的⼯作原理。
光电三极管的⼯作原理分为两个过程:⼀是光电转换;⼆是光电流放⼤。
就是将两个pn结组合起来使⽤。
以NPN型光电三极管为例,基极和集电极之间处于反偏状态,内建电场由集电极指向基极。
光照射p区,产⽣光⽣载流⼦对,电⼦漂移到集电极,空⽳留在基极,使基极与发射极之间电位升⾼,发射极便有⼤量电⼦经基极流向集电极,最后形成光电流。
光照越强,由此形成的光电流越4、简述声光相互作⽤中产⽣布喇格衍射的条件以及布喇格衍射的特点。
产⽣布喇格衍射条件:声波频率较⾼,声光作⽤长度L较⼤,光束与声波波⾯间以⼀定的⾓度斜⼊射。
特点:衍射光各⾼级次衍射光将互相抵消,只出现0级和+1级(或 1级)衍射光,合理选择参数,并使超声场⾜够强,可使⼊射光能量⼏乎全部转移到+1级(或-1级)5、什么是热释电效应?热释电器件为什么不能⼯作在直流状态?热释电效应:热释电晶体吸收光辐射温度改变,温度的变化引起了热电晶体的⾃发极化强度的变化,从⽽在晶体的特定⽅向上引起表⾯电荷的变化,这就是热释电效应。
考前复习要点第一章绪论1、光电检测系统的主要组成部分;辐射源,光信号处理,被测对象,光学转换,光电传感转换电路,电信号处理2、电磁波谱的范围?光电检测分析的是哪一部分?0.32-100um3、光电探测的分类按携载信息光源,按被探测光源光谱,按显示方式,按接收方法第二章光电器件的物理基础1、光的波粒二象性;2、光度量与辐射度量的区别;辐射度量适合整个电磁波谱能量计算3、辐射度量的五个基本参量;4、基本概念:辐射体,立体角,朗伯源;5、视见函数;6、光通量、发光强度、光照度、光出射度、光亮度7、半导体的基本特性;热敏性,光敏性,掺杂性8、能带理论;禁带,价带,导带9、本征半导体、N型半导体、P型半导体10、PN结的形成过程用图示表示11、外光电效应、内光电效应、光热效应材料受光照后,光子能量和晶格相互作用,振动加剧,温度升高,材料性质发生变化第三章光电检测器件1、光子检测器件与热电检测器件的特点响应波长有选择性,响应快2、光电检测器件的性能参数灵敏度,光谱灵敏度,频率灵敏度,量子效率,通量阈和噪声等效功率,归一化探测度3、噪声参数热噪声,散粒噪声,闪烁噪声4、外光电效应的典型器件光电管与光电倍增管的工作原理、基本特点5、光电发射材料的特点6、光电导效应器件光敏电阻的工作原理基本特点7、光生伏特效应器件光电池与光电二极管的工作原理基本特点第四章热电检测器件1、热辐射引起的热探测器的温度ΔT的求解?2、热电偶的工作原理基本特点接受入射辐射后引起温度升高,产生温差电势。
自发电型传感器,检测范围广,1800℃以上,符合国际计量委员会标准3、热敏电阻的工作原理基本特点、材料特性接受入射辐射后引起温度改变使电阻改变,导致电压变化。
灵敏度高,体积小,适宜动态测量,适于远距离测量和控制,阻值和温度非线性,稳定性和互换性差4、热敏电阻辐射热计的工作原理;5、热释电探测器的工作原理、基本结构极化随温度改变的现象为热释电现象。
光电技术期末复习知识分享第⼀章光辐射与光源1.1辐射度的基本物理量1.辐射能Qe:⼀种以电磁波的形式发射,传播或接收的能量。
单位为J(焦⽿)。
2辐射通量Φe:⼜称为辐射功率Pe,是辐射能的时间变化率,单位为W(⽡),是单位时间内发射,传播或接收的辐射能,Φe=dQe/dt(J/S焦⽿每秒)3辐射强度Ie:点辐射源在给定⽅向上单位⽴体⾓内的辐射能量单位为W/sr(⽡每球⾯度)Ie=dΦe/dΩ.4辐射照度Ee:投射在单位⾯积上的辐射能量,Ee=dΦe/dA单位为(W/㎡⽡每平⽅⽶)。
dA是投射辐射通量dΦe的⾯积元。
5辐射出射度Me:扩展辐射源单位⾯积所辐射的通量,即Me=dΦ/dS。
dΦ是扩展源表⾯dS在各⽅向上(通常为半空间360度⽴体⾓)所发出的总的辐射通量,单位为⽡每平⽅⽶(W/㎡)。
6,辐射亮度Le:扩展源表⾯⼀点处的⾯元在给定⽅向上单位⽴体⾓,单位投影⾯积内发出的辐射通量,单位为W/sr*㎡(⽡每球⾯度平⽅⽶)。
7光谱辐射量:也叫光谱的辐射量的光谱密度。
是辐射量随波长的辐射率。
光辐射量通量:Φe(λ):辐射源发出的光在波长为λ处的单位波长间隔内的辐射通量。
Φe(λ)=dΦe/dλ单位为W/um或W/nm。
1.2 明视觉光谱光视效率V(λ):视觉主要由⼈眼视⽹膜上分布的锥体细胞的刺激所引起的。
(亮度⼤于3cd/m2,最⼤值在555nm处)暗视觉光谱光视效率:视觉主要由⼈眼视⽹膜上分布的杆状细胞刺激所引起的。
(亮度⼩于0.001cd/m2,最⼤值在507nm 处)按照⼈眼的视觉特性V(λ)来评价的辐射通量Φe即为光通量Φv:Φv=Km780380Φe(λ)V(λ)dλ式中Km为名视觉的最⼤光谱光谱光视效率函数,也成为光功当量。
国际实⽤温标理论计算值Km为680lm/W。
光度量中最基本的单位是发光强度单位——坎德拉,记作cd,它是国际单位制中七个基本单位之⼀(其他⼏个为:⽶,千克,秒,安(培),开(尔⽂),摩(尔))。
光电探测与信号处理第1章绪论一、光电技术1.光电子技术:主要内容是利用光电结合的原理和方法,实现信息的获取、发送、探测、传输、变换、存储、处理和重现等。
主要包括集成光学技术、光计算技术、信息光存储技术和光显示技术等领域。
微电子技术是以电子运动为基础,电子在电路中传输时,由于受到回路分布电气参数的影响,会产生传输延迟效应,往往难于突破纳秒的速度限制。
光电子技术是以光子运动为基础,光子无论在自由空间传播或者沿波导传输时,都能保持30万公里/秒的传播速度,以它作为信息载体能够大大提高信息流的传输速度2.光电子技术独特的优点:(1)光波波长比电波波长短(2) 光波的频谱范围比电波的频谱范围宽(3)光波与人类视觉有直接关系(4)光波抗电磁干扰二、光电技术主要应用领域1.光电能量技术主要是有关大容量、高功率光辐射能的产生、控制、利用以及向其他能量形式的转换。
1)激光核武器2)核原料的激光同位素分离3)激光核聚变4)太阳能电池和太阳能利用5)光加工6)光化学反应等2.光电信息:技术:以光电子器件为主体,研究和发展光电信息的形成、传输、接收、变换、处理和应用。
6)激光、红外、微光探测、定向和制导7)光电精密测试、在线检测和控制技术8)光电混合信息处理、识别和图像分析9)机器视觉及人工智能10)光电逻辑运算、光计算及光存储11)生物医学光学三、当前光电子产业:1.光电子材料和元器件2.光子学及光通信器件3.光存储器件4.光传感器件5.光显示器件6.光能量转换器件7.能量光电子应用四光电探测系统的概念 1.光学变换;时域变换:调制振幅、频率、位相、脉宽;空域变换:光学扫描、电学扫描;光学参量调制:光强、波长、位相、偏振.任务:形成能被光电探测器接收、便于后续电学处理的光学信息。
2.光电变换:光电器件、变换电路、前置放大。
任务:将光信息变为能够驱动电路处理系统的电信息。
3.电路处理:放大、滤波、调制、解调、A/D、D/A、计算和接口。
简答题——光电检测技术期末整理1雪崩光电⼆极管的⼯作原理(当光敏⼆极管的PN结上加相当⼤的反向偏压(100~200V)时,在结区产⽣⼀个很强的电场,使进⼊场区的光⽣载流⼦获得⾜够的能量,在与原⼦碰撞时可使原⼦电离,⽽产⽣新的电⼦—空⽳对。
只要电场⾜够强,此过程就将继续下去,使PN结内电流急剧增加,达到载流⼦的雪崩倍增,这种现象称为雪崩倍增效应。
)2、光⽣伏特效应与光电导效应的区别和联系?(共性:同属于内光电效应。
区别:光⽣伏特效应是少数载流⼦导电的光电效应,⽽光电导效应是多数载流⼦导电的光电效应。
)什么是敏感器?敏感器与传感器的区别和联系?(将被测⾮电量转换为可⽤⾮电量的器件。
共性:对被测⾮电量进⾏转换。
区别:敏感器是把被测量转换为可⽤⾮电量,传感器是把被测⾮电量转换为电量)发光⼆极管的⼯作原理。
(在PN结附近,N型材料中的多数载流⼦是电⼦,P型材料中的多数载流⼦是空⽳,PN结上未加电压时构成⼀定的势垒,当加上正向偏压时,在外电场作⽤下,P区的空⽳和N区的电⼦就向对⽅扩散运动,构成少数载流⼦的注⼊,从⽽在PN结附近产⽣导带电⼦和价带空⽳的复合。
⼀个电⼦和⼀个空⽳对每⼀次复合,将释放出与材料性质有关的⼀定复合能量,这个能量会以热能、光能、或部分热能和部分光能的形式辐射出来。
说明光⼦器件与热电器件的特点。
PIN型的光电⼆极管的结构、⼯作原理及特点(它的结构分三层,即P型半导体和N型半导体之间夹着较厚的本征半导体I层,它是⽤⾼阻N型硅⽚做I层,然后把它的两⾯抛光,再在两⾯分别作N+和P+杂质扩散,在两⾯制成欧姆接触⽽得到PIN光电⼆极管。
原理:层很厚,对光的吸收系数很⼩,⼊射光很容易进⼊材料内部被充分吸收⽽产⽣⼤量的电⼦-空⽳对,因⽽⼤幅度提供了光电转换效率,从⽽使灵敏度得以很⾼。
两侧P 层和N层很薄,吸收⼊射光的⽐例很⼩,I层⼏乎占据整个耗尽层,因⽽光⽣电流中漂移分量占⽀配地位,从⽽⼤⼤提⾼了响应速度。
光电技术期末复习总结光电技术期末复习内容第1章光电技术基础1.光的量子性成功的解释了光与物质作用时所引起的光电效应,而光电效应又充分证明了光电量子性。
2.光辐射仅仅是电磁波谱中的一小部分,它包括的波长区域从几纳米到几毫米,即910-m量级。
只有波长为0.38~0.78μm的光才能引起人眼的视感觉,故称为这部分10-~3光为可见光。
3.光辐射的度量(光度参数,辐射度参数)4.热辐射:物体靠加热保持一定温度使内能不变而持续辐射的辐射形式,称为物体热辐射或温度辐射。
凡能发射连续光谱,且辐射是温度的函数体的物体,叫做热辐射体。
(热辐射光谱是连续光谱)5.发光:物体不是靠加热保持温度使辐射维持下去,而是靠外部能量激发的辐射,称为发光。
发光光谱是非连续光谱,且不是温度的函数。
(发光光谱是非连续光谱)6.能够完全吸收从任何角度入射的任意波长的辐射,并且在每一个方向上都能最大限度地发射任意波长辐射能的物体,称为黑体。
7.黑体的吸收系数为1,发射系数也为1。
8.锥状细胞的这种视觉功能称为白昼视觉或明视觉。
9.柱状细胞的这种视觉功能称为夜间视觉或暗视觉。
10.什么是内光电效应和外光电效应?答:被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象,称为内光电效应。
而被光激发产生的电子逸出物质表面,形成真空中的电子的现象,称为外光电效应。
11.光电导效应分为哪两类?说明什么是本证光电导效应?答:光电导效应可以分为本证光电导效应和杂质光电导效应两种。
本征半导体或杂质半导体价带中的电子吸收光子能量跃入导带,产生本证吸收,导带中产生光生自由电子,价带中产生光生自由空穴。
光生电子与空穴使半导体的电导率发生变化。
这种在光的作用下由本证吸收引起的半导体电导率发生变化的现象,称为本证光电导效应。
第2章光电导器件1.光敏电阻在被强辐射照射后,其阻值恢复到长期处于黑暗状态的暗电阻R D所需要的时间将是相当长的。
一.单项选择题1. 光电转换定律中的光电流与 BA 温度成正比 B光功率成正比 C暗电流成正比 D光子的能量成正比2. 发生拉曼—纳斯衍射必须满足的条件是 AA 超声波频率低,光波平行声波面入射,声光作用长度短B 超声波频率高,光波平行声波面入射,声光作用长度短C 超声波频率低,光波平行声波面入射,声光作用长度长D 超声波频率低,光束与声波面间以一定角度入射,声光作用长度短3.光束调制中,下面属于外调制的是 ABDA 声光调制B 电光波导调制C 半导体光源调制D 电光强度调制4.红外辐射的波长为[ d ] A 100-280nm B 380-440 nm C 640-770 nm D 770-1000 nm5.激光具有的优点为相干性好、亮度高及[ b ]A 多色性好 B单色性好 C 吸收性强 D吸收性弱6.能发生光电导效应的半导体是 cA本征型和激子型 B本征型和晶格型 C本征型和杂质型 D本征型和自由载流子型7.光敏电阻的光电特性由光电转换因子γ描述,在强辐射作用下AA. γ=0.5B. γ=1C. γ=1.5D. γ=28.电荷耦合器件分 [ A ]A 线阵CCD和面阵CCDB 线阵CCD和点阵CCDC 面阵CCD和体阵CCD D 体阵CCD和点阵CCD9.光通亮φ的单位是[ C ]A 焦耳 (J)B 瓦特 (W) C流明 (lm) D坎德拉(cd)10.硅光二极管主要适用于[D]A紫外光及红外光谱区 B可见光及紫外光谱区 C可见光区 D 可见光及红外光谱区13.光视效能Kλ为最大值时的波长是AA.555nm B.666nm C.777nm D.888nm14.可见光的波长范围为[C ]A 200—300nmB 300—380nmC 380—780nmD 780—1500nm15.电荷耦合器件的工作过程主要是信号的产生、存储、传输和C ]A 计算B 显示C 检测D 输出16. 辐射通亮φe的单位是[B ]A 焦耳 (J)B 瓦特 (W) C每球面度 (W/Sr) D坎德拉(cd)二.填空题1. 光在大气中传播,将会使光速的能量衰减,其主要因素来源于大气衰减、大气湍流效应。
1、入射光辐射直接与光电材料中的电子相互作用,改变电子的能量状态,从而引起各种电学参量的变化,称为光电效应。
(光谱响应有选择性)分为内光电效应和外光电效应。
2、内光电效应:被光激发所产生的的载流子(自由电子或空穴)仍在物质内部运动,使物质的电学性质发生改变的现象。
3、外光电效应:被光激发产生的电子逸出物质表面,形成真空中的电子的现象4、光电效应包括光电导效应、光伏效应、光电子发射效应(外光电效应)、光子牵引效应和光电磁效应。
5、光电导效应:当半导体材料受光照时,对光子的吸收引起载流子浓度的变化,导致材料电导率变化。
分为本征光电导效应和非本征光电导效应。
6、本征光电导效应:7、非本征(杂质)光电导效应:8、光伏效应:PN结受到光照时,PN结的两端产生电势差。
9、外光电效应:光电子发射效应:金属或金属半导体受到光照时,电子从材料表面逸出。
10、热电效应:入射光和材料的晶格相互作用,晶格吸收光能而增加振动能量,引起材料的温度上升,从而使材料的电学参量发生变化。
特点是频谱范围宽,无选择性。
11、热电效应包括电阻温度效应(物体吸收光辐射后温度升高导致电阻发生改变)和温差电效应(第一效应:塞贝克效应:两种不同的导体或半导体组成闭合回路,两节点的温度不同,产生了温差电动势,闭合回路中产生连续电流)和热释电效应(热电晶体材料受光照射温度升高,在晶体的特定方向上由于自发极化随温度变化而引起表面电荷的变化)。
1、光谱效率函数,光谱光视效能km2、普朗克定律(普朗克辐射公式)。
描述黑体光谱辐射出度与波长、绝对温度之间的关系:3、求黑体的总辐射出度,即斯蒂芬-波尔滋蔓定律:4、韦恩位移定律:黑体最大光谱辐射出度的峰值波长与绝对温度之间的关系:μm1、光电探测器的性能参数(普遍而言)2、有关响应方面的性能参数(又叫灵敏度):3、灵敏度分为光谱灵敏度和积分灵敏度4、光谱灵敏度:探测器在波长尼姆达的单色光照射下,输出的电压或光电流与入射的单色辐射通量之比。
一、主要的光源(1)1、热辐射源 太阳白炽灯2、气体放电光源 汞灯 氙灯 空心极灯 氘灯 利用气体放电原理制成的光源称为气体放电光源。
制作时在灯中充入发光用的气体,如氢、氦、氘、氙、氪等,或金属蒸气,如汞、镉、钠、铟、铊、镝等。
在电场作用下激励出电子和离子,气体变成导电体。
当离子向阴极、电子向阳极运动时,从电场中得到能量,当它们与气体原子或分子碰撞时会激励出新的电子和离子。
由于这一过程中有些内层电子会跃迁到高能级,引起原子的激发,受激原子回到低能级时就会发射出可见辐射或紫外、红外辐射。
这样的发光机制被称为气体放电原理。
气体放电光源具有下列共同的特点:(1)发光效率高。
比同瓦数的白炽灯发光效率高2~10倍,因此具有节能的特点;(2)结构紧凑。
由于不靠灯丝本身发光,电极可以做得牢固紧凑,耐震、抗冲击;(3)寿命长。
一般比白炽灯寿命长2~10倍;(4)光色适应性强,可在很大范围内变化。
3、固体发光源 场致发光:固体在电场的作用下将电能直接转换为光能的发光现象,也称电致发光,其有三种形态:粉末场致发光源薄膜场致发光源结型场致发光源(二极管)LED 的特性参数 (1)量子效率。
发光二极管一般用量子效率来表示表征器件这一性能的参数就是外量子效率,表示如下,其中, NT 为器件射出的光子数。
4、激光器 1.气体激光器:氦-氖激光器、 氩离子激光器、 二氧化碳激光器2.固体激光器3.染料激光器4.半导体激光器(2)光源的颜色 光源的颜色包含了两方面的含义,即色表和显色性。
色表:用眼睛直接观察光源时所看到的颜色,称为光源的色表。
显色性:当用这种光源照射物体时,物体呈现的颜色与该物体在完全辐射体照射下所呈现的颜色的一致性,称为该光源的显色性。
光源选择的基本要求:光源发光强度,稳定性及其它方面的要求;光源发光光谱特性的要求。
二、光电二极管1、正常运用时,光电二极管要加反向电压,Rsh 很大,Rs 很小,所以图b 中的V 、Rsh 、Rs 都可以不计,因而有图c 的形式;图d 又是从图c 简化来的,因为Cf 很小,除了高频情况要考虑它的分流作用外,在低频情况下,它的阻抗很大,可不计。
因此多用图d 和图c 两种)(ev Eg 1.24c =λ,截止波长2、主要的光电二极管 1、PN 光电二极管 2、PIN 光电二极管3、雪崩光电二极管(APD)3、PN 光电二极管工作原理:入射光从P 侧进入,在耗尽区,光吸收产生电子-空穴对,在内建电场作用下分别向左右两侧运动,产生光电流。
45、量子效率:入射光功率Pin 中含有大量光子,能转换为光电流的光子数和入射总光子数之比称为量子效三、光电倍增管(1)暗电流 1.组成:热电子发射(光电阴极中有少数电子的热能大于光电阴极逸出功,因此,产生热电子发射)、极间漏电流、残余气体的离子发射、玻璃闪烁、场致发射。
(在无光照射(暗室)情况下,光电倍增管加上工作电压后形成的电流称为暗电流。
在光电倍增管阴极前面放一块闪烁体,便构成闪烁计数器。
当闪烁体受到人眼看不见的宇宙射线照射后,光电倍增管就有电流信号输出,这种电流称为闪烁计数器的暗电流,一般称为本底脉冲。
)2.减少暗电流的方法:①直流补偿,补偿电流为:Ib=VcR2/(R1+R2)R3,一般R3»R1、R2②选频和锁相放大③致冷:降低从光电阴极和倍增极来的热发射电子④电磁屏蔽法及磁场散焦法(2)噪声主要有:光电器件本身的散粒噪声,闪烁噪声及负载电阻的热噪声等(3)选择电阻的标准:1、在频率响应要求高的情况下,负载电阻小些2、当输出信号的线性要求高:负载电阻使信号电流在它上面产生的压降在几伏以下3、负载电阻应比放大器的输入阻抗小的多(4)R f下降到R0的0.707倍,频率fc为探测器的截止响应频率四、光敏电阻(1)原理:利用的是光电导效应,即材料(或器件)受到光辐射后,材料(或器件)的电导率发生变化(2)减小噪声的方法:1、红外:减小温漂,使信号放大,可调制较高的2、制冷可降低热噪声;3、恰当的偏置电路,可使信噪比最大。
(3)光敏电阻噪声:温度的变化,引起温度噪声,导致其灵敏度,光照特性,响应率等都发生变化。
五、光电耦合器件(CCD)(1)设所用的CCD有N0个光敏元,每个光敏元的大小为13μm,计数器计数为N,则细丝直径D为:D=13(N0-N)(2)CCD摄像机使用面阵CCD。
CCD摄像机完成摄像经历过程的可以简述如下:A、曝光B、光生电荷平移到移位寄存器C、移位寄存器中光生电荷串行输出,转换成电压信号D、形成全电视信号六、热探测器(1)探测光辐射包括两个过程:1吸收光辐射能量后,探测器的温度升高2把温度升高所引起的物理特性的变化转变成电信号(2)维恩位移定律热辐射电磁波中包含着各种波长,从实验可知,物体峰值辐射波长与物体自身的绝对温度T成以下关系λmΤ=2897(µm·k)(3)两种不同的导体或半导体A和B组合成如图所示闭合回路,若导体A和B的连接处温度不同(设T>T0),则在此闭合回路中就有电流产生,也就是说回路中有电动势存在,这种现象叫做热电效应(4)热敏电阻是利用某种半导体材料的电阻率随温度变化而变化的性质制成的分类1、正温度系数热敏电阻器(PTC)2、负温度系数热敏电阻器(NTC)3、突变型负温度系数热敏电阻器(CTR)七、调制及测量系统(1)主要的调制方式一、调制盘二、莫尔条纹三、声光调制四、电光调制(2)调制盘最基本作用:把恒定的辐射通量变成周期性重复的光辐射通量作用主要有如下三点:1、提供目标的空间方位;2、进行空间滤波以抑制背景干扰;3、抑制噪声与干扰以提高系统的检测性能。
(3)莫尔条纹1、其中V平均为平均输出电压,即直流分量或直流电平,Vp-p为峰峰值电压。
如果以Y 表示莫尔条纹的移动量,则有Y=NBY+q ,其中,N为移动过检测点的莫尔条纹数的整数部分,BY为莫尔条纹宽度,q为莫尔条纹的小数部分。
依据光栅移动量x与莫尔条纹移动量Y的关系,对莫尔条纹的直接测量,便可测得光栅的位移量x = Y/K = (1/K) (NBY + q)2、若光栅的空间周期P»λ称为计量光栅;若P≈λ则为衍射光栅。
(4)声光衍射主要分为布拉格(Bragg )衍射和喇曼-奈斯(Raman-Nath )衍射(超声波频率低,光波平行声波面入射,声光作用长度短)两种类型。
前者通常声频较高,声光作用程较长;后者则反之。
由于布拉格衍射效率较高,故一般声光器件主要工作在仅出现一级光(N=1)的布拉格区。
满足布拉格衍射的条件是: f/2Vs b sin λθ= 布拉格衍射:衍射角等于入射角。
(5)电光调制 1、电光效应指的是介质或晶体在电场作用下,其光学性质发生变化的各种现象。
目前在电光效应方面主要以电致旋光效应、克尔效应(平方效应)和泡克耳效应(线性)来获得光偏振调制。
电光调制器是利用电光效应而制成的器件 .常用的有两种方式:一种是加在晶体上的电场方向与通光方向平行,称纵向电光效应(也称为纵向运用);另一种是通光方向与所加电场方向相垂直,称横向电光效应(也称为横向运用)2、典型的KDP 晶体纵向电光调制器3、纵向调制与横向调制优缺点:纵向电光调制优点是结构简单,工作稳定,无自然双折射的影响,不需进行补偿。
其缺点是半波电压太高,功率损耗较大。
横向调制器横向运用时其半波电压要低于纵向运用 ,但由于存在着自然双折射引起的相位延迟,且随温度的漂移而改变,往往使已调波发生畸变,常采用“组合调制器”来进行补偿4、光电技术探测系统 一、直接探测系统 所谓直接探测是将待检测的光信号直接入射到光探测器的光敏面上,由光探测器将光强信号直接转化为相应的电流或电压,根据不同系统的要求.再经后续电路处理(如放大、滤波或各种信号变换电路),最后获得有用的信号二、相干探测系统相干探测系统原理:当偏振方向相同、传播方向平行且重合的两束光垂直人射到光混频器上时,假设一束是频率为vL 的本振光,另一束是频率为vS 的信号光,光混频器可在频率vL 、 vS 、和频( vL + vS )差频(vL -vS)处产生输出八、显示器种类:LED,LCD (液晶),CRT (阴极射线管),PDP (等离子体)九、光电效应:物资吸收光子并激发出自由电子的行为。
十、三极管:工作原理:三极管是电流放大器件有三个极,分别叫做集电极C ,基极B ,发射极E 。
分成NPN 和PNP 两种。
我们仅以NPN 三极管的共发射极放大电路为例。
基极到发射极是一个小电流输入回路,通过三极管来控制集电极到发射极的大电流输出回路,或者使这个放大的电流,流过一个负载或电阻,在其两端取得高的电压。
与输入回路相比,电流和电压就都得到了放大。
量子效率:电子对/入射光功率 烧孔效应:非均匀加宽气体激光器的增益曲线上 ,与中心频率对称的两个频率处下降的现象 。
入射光变强后,通过受激发射使具有某一速度的气体分子的反转粒子数减少,表现为增益曲线在该激光频率处下降,形成一个“烧孔”,光强越大,“烧孔”越深。
因为激光是在谐振腔内往返传播,使具有与上述速度大小相等、方向相反的气体分子的反转粒子数也减少。
结果在增益曲线上出现两个对中心频率对称的“烧 孔”,这两部分的气体分子对激光都有贡献。
兰姆凹陷是在气体激光器中,激光器工作频率靠近工作物质增益曲线的中心频率直到完全重合时,由于烧孔效应,使对激光有贡献的反转粒子数减少,从而使该激光器输出功率下降直到某一极小值的现象。
阿贝成像: .入射光经物平面发生夫琅和费衍射,在透镜焦面(频谱面)上形成一系列衍射光斑,各衍射光斑发出的球面次波在像面上相干叠加,形成像. 自动平移门 设计思路 使红外线传感器作为感应器,检测到人体辐射的红外线能量变化并转化为电信号,传送给单片机。
交流电机作为门驱动装置,通过单片机控制交流电机自动打开。
当人进入后可使门自动关闭。
1)人体都有恒定的体温,一般在37度,所以会发出特定波长10UM 左右的红外线,被动式红外探头就是靠探测人体发射的10UM 左右的红外线而进行工作的。
所以热释电元件对波长为10UM 左右的红外辐射必须非常敏感。
2)被动红外探头,其传感器包含两个互相串联或并联的热释电元。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
相关器件热释电红外自动门主要由光学系统、热释电红外传感器、信号滤波和放大、信号处理和自动门电路等几部分组成。
菲涅尔透镜可以将人体辐射的红外线聚焦到热释电红外探测元上,同时也产生交替变化的红外辐射高灵敏区和盲区,以适应热释电探测元要求信号不断变化的特性;热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。