凝汽器真空影响因素分析及处理措施
- 格式:doc
- 大小:26.00 KB
- 文档页数:7
影响凝汽器真空的原因和解决方法摘要:凝汽器主要作用是将汽轮机排汽凝结成水,去除非凝结气体,并在汽轮机排汽口建立与维持一定的真空度,使得低压缸排汽参数尽可能低以提高汽水循环的效率。
所以保持凝汽器真空对整个机组的经济性和安全性很关键,在最近468MW机组的启动过程中,出现了真空达不到要求的情况,遂逐一排查,最终找到影响真空的漏点,经过处理后凝汽器压力恢复正常。
关键词:凝汽器;真空;真空泵;凝泵上海闵行燃气发电有限公司是上海电力控股投资的示范性工程项目,本工程建设1套468MW(F级)和一套745MW(H级)燃气-蒸汽联合循环发电机组。
本次启动试验是F级工业重型燃气轮机,后文统称为2号机。
2号机抽真空系统的主要设备包括:2台100%容量的真空泵,1台凝汽器,及其连接管道、截止阀、隔绝阀、控制阀等。
凝汽器型式为单背压、单壳体、双流程、轴向排汽。
两台真空泵为双级水环式真空泵,相比传统的单级泵,其抽气性能曲线下降平缓,可获得的空度更高,能耗更低,抗汽蚀能力也更好。
在常规运行中,在单台真空泵投入下,凝汽器背压达到5-9kpa的运行标注,满足燃气轮机的启动条件。
但在某次机组启动过程中,开启单台真空泵后,凝汽器背压始终维持在55kpa无法下降,真空无法完全建立,使机组启动陷入停滞。
一、真空无法下降的主要原因大气中的空气进入凝汽器负压系统是引起凝汽器真空下降的主要原因,在道尔顿的分压定理里在温度与体积一定时,混合气体中各组分气体的分压之和等于混合气体的总压。
其数学表达式为(1):P = P1+P2 +……+Pi(1)对于机组来说P就是凝汽器中所有混合气体的总压,当P1是蒸汽压力时,其余的分压均为漏入凝汽器中的不凝结气体。
通过公式可知,当大气中不可凝结的气体,泄露进凝汽器真空系统,不凝结气体的比例上升,则除P1外分压力就会上升从而导致凝汽器的总压力变大,即真空度下降。
所以真空系统中有大量的空气进入,是对机组真空系统造成影响的最主要因素。
凝汽器真空影响因素分析及处理措施摘要:凝汽设备是凝汽式汽轮机装置的一个重要组成部分,在整个热力系统中起着冷源的作用。
凝汽器真空作为火力发电机组汽机侧一项重要的经济指标对整个机组的热经济性起着至关重要的作用。
本文从冷端系统角度分别研究凝汽器端差,循环水温升,循环水进口温度等对机组真空的影响,并提出了一系列真空下降的解决方法和处理措施,为全国凝汽式汽轮机组解决真空降低问题提供了一定的依据。
关键词:真空冷端系统端差循环水温升循环水进口温度处理措施0 引言凝汽设备在电厂凝汽式汽轮机组的热力系统中的功能主要体现在将汽轮机的排汽凝结成水。
除此之外,作为整个热力循环中的冷源,凝汽设备还要在汽轮机排汽口建立并维持一定的真空。
凝汽器真空是衡量机组热经济性的重要指标,真空过高或过低不仅对汽轮机装置的效率产生重大的影响,而且会影响汽轮机组的安全。
因此研究凝汽器真空对提高整个汽轮机组的热经济性有着重大而积极的影响。
本文从汽轮机冷端系统角度分析,将影响机组真空的原因进行了系统分析。
1 影响真空的因素具体包括以下三个方面①凝汽器传热端差因素。
②冷却水温升因素。
③冷却水进口温度因素。
2 运行中影响凝汽器端差的因素凝汽器排汽温度与冷却水出口温度之间的差值,就是凝汽器的传热端差。
2.1 凝汽器的冷却面积的影响因素。
一般设计时凝汽器的冷却面积已经确定,但是在实际运行过程中凝汽器水位会影响凝汽器实际的换热面积。
凝汽器水位过高会带来两种后果:一是会造成汽轮机低压缸排汽空间的减少,从而导致换热面积减少,低压缸排汽温度升高,真空降低;二是会造成凝结水过冷,从而降低机组经济性。
2.2 传热系数的影响因素。
影响凝汽器传热系数的因素比较复杂,主要包括凝汽器传热性能、热负荷、清洁系数、空气量等。
2.2.1 凝汽器热负荷。
机组负荷升高,相应的汽轮机排汽量增大,凝汽器热负荷越高,会导致凝汽器真空下降。
当真空下降到某一数值,要进行限制出力,使凝汽器热负荷降低,维持机组真空。
#4机凝汽器真空低原因分析和处理刘海洋1概述大唐耒阳发电厂#4机组为300MW汽轮发电机组,采用我国东方汽轮机厂制造300MW亚临界、中间再热、高中压合缸、双缸、双排汽、单轴、凝汽式汽轮机。
2014年对机组进行通流部分改造,改造后型号为N310-16.67/537/537。
凝汽器为N-17000-1型铜管单壳体、双流程、表面式凝汽器。
机组设计真空值为94.6KPa,报警值85.3 KPa,停机值80.3 KPa。
机组配置2台真空泵,正常时1台运行,1台备用。
并且在2012年对凝汽器胶球清洗装置进行改造。
2机组真空异常现象#4机组2014年通流部分改造后,夏季存在机组高负荷(250MW 以上)真空偏低,而且随机组负荷的增加,机组真空下降、凝汽器端差增大的异常现象。
图一:#4机组负荷真空变化(三台循环水泵运行)序号负荷MW真空KPa排汽温度℃循环水进水温度℃A侧循环水出水温度℃B侧循环水出水温度℃A侧凝汽器端差℃B侧凝汽器端差℃2015年7月底 #4机数据(#5循环水泵扩容后)1 151 93.8 38.3 29.5 34.2 36.2 4.1 2.12 180 93.5 38.8 28.5 34.2 36.15 4.6 2.653 212 93.2 40.4 28.8 35.38 37.18 5.02 3.224 258 91.9 43.2 29.35 37.26 39.02 5.94 4.185 280 91.52 43.88 29.16 37.56 39.30 6.32 4.586 300 91.33 44.98 28.77 37.92 39.48 7.06 5.57 320 90.18 46.74 29.22 39.12 40.81 7.62 5.93 2015年7月底 #3机数据(#5循环水泵扩容后)1 150 94.10 39.13 28.4 36.73 35.93 2.4 3.22 180 93.62 40.8 28.5 37.96 37.42 2.84 3.383 208 93.15 41.77 28.4 38.3 37.95 3.47 3.824 245 93.5 41.2 29.2 36.93 35.83 4.27 5.375 281 92.2 43.7 30 38.8 37.8 4.9 5.96 300 92.42 43.51 29 38.46 37.30 5.05 6.217 320 91.55 45.06 29.76 39.48 38.39 5.58 6.67 2013年7月中旬 #4机组数据(机组改造前)1 150 94.27 37.66 28.2 34.64 34.64 3.02 3.022 171 94.01 39.07 28.26 35.4 35.69 3.67 3.383 223 93.31 40.89 27.77 36.62 36.85 4.27 4.044 303 92.01 44.38 28.61 38.21 38.39 6.17 5.99图二: #4机组真空变化(二台循环水泵运行)7.18日序号负荷MW真空KPa排汽温度℃循环水进水温度℃A侧循环水出水温度℃B侧循环水出水温度℃A侧凝汽器端差℃B侧凝汽器端差℃1 153 94.15 34.42 25.81 31.95 34 2.47 0.422 172 93.67 35.68 25.89 32.96 34.86 2.72 0.823 220 92.79 38.56 25.99 34.80 36.71 3.76 1.85在汽轮机组运行中,凝汽器工作状况恶化将直接导致汽轮机汽耗增加和机组出力下降。
凝汽器真空的影响因素与改善措施凝汽器真空是表征凝汽器工作特性的主要指标,是影响汽轮机经济运行的主要因素之一。
真空降低使汽轮机的有效焓降减少,会影响汽轮机的出力和机组设备的安全性。
电站凝汽器一般运行经验表明:凝汽器真空每下降1kPa,汽轮机汽耗会增加1.5%—2.5%。
而且,凝汽器真空的降低,会使排汽缸温度升高,引起汽轮机轴承中心偏移,严重时会引起汽轮机组振动。
此外,当凝汽器真空降低时,为保证机组出力不变,必须增加蒸汽流量,而蒸汽流量的增加又将导致铀向推力增大,使推力轴承过负,影响汽轮机的安全运行。
所以在实际的热电厂运行中,最好使凝汽器在设计真空值附近运行。
4.1 真空降低的危害凝汽器是凝汽式机组的一个重要组成部分,其工况的好坏,直接影响整个机组的安全性和经济性。
例如一台200MW的机组,真空每下降1%,引起热耗增加0.029%,少发电约58KW,而一台600MW的机组,真空每下降1%,引起热耗增加0.05%,少发电约306KW。
有资料显示,凝汽器每漏入50kg/h的空气,凝汽器真空下降1Kpa,机组的热耗增加约6%-8%。
1)经济方面的影响a. 真空降低,使汽轮机热耗增加。
对于高压汽轮机,真空每降低1%,可使机组热耗增加4.9%。
b真空降低,使凝结水过冷度增加。
对于高压汽轮机,凝结水每过冷1℃,也使热耗增加0.15%。
c 为了提供真空,开大铀封供汽压力和流量,导致油中带水,增大了油耗。
2)安全方面的影响a.由于真空降低,使排汽压力,排汽温度升高,降低了汽轮机经济性。
严重时,由于排汽温度过高,还将引起汽轮机低压缸胀差发生异常变化和低压缸变形,改变机组的中心,造成机组振动,可能引起故障停机。
b.由于真空降低,凝结水中含氧量增加,最高超过100%,凝结水系设备和管道被腐蚀产生的氧化铁进入锅炉,腐蚀炉方的水冷壁、过热器等设备和管道。
c.为了提高真空运行,开大轴封供汽压力和供汽流量,导致轴封漏汽进入润滑油系统,使油中带水,使调节系统失灵,造成机组运行不稳定,给机组的安全运行带来严重的隐患。
凝汽器真空下降的原因及处理讲解凝汽器在蒸汽动力系统中扮演着至关重要的角色,它可以将蒸汽冷凝成水,有效地回收热能,并保持系统的真空状态。
然而,有时候凝汽器的真空会下降,导致系统效率降低甚至故障。
本文将探讨凝汽器真空下降的原因及处理方法。
一、凝汽器真空下降的原因1.水冷却效率低下:凝汽器通常通过水冷却来冷凝蒸汽,但如果冷却水量不足或水温过高,会导致冷却效率降低,使得凝汽器内部的温度升高,真空下降。
2.冷凝管道堵塞:如果凝汽器的冷凝管道被污垢、杂质或其它物质堵塞,会影响冷凝工作,造成真空下降。
3.蒸汽温度变化:蒸汽温度变化会导致凝汽器内部温度不稳定,真空下降。
4.水位不稳定:凝汽器的水位不稳定会影响冷凝效果,导致真空下降。
5.漏水:凝汽器内部的漏水会暴露更多的表面积让空气侵入,破坏真空状态,导致真空下降。
6.压力波动:系统压力波动会影响凝汽器的工作,导致真空下降。
二、处理凝汽器真空下降的方法1.调整冷却水流量和温度:确保凝汽器冷却水流量充足,温度适中。
2.清洁冷凝管道:定期清洁凝汽器内部的冷凝管道,保持畅通。
3.控制蒸汽温度:调节蒸汽温度,保持稳定。
4.确保水位稳定:监控凝汽器的水位,保持稳定。
5.处理漏水问题:及时修复凝汽器内部的漏水问题,保持封闭性。
6.稳定系统压力:确保系统压力稳定,避免波动对凝汽器的影响。
7.检查凝汽器密封性:检查凝汽器的密封性能,确保完好无损。
8.定期维护保养:定期检查凝汽器的运行状态,进行维护保养,确保其正常工作。
通过以上方法处理凝汽器真空下降问题,可以有效提高凝汽器的工作效率,保证系统的正常运行。
凝汽器在蒸汽动力系统中起着至关重要的作用,因此及时发现真空下降问题并采取有效措施是至关重要的。
希望以上内容能帮助您更好地了解凝汽器真空下降的原因及处理方法。
汽轮机凝汽器真空降低的原因及措施分析摘要:汽轮机凝汽器真空度与装置的安全稳定运行密切相关,在实际运行中,有多种原因会导致汽轮机凝汽器真空下降。
需要相关人员熟悉设备和系统的特性,加强监视及管理,及时发现问题,并进行全面分析,查找原因并处理,使凝汽器在最佳真空状态,保证真空系统的稳定运行。
关键词:凝汽器;真空下降原因;对策1、汽轮机凝汽器真空形成原理在恒压下,汽轮机排汽通过换热冷凝成水,蒸汽经过凝结,体积变小,进而在凝汽器中形成真空。
其危害主要体现在以下几点:一是机组效率降低,供电气耗增加,凝汽器端差变大;二是真空泵出力增加,使其能耗增加;三是凝结水中的含氧量不断增加,这就有可能造成系统产生管束腐蚀。
产生真空度低的原因主要有凝汽器换热效果差(换热管结垢、端差大);真空泵出力不足或故障;真空严密性差(泄漏点多);凝汽器水位不正常或热负荷过高。
2、汽轮机凝汽器真空急剧下降的原因及处理2.1循环水中断循环水是汽轮机低压缸排汽的冷却介质,循环水的流量、温度影响低压缸排汽温度以及凝汽器真空。
风力越小、环境温度越高,冷水塔淋水盘下落时,循环水换热效果越差,被风带走的热量越少,循环水温降越小,循环水温度越高。
相同的凝汽器冷却效果下,增加循环水出水温度,也会增加对应的低压缸排汽温度,导致凝汽器真空下降。
冷水塔的配水方式影响循环水温度。
为维持凝汽器较高的真空,通常在全塔配水的方式下运行。
如果循环水泵跳闸,循环水通过直接回到凉水塔,凝汽器失去冷却水,凝汽器真空下降。
必须开启备用循环水泵,降低机组负荷。
循环水泵电机跳闸、用电中断等,都会出现循环水中断,导致凝汽器真空迅速下降。
如果运行泵发生故障,就需要确保可以随时启动备用泵,进而防止断水事故。
2.2抽气器工作失灵抽气器效率降低或者工作不正常,与凝汽器端差增大有关,可以检查射水池水温是否过高,射水泵出口压力是否正常,电流是否正常,抽气器真空系统的严密性是否正常,有条件的可以对抽气器的工作能力进行试验。
凝汽器真空度下降的原因及处理摘要:凝汽器的主要作用是收集汽轮机中做过功的蒸汽使之凝结成水,建立并保持真空。
汽轮机装置的效率、功率在很大程度取决于凝汽器的真空,发电厂中整个汽轮机组的热经济性将直接受到凝汽器真空高低的影响。
在机组正常运行中发生真空降低情况时,运行人员若处理不当将会造成机组非计划停运,严重者还会损坏设备。
因此,有必要对影响凝汽器真空的因素进行分析,以提高机组在运行期间的经济性和安全性,同时针对这些原因提出相应的处理方法。
关键词:凝汽器;真空度;分析;处理凝汽器的真空度是凝汽式汽轮发电机组重要的技术指标之一。
真空度高的机组耗汽量较少,运行效率高。
真空度每下降1%,将使汽轮发电机组的汽耗平均增加1%-2%。
因机组负载的变化,允许真空度在一定范围内波动。
低负载时,真空度较高。
高负载时,真空度相应有所降低,但不得低于额定工况下的设计值。
因此,当真空度下降,且偏离了额定工况设计值时,需停机对凝汽器进行检修处理。
1凝汽器、真空度概述1.1凝汽器凝汽器是将汽轮机排汽冷凝成水的一种换热器,也称之为复水器。
凝汽器基本上运用在汽轮机动力装置中,分为水冷凝汽器和空冷凝汽器两种。
凝汽器不仅可以将汽轮机的排汽冷凝成水重新使用外,而且还可以在汽轮机排汽处制造真空和维持真空。
1.2真空度凝汽器真空度是指汽轮机低压缸排汽端真空占大气压的百分数。
通过具体的公式运算我们也可以得出结论,即,凝汽器真空度(%)=1-(汽轮机排汽压力绝对值(kPa)/98.1(kPa))×100%;也可以用:凝汽器真空度=[1-(大气压力(kPa)-凝汽器真空(kPa,表压)/98.1)]×100%。
1.3凝汽器真空原理及作用汽轮机的排汽被冷凝成水,比容迅速减少,因此就能形成凝汽器真空环境。
一般情况下,我们可以根据汽轮机组终参数的高低来判断凝汽器真空的好坏。
凝汽器真空、汽轮机热效率、发电厂的经济性三者之间存在着正相关的关系,即提高凝汽器真空就能直接提高汽轮机热效率和发电厂的经济性。
凝汽器最佳真空定义1. 引言凝汽器是一种常见的热交换设备,广泛应用于电力、化工、制药等行业中。
在凝汽器中,蒸汽通过冷却而凝结成水,并释放出大量的热量。
为了提高凝汽器的效率和性能,确保其正常运行,对凝汽器的真空度进行合理的定义和控制非常重要。
本文将介绍凝汽器最佳真空的定义及其重要性,并探讨影响凝汽器真空度的因素以及如何优化真空度。
2. 凝汽器最佳真空定义凝汽器最佳真空是指在给定操作条件下,使得蒸汽在凝汽器内部充分冷却并凝结成水所需的最低压力。
通常以绝对压力或相对压力来表示。
确定凝汽器最佳真空需要考虑以下因素:2.1 蒸汽温度蒸汽温度是影响凝汽器最佳真空的重要因素之一。
较高的蒸汽温度会导致较高的饱和压力,从而降低了凝结水蒸气成水的压力差,减小了真空度。
2.2 冷却水温度冷却水温度也对凝汽器最佳真空产生影响。
较低的冷却水温度可以提供更好的冷却效果,促使蒸汽更快地冷凝成水,从而提高真空度。
2.3 冷却水流量冷却水流量直接影响凝汽器的冷却效果。
较大的冷却水流量可以增加蒸汽与冷却水之间的传热面积,加快蒸汽的冷凝速度,提高真空度。
2.4 冷却器设计良好的冷却器设计可以最大限度地提高传热效率,促使蒸汽迅速冷凝成水。
合理选择和设计冷却器是实现最佳真空的关键之一。
3. 凝汽器最佳真空的重要性凝汽器最佳真空对于凝汽器的正常运行和性能至关重要。
以下是几个与凝汽器最佳真空相关的重要方面:3.1 系统效率较高的真空度可以提高系统的效率。
在给定负荷条件下,更好的真空度可以降低凝汽器的排气功率,减少能源消耗。
3.2 防止气体泄漏凝汽器最佳真空的定义有助于防止气体泄漏。
在达到最佳真空后,可以通过检测和修复可能存在的泄漏点来确保系统的密封性,减少能源浪费。
3.3 预防腐蚀较高的真空度可以减少凝汽器内部与蒸汽接触的氧气含量,从而降低腐蚀的风险。
这对于延长设备寿命和降低维护成本非常重要。
4. 如何优化凝汽器真空度为了优化凝汽器真空度,可以采取以下措施:4.1 控制蒸汽温度通过控制供给蒸汽的温度,可以调节饱和压力,从而影响真空度。
凝汽器真空影响因素分析及处理措施摘要:凝汽设备是凝汽式汽轮机装置的一个重要组成部分,在整个热力系统中起着冷源的作用。
凝汽器真空作为火力发电机组汽机侧一项重要的经济指标对整个机组的热经济性起着至关重要的作用。
本文从冷端系统角度分别研究凝汽器端差,循环水温升,循环水进口温度等对机组真空的影响,并提出了一系列真空下降的解决方法和处理措施,为全国凝汽式汽轮机组解决真空降低问题提供了一定的依据。
关键词:真空冷端系统端差循环水温升循环水进口温度处理措施
0 引言
凝汽设备在电厂凝汽式汽轮机组的热力系统中的功能主要体现在将汽轮机的排汽凝结成水。
除此之外,作为整个热力循环中的冷源,凝汽设备还要在汽轮机排汽口建立并维持一定的真空。
凝汽器真空是衡量机组热经济性的重要指标,真空过高或过低不仅对汽轮机装置的效率产生重大的影响,而且会影响汽轮机组的安全。
因此研究凝汽器真空对提高整个汽轮机组的热经济性有着重大而积极的影响。
本文从汽轮机冷端系统角度分析,将影响机组真空的原因进行了系统分析。
1 影响真空的因素具体包括以下三个方面
①凝汽器传热端差因素。
②冷却水温升因素。
③冷却水进口温度因素。
2 运行中影响凝汽器端差的因素
凝汽器排汽温度与冷却水出口温度之间的差值,就是凝汽器的传热端差。
2.1 凝汽器的冷却面积的影响因素。
一般设计时凝汽器的冷却面积已经确定,但是在实际运行过程中凝汽器水位会影响凝汽器实际的换热面积。
凝汽器水位过高会带来两种后果:一是会造成汽轮机低压缸排汽空间的减少,从而导致换热面积减少,低压缸排汽温度升高,真空降低;二是会造成凝结水过冷,从而降低机组经济性。
2.2 传热系数的影响因素。
影响凝汽器传热系数的因素比较复杂,主要包括凝汽器传热性能、热负荷、清洁系数、空气量等。
2.2.1 凝汽器热负荷。
机组负荷升高,相应的汽轮机排汽量增大,凝汽器热负荷越高,会导致凝汽器真空下降。
当真空下降到某一数值,要进行限制出力,使凝汽器热负荷降低,维持机组真空。
如果汽轮机组的高、低压加热器退出运行,这部分抽汽就会进入凝汽器,使凝汽器热负荷增大,从而使真空下降。
2.2.2 凝汽器漏入空气量的原因。
由于空气导热性不好,且不凝结,当空气漏入后,将降低凝汽器换热效果。
另外,因为有许多与凝汽器相连接的管道、加热器,再加上凝汽器面积很大,这就增大了凝汽器及其系统空气漏入的几率。
从理论上讲,那些与凝汽器相通的容器、管道,其压力高于凝汽器真空又低于大气压,这些都可能是凝汽器漏入空气的原因。
但实际运行过程中,某些容器管道
内压力又不是一成不变的,例如本厂热网加热器内压力负荷高时为正压,负荷低时为负压,某些低压加热器也会出现这种现象。
2.2.3 凝汽器内清洁度。
从来源看,凝汽器内的污染有两种:外部污染和内部结垢。
在凝汽器冷却表面和凝汽器钢管内积存的污物和结垢,不仅会对循环水的流量造成影响,而且还影响其导热的效果。
而在凝汽器传热面的污染会降低传热效果,导致凝汽器端差增大,真空下降。
2.2.4 凝汽器的传热性能。
当凝汽器正常工作时,其排汽压力与排汽温度的关系与饱和蒸汽的压力与温度的关系相同,即饱和蒸汽温度决定了凝汽器的排汽压力,而饱和蒸汽的温度与循环冷却水的热交换程度有关。
①蒸汽在管子外壁的凝结换热。
当蒸汽冷却时,会在管子外壁凝结成一层液膜,凝结放出的热量要传到冷却面,必须要穿过液膜,因此液膜层就成为换热的主要热阻。
从运行角度看,对凝结换热造成影响的因素主要是不凝结气体。
②蒸汽在管子内外壁的导热。
对于干净清洁的钢管来说,其热阻很小,导热系数由材质和结构尺寸决定。
但是当冷凝器经过一段时间的运行后,会有污泥、水垢等污物覆盖在换热面上。
这些覆盖物成为了新的热阻,导致导热系数减小,换热性能下降。
③对流换热。
影响流动的因素及影响对流换热热量传递的因素,是对流换热系数造成影响的主要因素。
其中,影响流动的因素包括流速、特征尺寸及物性参数;影响对流换热热量传递的因素则决定于物性参数。
3 运行中影响冷却水温升的因素
冷却水温升所反映的是凝汽器的换热能力。
凝汽器中,上升到出口处的冷却水温度与其在进口处的温度之间的差值,即温度升高值就是冷却水温升。
当进入凝汽器的蒸汽量恒定不变,则冷却水温升主要取决于冷却水量。
冷却水量减少,导致冷却水温增大,真空降低。
这时候,循环水泵即循环水量决定了冷却水量。
因此,从根本上讲,对循环水温升的研究还要从循环水泵运行方式的研究入手。
汽轮机的微增出力与循环水泵耗功之间的关系,在一定程度上影响了循环水泵运行方式的效果。
只有当循环水泵耗功与微增出力之差为最佳值时,循环水泵的运行方式才是合理的。
4 循环水进口温度的影响
特定地域的季节和气候因素决定了冷却水的进口温度。
为了达到理想的进口温度,我们只能利用冷却塔来实现。
作为火电厂的辅助生产设备,冷却塔的作用就是通过空气与水接触,进行热、质传递,将水冷却。
冷却塔的性能与填料的选择、填料的高度设计、塔的阻力、喷溅装置的性能及安装等因素有关。
相关资料显示,冷却塔性能下降会对机组经济性造成不小的影响。
对于300mw机组而言,冷却塔出口水温升高1℃,效率降低0.23%,煤耗增加0.798g/kw.h,热耗增加23.39kj/kw.h。
因此,应该采取各种措施以保持冷却塔良好的性能,如对设备进行适时的改造,对相关参数进行调整;强化对冷却塔的检查维护和性能检测等。
这些都会有力保障机组的安全
经济运行。
5 真空下降的一些解决方法及措施
5.1 降低凝汽器中空气量的措施。
降低空气量主要从真空严密性和真空泵的工作性能考虑。
5.2 调整汽轮机轴封压力
5.3 凝汽器水位及冷却效果。
对凝汽器水位的调节,主要通过凝汽器补水来实现。
在凝汽器补水调节阀出现故障的情况下,则应对调节阀的旁路阀进行手动调节。
5.4 针对进入凝汽器的各个水封的影响。
应保证进入凝汽器的各个水封的水位处于适当的位置。
对于水位过低的情况,应该打开注水门注水。
如果效果不佳,则应暂时将其隔离,检查是否因高度不足导致漏空气,待水位稳定后再投入。
我公司原水封筒由于水柱高度不足,在真空较高情况下,水封筒的水易被抽空导致空气进入凝汽器,水封筒至凝汽器回水门只能开一至两扣,否则最高能影响真空2kpa,经过改造增加了3米水柱高度,现水封筒至凝汽器回水门全开,水封筒的空气门保持开启,且不漏真空。
5.5 高、低加疏水对真空的影响。
通过水位计调节仪的调节动作,高、低加疏水对真空产生影响。
在实际运行中,应加强巡回检查高、低加水位,精心监视高、低加的压力、温度、疏水温度、加热器端差、水位等参数,及时发现异常情况联系维护人员进行解决。
5.6 循环水流量及温度。
循环水温度受气候,外界环境的影响
很大,这是我们无法改变的。
但是我们可以通过改变冷却塔、循环水泵的运行方式来调节。
在夏天,我们可以增开循环水泵,增大循环水量来降低循环水温度,用冷却塔全塔配水来增大散热面积,降低循环水温。
在冬天,真空很高时,减少循环水泵运行台数,节约厂用电。
调节冷却塔直通门来调节水温。
具体的循环水泵的经济运行方式还要进一步摸索。
6 总结
综上,真空下降现象是对影响汽轮机冷端性能的原因的最终表现。
本文从主要影响真空的系统及设备做了研究整理叙述,以期寻找提高真空的措施、改善汽轮机冷端性能:
6.1 进行真空严密性检漏,及时消除漏空气现象。
6.2 维持轴封系统及水封的正常工作;维持好轴封加热器的正常水位;调整汽轮机轴端汽封间隙,减小轴端漏汽量;严格控制低压汽封供汽压力、温度;及时更换泄漏的阀门等方面改进真空的严密性。
6.3 通过胶球清洗的方法,保持凝汽器管壁和水侧的清洁度。
6.4 循环水泵经济运行方式的合理调整。
6.5 检查冷却塔热力性能,加强运行维护。
参考文献:
[1]周胜伟.汽轮机真空度不足的原因分析及预防措施[j].中小企业管理与科技(下旬刊),2011(01).
[2]李文林.200mw汽轮机真空问题探讨[j].中小企业管理与科
技(上旬刊),2011(01).
[3]张明智,林湖,姚雅秋,丁千玲,陆海青.凝汽器真空度下降的分析与处理[j].电力科学与工程,2003(01).。