Floyd算法 计算最短距离矩阵和路由矩阵 查询最短距离和路由 matlab实验报告
- 格式:pdf
- 大小:480.21 KB
- 文档页数:11
matlab的floyd算法Floyd算法,是一种图论算法,用于在加权图中求解最短路径。
它是以发明者之一、罗伯特·弗洛伊德的名字命名的。
这个算法同样被用于对于任意两点之间的最长路径(所谓的最短路径问题)进行求解。
算法描述给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。
特别地,当i=j时,dist(i,j)=0。
为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。
则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。
算法思想:建立中间顶点集合算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。
具体来说,设S={1, 2, ⋯, k},其中k是整数。
Floyd算法的基本思想是,依次考察所有可能的中间顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。
最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。
Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。
这一过程可表述为:for k = 1 to nfor i = 1 to nfor j = 1 to nif D(k,i)+D(j,k) < D(k,i,j)D(k,i,j) = D(k,i)+D(j,k)其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。
算法实现function D = Floyd(adjmat)% adjmat为邻接矩阵邻接矩阵adjmat的定义为:- 若两个顶点之间有边相连,则对应位置为该边的边权值;- 若两个顶点之间没有边相连,则对应位置为0。
Dijkstra算法Matlab实现。
%求一个点到其他各点的最短路径function [min,path]=dijkstra(w,start,terminal)%W是邻接矩阵%start是起始点Array %terminal是终止点%min是最短路径长度%path是最短路径n=size(w,1);label(start)=0;f(start)=start;for i=1:nif i~=startlabel(i)=inf;endends(1)=start;u=start;while length(s)<nfor i=1:nins=0;forif i==s(j)ins=1;endendif ins==0v=i;if label(v)>(label(u)+w(u,v))label(v)=(label(u)+w(u,v));f(v)=u;endendendv1=0;k=inf;for i=1:nins=0;for j=1:length(s)if i==s(j)ins=1;endend-if ins==0v=i;if k>label(v)k=label(v);v1=v;endendends(length(s)+1)=v1;u=v1;endmin=label(terminal);path(1)=terminal;i=1;while path(i)~=startpath(i+1)=f(path(i));i=i+1 ;endpath(i)=start;L=length(path);path=path(L:-1:1);Floyd算法:matlab程序:%floyd算法,function [D,path,min1,path1]=floyd(a,start,terminal)%a是邻接矩阵%start是起始点%terminal是终止点%D是最小权值表D=a;n=size(D,1);path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;endendendfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)-D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendendif nargin==3min1=D(start,terminal);m(1)=start;i=1;path1=[ ];while path(m(i),terminal)~=terminalk=i+1;m(k)=path(m(i),terminal);i=i+1;endm(i+1)=terminal;path1=m;end1 6 5 5 5 66 2 3 4 4 65 2 3 4 5 45 2 3 4 5 61 4 3 4 5 11 2 4 4 1 6Floyd算法:Lingo程序:!用LINGO11.0编写的FLOYD算法如下;model:sets:nodes/c1..c6/;link(nodes,nodes):w,path; !path标志最短路径上走过的顶点;endsetsdata:path=0;w=0;@text(mydata1.txt)=@writefor(nodes(i):@writefor(nodes(j):-@format(w(i,j),' 10.0f')),@newline(1));@text(mydata1.txt)=@write(@newline(1));@text(mydata1.txt)=@writefor(nodes(i):@writefor(nodes(j):@format(path(i,j),' 10.0f')),@newline(1));enddatacalc:w(1,2)=50;w(1,4)=40;w(1,5)=25;w(1,6)=10;w(2,3)=15;w(2,4)=20;w(2,6)=25;w(3,4)=10;w(3,5)=20;w(4,5)=10;w(4,6)=25;w(5,6)=55;@for(link(i,j):w(i,j)=w(i,j)+w(j,i));@for(link(i,j) |i#ne#j:w(i,j)=@if(w(i,j)#eq#0,10000,w(i,j)));@for(nodes(k):@for(nodes(i):@for(nodes(j):tm=@smin(w(i,j),w(i,k)+w(k,j));path(i,j)=@if(w(i,j)#gt# tm,k,path(i,j));w(i,j)=tm)));endcalcend无向图的最短路问题Lingomodel:sets:cities/1..5/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=41;w(1,3)=59;w(1,4)=189;w(1,5)=81;w(2,3)=27;w(2,4)=238;w(2,5)=94;w(3,4)=212;w(3,5)=89;w(4,5)=171;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j)));endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;-@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));endLingo编的sets:dian/a b1 b2 c1 c2 c3 d/:;link(dian,dian)/a,b1 a,b2 b1,c1 b1,c2 b1,c3 b2,c1 b2,c2 b2,c3 c1,d c2,d c3,d/:x,w;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatamin=@sum(link:w*x);@for(link:@bin(x));n=@size(dian);@sum(link(i,j)|i#eq#1:x(i,j))=1;@sum(link(j,i)|i#eq#n:x(j,i))=1;@for(dian(k)|k#ne#1#and#k#ne#n:@sum(link(i,k):x(i,k))=@sum(link(k,i):x(k,i)));- sets:dian/1..5/:level; !level(i)表示点i的水平,用来防止生产圈;link(dian,dian):d,x;endsetsdata:d=0 41 59 189 8141 0 27 238 9459 27 0 212 89189 238 212 0 17181 94 89 171 0;enddatan=@size(dian);min=@sum(link(i,j)|i#ne#j:d(i,j)*x(i,j));@sum(dian(j)|j#gt#1:x(1,j))>1;@for(dian(i)|i#gt#1:@sum(dian(j)|j#ne#i:x(j,i))=1);@for(dian(i)|i#gt#1:@for(dian(j)|j#ne#i#and#j#gt#1:level(j)>level(i)+x(i,j)-(n-2)*(1-x(i,j))+(n-3)*x(j, i)));@for(dian(i)|i#gt#1:level(i)<n-1-(n-2)*x(1,i));@for(dian(i)|i#gt#1:@bnd(1,level(i),100000));@for(link:@bin(x));。
最短路径Floyd算法
Floyd算法是一种用于解决最短路径问题的动态规划算法,其时间复杂度为O(n^3 )。
Floyd算法可以求出任意两点之间的最短路径,并且可以处理负权边(但不能处理负权环)。
算法思想
Floyd算法的基本思想是:对于图中的每一对顶点i和j,看看是否存在一个顶点k,使得从i 到k 再到j 比已知的路径更短。
如果是更短的,就修改当前路径为更短的那个路径。
算法步骤
1.初始化:将图中任意两点之间的最短路径长度初始化为它们之间的权值,如果两点之间没有直接的边,则权值为∞。
2.对于每一个中间节点k,依次考察所有的节点对(i,j),如果从i到j经过节点k比原来的路径更短,则更新最短路径长度。
3.最后得到的矩阵即为任意两点之间的最短路径长度。
Matlab代码
function [D,P] = floyd(W)
% W为邻接矩阵
% D为最短距离矩阵
% P为最短路径矩阵
n = size(W,1);
for k=1:n
for i=1:n
for j=1:n
if W(i,k)+W(k,j)<W(i,j)
W(i,j)=W(i,k)+W(k,j);
P(i,j)=k;
end
end
end
end。
文章编号:001主题:探讨floyd算法求解邻接矩阵的最短距离矩阵在计算机算法中,图论一直是一个重要的研究领域。
而其中,最短路径算法一直是图论中的热门话题之一。
在众多的最短路径算法中,floyd算法因其简洁高效的特点而备受青睐。
本文将深入探讨floyd算法在求解邻接矩阵的最短距离矩阵中的应用,并分析其实现原理及优缺点。
一、floyd算法简介Floyd算法是一种用于寻找加权图中顶点之间最短路径的动态规划算法。
它的基本思想是每次引入一个新的顶点,看看这个新顶点能不能对原来两个顶点之间的距离产生改变,如果可能,就进行更新。
通过多次迭代,最终得到所有顶点之间的最短路径。
二、floyd算法的实现步骤1. 初始化邻接矩阵在使用floyd算法求解最短路径时,首先需要初始化邻接矩阵。
邻接矩阵的每个元素代表图中两个顶点之间的距禋,如果两个顶点之间没有直接连接,则距离设为无穷大。
如果两个顶点直接相连,则距离设为两个顶点之间的权值。
2. 动态规划求解最短路径接下来,利用动态规划的思想,通过逐渐引入新的顶点,不断更新已有的最短路径。
具体做法是,对于每对顶点i和j,检查它们之间是否存在顶点k,使得从i到j的最短路径可以经过顶点k。
如果存在这样的顶点k,那么更新i到j的最短路径为i到k和k到j的距离之间的较小值。
3. 递推过程重复上述步骤,通过逐渐引入新的顶点k,直到遍历完所有顶点,就可以得到最终的最短距离矩阵。
三、floyd算法的优缺点1. 优点floyd算法可以求解任意两点之间的最短路径,且适用于有向图和无向图。
并且可以方便地求出最短路径的具体路径。
算法简单易懂,实现起来也比较容易。
2. 缺点floyd算法的时间复杂度较高,为O(n^3),当n较大时,计算量会非常庞大。
另外,在处理稀疏图时,可能会造成大量的计算浪费,因为floyd算法会对所有的顶点对进行遍历,而对于稀疏图来说,很多顶点对之间并不存在直接连接的边。
四、个人观点和理解在实际应用中,floyd算法通常适用于节点数量不是特别大,但边的数量非常大或者需要求解任意两点之间最短路径的情况。
最短路径算法matlab代码最短路径算法是计算两点之间最短路程的算法。
这个问题可以转化为图论中的最短路径问题,目前有多种解法,其中比较常用的就是迪杰斯特拉算法和弗洛伊德算法。
本文将以迪杰斯特拉算法为例,介绍一下最短路径算法的matlab实现。
迪杰斯特拉算法迪杰斯特拉算法是用来解决有向带权图中单源最短路径问题的一种贪心算法。
该算法通过维护一个距离集合,逐步扩展最短路径,直至到达终点或者所有路径均已扩展完毕。
具体算法流程如下:1. 初始化距离集合,将距离集合中除起点外所有点的距离设置为无穷大,将起点的距离设置为0。
2. 从距离集合中选择距离最小的点v,将v加入已扩展集合中。
3. 遍历v的所有邻居节点,将v到邻居节点的距离d与邻居节点原有的距离比较,若d小于原有距离,则将邻居节点的距离更新为d。
4. 重复以上步骤,直至所有点均已加入已扩展集合中。
matlab代码实现在matlab中实现迪杰斯特拉算法,需要用到矩阵来描述整个图。
用一个N*N的矩阵表示图中各节点之间的距离,例如:```G = [ 0, 4, 2, Inf, Inf;Inf, 0, 1, 5, Inf;Inf, Inf, 0, Inf, 3;Inf, Inf, Inf, 0, 1;Inf, Inf, Inf, Inf, 0 ];```其中Inf表示节点间没有连接。
然后,将距离集合D初始化为一个1*N 的向量,D(i)表示起点到节点i的距离。
对于起点,其距离应该为0。
```D = [0 Inf Inf Inf Inf];```接下来,用一个1*N的向量S来表示已经扩展过的节点。
一开始,S 中只有起点。
```S = [1];```接下来就可以实现算法了。
迭代遍历S中的所有节点,更新其邻居节点的距离,然后将距离最小的邻居节点加入S中。
具体实现代码如下:```for i = 1:N-1minDis = Inf;for j = 1:Nif ~ismember(j, S) % 如果节点j不在已扩展集合中if D(j) < minDisu = j;minDis = D(j);endendendS = [S u];for v = 1:Nif ~ismember(v, S) % 如果节点v不在已扩展集合中if G(u, v) ~= Inf % 如果u和v之间存在连接if D(u) + G(u, v) < D(v) % 如果从起点到u节点再到v节点的距离小于v原有距离D(v) = D(u) + G(u, v); % 更新v的距离endendendendend```完整代码将上述代码整合成一个函数,得到完整的matlab代码实现。
function [D,R]=floyd(a)% a=[3 2;4 6];采用floyd算法计算图a中每对顶点最短路% a=[0 4 11;6 0 2;3 inf 0];n=size(a,1);D=a % D是距离矩阵for i=1:nfor j=1:nR(i,j)=j;endendR % R是路由矩阵for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);endendendkDRend••••••••••••••••••【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。
懒洋洋的幸福。
顶 3 收藏 2•【唯美句子】一个人踮着脚尖,在窄窄的跑道白线上走,走到很远的地方又走回来。
阳光很好,温暖,柔和。
漫天的安静。
顶7 收藏7•【唯美句子】清风飘然,秋水缓淌。
一丝云起,一片叶落,剔透生命的空灵。
轻轻用手触摸,就点碎了河面的脸。
落叶舞步婀娜不肯去,是眷恋,是装点?瞬间回眸,点亮了生命精彩。
顶11 收藏9•【唯美句子】几只从南方归来的燕子,轻盈的飞来飞去,“几处早莺争暖树,谁家新燕啄春泥,”其乐融融的山林气息,与世无争的世外桃源,让人心旷神怡。
顶0 收藏 2•【唯美句子】流年清浅,岁月轮转,或许是冬天太过漫长,当一夜春风吹开万里柳时,心情也似乎开朗了许多,在一个风轻云淡的早晨,踏着初春的阳光,漫步在碧柳垂青的小河边,看小河的流水因为解开了冰冻而欢快的流淌,清澈见底的的河水,可以数得清河底的鹅软石,偶尔掠过水面的水鸟,让小河荡起一层层的涟漪。
河岸换上绿色的新装,刚刚睡醒的各种各样的花花草草,悄悄的露出了嫩芽,这儿一丛,那儿一簇,好像是交头接耳的议论着些什么,又好象是在偷偷地说着悄悄话。
顶 3 收藏 4•【唯美句子】喜欢海子写的面朝大海春暖花开,不仅仅是因为我喜欢看海,还喜欢诗人笔下的意境,每当夜深人静时,放一曲纯音乐,品一盏茶,在脑海中搜寻诗中的恬淡闲适。
matlab中求最短路径的函数在matlab中,有多种方法可以求解最短路径问题。
其中,较为常用的方法包括Dijkstra算法、Bellman-Ford算法和Floyd算法等。
这些方法对应的函数分别为dijkstra、bellmanford和floyd。
以下是这些函数的使用方法:1. dijkstra函数dijkstra函数可以求解带权有向图的单源最短路径问题。
其使用方法如下:[d,path] = dijkstra(W,s,t)其中,W为带权邻接矩阵,s为源节点,t为目标节点。
函数返回最短路径长度d和路径path。
例如,假设有以下带权有向图:W = [0 1 12 0;0 0 9 3;0 0 0 0;0 0 4 0];其中,0表示两节点之间没有边相连。
则可以使用以下代码求解1号节点到4号节点的最短路径:[d,path] = dijkstra(W,1,4)最短路径长度为7,路径为[1 2 4]。
2. bellmanford函数bellmanford函数可以求解带权有向图的单源最短路径问题,但是可以处理负权边。
其使用方法如下:[d,path] = bellmanford(W,s,t)其中,W为带权邻接矩阵,s为源节点,t为目标节点。
函数返回最短路径长度d和路径path。
例如,假设有以下带权有向图:W = [0 1 12 0;-4 0 9 3;0 0 0 0;0 0 4 0];其中,负权边被用负数表示。
则可以使用以下代码求解1号节点到4号节点的最短路径:[d,path] = bellmanford(W,1,4)最短路径长度为-1,路径为[1 2 4]。
3. floyd函数floyd函数可以求解带权有向图的所有节点之间的最短路径问题。
其使用方法如下:[D,path] = floyd(W)其中,W为带权邻接矩阵。
函数返回最短路径长度矩阵D和路径矩阵path。
例如,假设有以下带权有向图:W = [0 1 12 0;0 0 9 3;0 0 0 0;0 0 4 0];则可以使用以下代码求解所有节点之间的最短路径:[D,path] = floyd(W)最短路径长度矩阵为:D = [0 1 10 4;Inf 0 9 3;Inf Inf 0 Inf;Inf Inf 4 0];其中,Inf表示两节点之间不存在路径。
Floyd最短路算法的MATLAB程序Floyd最短路算法的MATLAB程序2006-08-17 20:14%floyd.m%采用floyd算法计算图a中每对顶点最短路 %d是矩离矩阵%r是路由矩阵function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendrfor k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j)< p="">d(i,j)=d(i,k)+d(k,j); r(i,j)=r(i,k)endendendkdrendvoid Dijkstral(int v0){int i;bool s[MAX_VEX];for(i=0;i<dim;i++)< p="">{d[v0][i]=map[v0][i];s[i]=false;if((i!=0)&&(d[v0][i]<inf))< p="">p[v0][i]=v0;elsep[v0][i]=-1;}s[v0]=true;d[v0][v0]=0;for(i=0;i<dim;i++)< p="">{double min=INF;int u=v0;for(int j=0;j<dim;j++)< p="">if(!s[j]&&d[v0][j]<min)< p="">{u=j;min=d[v0][j];}s[u]=true;for(int w=0;w<dim;w++)< p="">{if((!s[w])&&(d[v0][w]>d[v0][u]+map[u][w])) {d[v0][w]=d[v0][u]+map[u][w];p[v0][w]=u;}}}}Justin Hou介绍寻找最有价值路径(c语言)描述:从上(入口)往下行走,直到最下节点(出口)结束,将所经节点上的数值相加,要求找到一条最有价值路径(既是路径总数值最大)并输出总数值。
matlab floyd最短路算法例题【原创版】目录一、引言二、Floyd 算法的原理与实现1.Floyd 算法的基本思想2.Floyd 算法的实现过程三、MATLAB 中 Floyd 算法的实现1.构建邻接矩阵2.实现 Floyd 算法3.显示最短路径四、Floyd 算法的应用案例1.案例描述2.案例分析五、总结正文一、引言在最短路径问题中,Floyd 算法是一种经典的动态规划算法。
它可以用于求解加权连通图(有向图、无向图)中所有顶点之间的最短路径长度。
本文将介绍 Floyd 算法的原理与实现,并在 MATLAB 中进行演示,最后通过一个实际案例来说明 Floyd 算法的应用。
二、Floyd 算法的原理与实现1.Floyd 算法的基本思想Floyd 算法的基本思想是:对于任意两个顶点 i 和 j,如果从顶点i 到顶点 j 的路径中有一个顶点 k,使得从顶点 i 到顶点 k 的路径长度加上从顶点 k 到顶点 j 的路径长度小于从顶点 i 直接到顶点 j 的路径长度,那么就将当前路径的长度更新为从顶点 i 到顶点 k 的路径长度加上从顶点 k 到顶点 j 的路径长度。
不断更新所有顶点之间的路径长度,直到所有顶点之间的路径长度都达到最短。
2.Floyd 算法的实现过程Floyd 算法的实现过程分为三个步骤:(1)构建邻接矩阵:邻接矩阵是一个二维数组,其中邻接矩阵的元素 a(i, j) 表示顶点 i 到顶点 j 的权值。
如果顶点 i 到顶点 j 之间没有边相连,则 a(i, j) 为无穷大(如 float("inf"))。
(2)初始化距离:将邻接矩阵中所有元素设置为无穷大,然后将主对角线上的元素设置为 0(表示从顶点 i 到顶点 i 的距离为 0)。
(3)迭代更新距离:遍历所有顶点 k,对于每个顶点 i 和 j,如果从顶点 i 到顶点 k 的距离加上从顶点 k 到顶点 j 的距离小于从顶点i 到顶点 j 的距离,那么就将当前距离更新为从顶点 i 到顶点 k 的距离加上从顶点 k 到顶点 j 的距离。