第三章 电路的过渡过程
- 格式:ppt
- 大小:438.00 KB
- 文档页数:18
第3章电路的过渡过程及换路定律本书此前所讨论的电路,不论是直流还是交流,电路的联接方式和参数值是不变的,电源的输出是恒定的或周期性变化的,电路中的各部分电压也是恒定的或周期性变化的。
电路的这种状态称之为稳定状态,简称稳态。
当电路接通、断开或电路各元件的参数变化时,电路中的电压、电流等都在发生改变,从原来的稳定状态变化到另一个新的稳定状态,这个过程称过渡过程。
它不能瞬间完成,需要一定的时间(尽管往往是极短暂的),又称暂态过程。
电路在过渡过程中的工作状态称暂态。
3.1 过渡过程的产生与换路定律3.1.1.电路中产生过渡过程的原因电路中之所以出现过渡过程,是因为电路中有电感、电容这类储能元件的存在。
图3-1(a)中,当接通电源的瞬间,电容C两端的电压并不能即刻达到稳定值U,而是有一个从合闸前的u C=0逐渐增大到u C=U(见图3-1(b))的过渡过程。
否则,合闸后的电压将有跃变,电容电流i C=Cdu/dt将为无穷大,这是不可能的。
图3-1 RC串联电路同样,对于电感电路,图3-2( a)中,当电源接通后,电路的电流也不可能立即跃变到U/R,而是从i L=0逐渐增大到i L=U/R(见图3-2(b))这样一个过渡过程。
否则,电感内产生的感生电动势e L=-Ldi/dt将为无穷大,也是不可能的。
图3-2 RL串联电路过渡过程产生的实质是由于电感、电容元件是储能元件,能量的变化是逐渐的,不能发生突变,需要一个过程。
而电容元件储有的电场能W C =C 2/2C u ,电感元件储有的磁场能W L =L 2/2Li ,所以电容两端电压u C 和通过电感的电流i L 只能是连续变化的。
因为能量的存储和释放需要一个过程,所以有电容或电感的电路存在过渡过程。
产生过渡过程的内因:电路中存在储能元件 ,C L u i ;外因:电路出现换路时,储能元件能量发生变化。
3.1.2.换路定律电路工作状态的改变如电路的接通、断开、短路、改路及电路元件参数值发生变化等,称换路。
RL电路的过渡过程过渡过程是指从一个稳态状态到另一个稳态状态的中间过程。
在RL 电路中,R代表电阻,L代表电感,过渡过程是指当电路中的电流或电压发生变化时,电阻和电感之间的相互作用导致电路中电流或电压逐渐向新的稳态状态变化的过程。
在RL电路中,当电压源或电流源发生突变时,电感上的电压和电流以及电阻中的电流和电压会逐渐的变化直到最终达到新的稳态。
这个过程可以通过欧姆定律和基尔霍夫电压定律来进行分析和计算。
当电压源突然变化时,电感中的电流发生变化。
根据欧姆定律和基尔霍夫电压定律,电流变化会导致电感中的电压也发生变化。
由于电感的特性,电流的变化是缓慢的,因此电感中的电压也是缓慢变化的。
电流和电压的变化服从指数函数的规律,其具体形式取决于电路中的电阻和电感的数值。
过渡过程可以分为两个阶段:自由响应和强迫响应。
自由响应是指在没有外加电源情况下,电路中的电感和电阻之间的相互作用导致的电流或电压的变化。
在自由响应阶段,电流和电压的变化是由电感的特性决定的。
根据基尔霍夫电压定律和欧姆定律可以得到自由响应的微分方程。
将这个微分方程带入求解,可以得到电流和电压随时间的变化规律。
强迫响应是指在有外加电源情况下,电路中的电感和电阻之间的相互作用导致的电流或电压的变化。
在强迫响应阶段,外加电源的作用使得电流和电压的变化更加复杂。
强迫响应可以通过将外加电源视为输入信号,将电感和电阻视为系统响应,应用输入输出关系进行分析。
在整个过渡过程中,电感中的电流和电压的变化逐渐减小,最终达到新的稳态。
这个过程的时间取决于电路中的电感和电阻的数值,以及外加电源变化的速度。
通过计算和模拟可以得到过渡过程的详细特性。
总之,RL电路的过渡过程是指从一个稳态到另一个稳态之间的中间过程,其中电流和电压的变化是由电感和电阻之间的相互作用导致的。
过渡过程可以分为自由响应和强迫响应两个阶段,并且最终会达到新的稳态。
通过分析欧姆定律和基尔霍夫电压定律,可以得到过渡过程的微分方程并进行求解。