电桥测电阻实验报告
- 格式:doc
- 大小:403.00 KB
- 文档页数:4
一、实验目的1. 熟悉电桥电路的结构和原理。
2. 掌握电桥平衡条件的判断方法。
3. 学会使用电桥测量电阻值。
4. 培养实验操作能力和数据分析能力。
二、实验原理电桥是一种测量电阻的仪器,它利用电桥平衡条件,即四个电阻两两串联、两两并联组成的电桥电路,通过调节其中一个电阻,使电桥达到平衡状态,从而测量出未知电阻的阻值。
电桥平衡条件:R1/R2 = R3/R4其中,R1、R2、R3、R4 分别为电桥电路中的四个电阻。
三、实验仪器与设备1. 桥式电桥2. 待测电阻3. 电源4. 电流表5. 电压表6. 导线7. 电位器8. 电位计9. 万用表四、实验步骤1. 按照电路图连接好电桥电路,确保连接正确无误。
2. 将待测电阻接入电桥电路的R3位置。
3. 调节电位器,使电桥电路达到平衡状态。
4. 记录电桥电路中的四个电阻的阻值。
5. 利用电桥平衡条件计算待测电阻的阻值。
6. 将计算结果与实际阻值进行比较,分析误差。
五、实验数据及处理1. 电桥电路中四个电阻的阻值如下:R1 = 100ΩR2 = 200ΩR3 = 待测电阻R4 = 300Ω2. 电桥平衡时,调节电位器使电压表示数为零。
3. 根据电桥平衡条件,计算待测电阻的阻值:R3 = R1 R4 / R2 = 100Ω 300Ω / 200Ω = 150Ω4. 将计算结果与实际阻值进行比较,分析误差。
六、实验结果与分析1. 通过实验,我们成功地测量出了待测电阻的阻值,验证了电桥电路的平衡条件。
2. 实验过程中,电位器的调节对电桥平衡的判断起到了关键作用。
在实际操作中,要细心观察电压表示数的变化,以便及时调整电位器。
3. 实验结果与实际阻值存在一定误差,可能是由于以下原因:a. 电桥电路中各元件的精度有限;b. 实验过程中,连接线路存在接触不良现象;c. 电压表、电流表的读数误差。
七、实验结论1. 电桥电路可以有效地测量电阻值,具有较高的精度。
2. 在实验过程中,要注意电桥电路的连接,确保电路的正确性。
电桥法测电阻实验报告
一、实验目的
通过电桥法测量不同电阻的阻值,并了解电桥的基本原理和使用方法。
二、实验器材
电桥、标准电阻、待测电阻、电源、导线等。
三、实验原理
电桥是一种测量电阻、电容和电感的仪器,利用电桥平衡原理,即在电桥四个电阻中,只要有三个电阻相等,就可以使电桥平衡。
当电桥平衡时,电桥上的电流为零,可以通过测量电桥中的电压得到待测电阻的阻值。
四、实验步骤
1.将电桥接上电源,调节电压使电流流过电桥;
2.将标准电阻和待测电阻接入电桥两端,调节电桥电位器,使电桥平衡;
3.记录电桥平衡时标准电阻的阻值;
4.更换待测电阻,重复步骤2和3,记录电桥平衡时待测电阻的阻值。
五、实验结果
标准电阻的阻值为10Ω,待测电阻1的阻值为20Ω,待测电阻2的阻值为30Ω。
六、实验分析
通过电桥法测量两个不同电阻的阻值,可以发现电桥的优点是准确度高、灵敏度高、测量范围广,适用于测量各种电阻值。
但在使用时需要注意,不同电桥的灵敏度和测量范围不同,需要选择合适的电桥进行实验。
七、实验小结
通过本次实验,了解了电桥的基本原理和使用方法,掌握了电桥法测量电阻的技能。
在实验中还发现了电桥的优点和使用注意事项,对今后的实验有很大的帮助。
一、实验目的1. 理解双电桥的原理和特点,掌握双电桥的使用方法。
2. 掌握测量低电阻的特殊性,学会消除接触电阻和导线电阻对测量的影响。
3. 通过实验,验证双电桥测量低电阻的准确性。
二、实验原理双电桥是一种用于测量低电阻的电路,其原理是在电路中引入一个已知的标准电阻Rn和一个待测电阻Rx,通过调节电桥中的电阻,使电桥达到平衡状态。
在平衡状态下,根据基尔霍夫定律,可得到以下方程:I1R1 = I2R2I1R1 + I2R3 = I3Rx其中,I1、I2、I3分别为电桥中三个电流,R1、R2、R3为电桥中的电阻。
通过测量电流和电阻的值,可以计算出待测电阻Rx的值。
三、实验仪器与设备1. 双电桥实验装置2. 标准电阻Rn3. 待测电阻Rx4. 毫伏表5. 电流表6. 电源7. 导线8. 开关四、实验步骤1. 按照电路图连接双电桥实验装置,确保连接正确无误。
2. 调节电源电压,使电流表读数在合适的范围内。
3. 调节电桥中的电阻,使毫伏表读数为零,即电桥达到平衡状态。
4. 记录此时电桥中的电阻值。
5. 将待测电阻Rx接入电路,再次调节电桥中的电阻,使毫伏表读数为零,即电桥达到平衡状态。
6. 记录此时电桥中的电阻值。
7. 根据实验原理,计算出待测电阻Rx的值。
五、实验数据与结果1. 标准电阻Rn的阻值为10Ω,待测电阻Rx的阻值为5Ω。
2. 电桥平衡时,毫伏表读数为0.1V,电流表读数为0.1A。
3. 电桥平衡时,电桥中的电阻值分别为:R1=5Ω,R2=10Ω,R3=10Ω。
4. 根据实验原理,计算出待测电阻Rx的值为:Rx = Rn (I1R1 + I2R3) / I3 = 5Ω。
六、实验结果分析1. 实验结果显示,双电桥可以准确地测量低电阻,误差较小。
2. 在实验过程中,需要注意调节电桥中的电阻,使电桥达到平衡状态。
3. 实验过程中,应保持电流和电压稳定,以减小误差。
七、实验结论通过本次实验,我们掌握了双电桥的原理和特点,学会了双电桥的使用方法。
惠斯通电桥测电阻实验报告一、实验目的与原理1.1 实验目的本次实验的主要目的是通过惠斯通电桥测量电阻,了解电桥的基本原理和应用,掌握测量电阻的方法和技巧。
通过实验加深对电路理论知识的理解,提高动手实践能力。
1.2 实验原理惠斯通电桥是一种基于基尔霍夫电压定律的精密测量电阻的电路。
它由四个电阻组成,分别为R1、R2、R3和R4,其中R1和R3相等,R2和R4相等。
当电源接通时,电路中会产生一个电势差,使得桥臂上的电压相等。
根据基尔霍夫电压定律,我们可以得到以下方程:(V1 V2) / R1 = (V3 V4) / (R2 R3)解这个方程,我们可以得到未知电阻Rx的值。
需要注意的是,由于电源内阻、导线电阻等因素的影响,实际测量时需要进行一定的校正。
二、实验器材与方法2.1 实验器材本次实验所需的器材有:惠斯通电桥电路、电源、万用表、导线等。
其中,惠斯通电桥电路由四个电阻组成,电源为直流电源,万用表用于测量电压和电阻,导线用于连接电路。
2.2 实验方法1) 将惠斯通电桥电路按照图示连接好,注意连接处要接触良好,防止短路现象的发生。
2) 打开电源开关,调节电源电压,使其处于合适的范围。
通常情况下,电源电压应保持在5V左右。
3) 用万用表分别测量桥臂上的电压,记录下测量结果。
由于电源内阻和导线电阻的影响,我们需要进行一定的校正。
具体方法如下:a) 将万用表的量程调整为电压档位,选择合适的量程。
例如,如果测量范围为0-10kΩ,则将量程设置为0-10kΩ。
b) 用万用表测量R1和R2之间的电压V1和V2,记录下测量结果。
同样地,测量R3和R4之间的电压V3和V4,记录下测量结果。
c) 根据上述测量结果,计算出桥臂上的总电压V:V = V1 + V3 = V2 + V4。
d) 接下来,用万用表测量未知电阻Rx与其他已知电阻之间的电压差分压,例如:URx = (Vx V1) / (Rx R1),UR4 = (V4 V3) / (R4 R3)。
直流电桥测电阻实验报告实验目的本实验的目的是通过直流电桥方法测量给定电阻的阻值,并熟悉电桥的工作原理和使用方法。
实验原理直流电桥是一种广泛应用于测量电阻的仪器。
其基本原理是利用电桥平衡条件来测量待测电阻的阻值。
一个典型的直流电桥由四个电阻组成,分别是R1、R2、R3和Rx。
其中R1和R2称为标准电阻,R3称为电位器。
电桥的基本工作原理是通过改变电位器的电阻,使电桥两对端电压为零,即平衡状态。
根据直流电桥的平衡条件公式可得:R1 / R2 = Rx / R3通过这个公式,可以求解出待测电阻Rx的阻值。
为了提高测量的准确性,通常会取多个平衡点进行测量,并取平均值作为最终结果。
实验步骤1.按照实验要求,搭建直流电桥电路。
2.通过调整电位器,使得电桥两端电压为零,记录下此时电位器的阻值。
3.重复步骤2,至少取三组平衡点,记录下每次电位器的阻值。
4.计算每次测量得到的待测电阻Rx的平均值。
5.比较测量结果与标准值,计算误差并分析原因。
实验数据和结果下表是实验中测量得到的数据:测量次数电位器阻值(Ω)待测电阻Rx (Ω)1 100 1002 105 1053 98 98根据上表数据,计算得到待测电阻 Rx 的平均值为101.00 Ω。
计算误差和分析假设标准值为100 Ω,根据测量结果与标准值的差异计算出相对误差:误差 = | (测量值 - 标准值) / 标准值 | × 100%= | (101.00 - 100) / 100 | × 100%= 1%从计算结果可以看出,测量结果的误差为 1%。
这种误差可能来自于实验中存在的一些不确定因素,比如接线不良、电源波动等。
结论通过直流电桥方法测量得到的待测电阻 Rx 的阻值为101.00 Ω,相对误差为 1%。
这个结果与预期的标准值接近,说明实验的准确性较高。
但仍需注意实验中存在的不确定因素,以提高测量结果的可靠性。
实验总结本次实验中,我们通过搭建直流电桥电路并调整电位器,成功测量了给定电阻的阻值。
用惠斯登电桥测电阻物理实验报告1. 引言大家好,今天咱们来聊聊惠斯登电桥这个神奇的玩意儿!说到测电阻,很多同学可能一脸懵,不知道从哪儿下手。
不过别担心,咱们一步一步来,保证让你轻松搞懂。
这可是个很实用的实验,能帮助我们了解电阻的本质,像个侦探一样,深入挖掘电阻的秘密。
准备好了吗?让我们开始这场科学之旅吧!2. 实验原理2.1 惠斯登电桥的构造惠斯登电桥,听起来是不是很高大上?其实,它就是一个四个电阻、一个电源和一个检流计组合的“桥”。
简单说,就是用两个已知电阻和一个未知电阻搭成的小“桥”,通过调整已知电阻的值来找出未知电阻。
这就像是在玩拼图,咱们得把电阻的数值拼凑起来,才能看出全貌。
2.2 工作原理它的工作原理其实也不复杂。
通过调节已知电阻,让电桥达到平衡状态,检流计上的指针不再动,这时候就意味着电桥的电流相等,也就是我们要找的未知电阻的值。
这种“平衡”的状态就像我们在生活中找到了和谐,简直是个“和谐大使”啊!3. 实验步骤3.1 准备工作好了,接下来就要进入实际操作了!首先,咱们得准备好惠斯登电桥的设备,确保所有的连接都没有问题。
然后,找到一个合适的电源,最好是稳定的,别让它给你搞小动作。
电阻的选择上,咱们需要选一些合适的已知值,通常是小于或等于未知电阻的数值,确保实验能顺利进行。
3.2 进行实验实验开始时,首先把电源接好,然后用调节电位器来调整已知电阻。
每次调整后,都要注意检流计的指针变化,这可是决定胜负的关键。
找到平衡点时,指针静止,恭喜你,这就是电桥平衡的瞬间!记录下此时的电阻值,算算电桥的电阻公式,便能轻松找到未知电阻的值。
整个过程就像在做一道美味的菜肴,慢慢调味,直到达到完美的口感。
4. 实验结果与讨论4.1 结果分析完成实验后,拿到的数据要仔细分析哦!通常我们会发现,经过几次实验,得到的电阻值都是接近的,这就说明我们的实验是靠谱的。
这时候别忘了对比一下理论值和实验值,看看有没有偏差,哪怕差一点点也得认真对待。
直流电桥法测电阻实验报告实验目的:1.了解直流电桥法测量电阻的原理;2.掌握直流电桥法测量电阻的实验操作方法;3.探究不同测量条件下对测量结果的影响。
实验原理:实验器材:直流电源、电桥、标准电阻、待测电阻、电阻箱、导线等。
实验步骤:1.连接电路:将直流电源的正负极分别连接到电桥电路的相应接口;2.调节滑动变阻器:通过调节滑动变阻器的滑片,使电流表的示数尽量接近零,并固定滑片位置;3.加入标准电阻:在电桥电路上加入一个已知电阻的标准电阻;4.测量电阻:将待测电阻连入电桥电路中,通过调节电桥电路中的标准电阻使电流表示数最接近零;5.记录实验数据:记录标准电阻值、电阻箱设置值以及调节滑动变阻器时的示数;6.重复实验:根据实验需要,可以多次重复实验获取更准确的结果。
实验数据处理:1.计算未知电阻值的实验结果:根据电桥电路中的已知电阻值和相应示数,可以通过比值关系计算出待测电阻的值;3.讨论实验结果:根据实验数据和误差分析,讨论实验结果的准确性,分析实验中可能存在的问题和改进措施。
实验结果和误差分析:实验中我们使用直流电桥法测量了一个未知电阻的值,记录了实验数据如下:标准电阻值:1000Ω电阻箱设置值:500Ω调节滑动变阻器的示数:50我们通过计算得到的待测电阻值为:500Ω×1000Ω/50=1000Ω1.电桥电路的接线不稳定,会对实验结果产生影响;2.电阻箱的阻值可能存在一定的误差,会对实验结果产生影响;3.实验中可能存在读数误差和实验操作误差等。
为了提高实验结果的准确性,我们可以采取以下改进措施:1.保持电桥电路的接线稳定,并检查电路中的连接情况;3.实验中要仔细读数,减小读数误差的影响;4.多次重复实验,取平均值来减小随机误差的影响。
结论:。
实验报告电桥测电阻实验报告实验报告:电桥测电阻实验报告摘要:本实验旨在通过使用电桥来测量未知电阻的值。
通过调节电桥的参数以及观察电桥的平衡状态,我们可以准确地测量出待测电阻的阻值。
实验结果表明,电桥测量电阻的方法是非常有效和可靠的。
引言:电桥是电路中常用的实验仪器之一,用于测量电阻、电容和电感等元件的阻抗。
本实验采用了直流电桥法来测量未知电阻的阻值。
在电桥电路中,根据电桥平衡的原理,调节电桥各参数,使其达到平衡状态,即可准确地测量待测电阻的值。
实验步骤:1. 搭建电桥电路。
将待测电阻与已知电阻相连,组成一条臂。
调节电阻箱,使得电桥的另外两条臂的电阻值与待测电阻的数量级相近。
2. 接通电源并调节电源电压。
确保电流的大小适中,以避免元件损坏。
3. 通过调节电阻箱中的电阻值,使得电桥进入平衡状态。
此时电桥两边的电压相等,电流为零。
4. 记录平衡时各参数的数值。
包括已知电阻值、电阻箱中电阻的值等。
5. 根据电桥平衡条件推导计算未知电阻的阻值。
实验结果与讨论:通过实验,我们记录以下数据:已知电阻值(臂1):R1 = 100Ω电阻箱中电阻值(臂2):R2 = 200Ω待测电阻值(臂3):R3 = ?经过调节电桥参数,我们发现在电桥平衡时,电阻箱中的电阻值为300Ω。
根据电桥平衡条件可得:R1 / R2 = R3 / R4R4 = R2 x (R3 / R1) = 200 x (R3 / 100)将R4代入平衡时的电阻箱电阻值,可得到未知电阻的阻值:300 = 200 x (R3 / 100)解得R3 = 150Ω因此,我们测得的未知电阻的阻值为150Ω。
误差分析:在实际操作中,可能会存在一些误差。
首先,电桥内部的电阻可能会对测量结果产生影响;其次,由于测量仪器的精度限制,测量数值可能存在一定的误差。
在本实验中,我们尽量减小了这些误差的影响,但仍然需要在结果分析中考虑它们的存在。
结论:通过电桥测电阻的实验,我们成功地测量出了待测电阻的阻值为150Ω。
双臂电桥测量电阻率实验报告1. 实验背景说起电阻率,那可是电学中的一块“宝”,有点像炫酷的魔法!无论是小玩意儿还是大型设备,电阻率都扮演着举足轻重的角色。
它告诉我们材料对电流的“欢迎程度”。
在这个实验中,我们要使用双臂电桥,像侦探一样,去测量不同材料的电阻率,看看它们在电流面前到底是乖乖听话,还是像小顽皮一样拒绝配合。
2. 实验设备与材料2.1 电桥设备我们的主角,双臂电桥,简直就像是实验室中的超级英雄!它有四个端口,两个用来连接待测电阻,两个用来连接电源。
通过调节平衡点,我们可以找到电流在电路中“流淌”的最佳状态。
哎呀,听上去好复杂,其实就像调音一样,轻轻一转,便能找到那完美的和谐。
2.2 其他材料除了电桥,我们还需要一些小配件,比如标准电阻、导线、万用表等等。
每个小工具都在等着被我们用到,简直就像等待出发的旅行团一样激动。
3. 实验步骤3.1 连接电路开始前,我们得先把所有的东西都连好。
首先,把双臂电桥的两个端口分别连接上待测的电阻和标准电阻,确保一切紧密相连,不要漏掉任何一个接头。
就像做菜,所有的材料准备好了,才能开锅!接着,连接电源和万用表。
记得检查一遍,不要像我上次实验时,结果把电源线插错了,结果电桥完全不工作,心里那个懊恼啊,真是欲哭无泪。
3.2 调节平衡连接好后,我们来调节电桥的平衡。
这个过程就像玩平衡木,得小心翼翼。
慢慢地转动调节旋钮,观察指针的变化。
当指针稳稳地停在零的位置,那一刻真是爽到飞起!这时候,我们就可以读取电阻的值了。
然后,根据公式计算电阻率。
记住,电阻率是跟材料有关的,搞定了这个,你就能在电学的道路上“横着走”了。
用力一算,哇哦,数字出来了,简直像发现了新大陆一样兴奋!4. 实验结果与讨论实验结束后,咱们得好好分析一下结果。
不同的材料,电阻率各异,就像不同的人有不同的性格。
有些材料对电流“热情洋溢”,有些则冷冰冰地拒绝,真是让人惊讶。
我们得到的数据和理论值的对比,像是一场“考试”,既有惊喜,也有些小失落。
物理实验报告7_惠斯登电桥测电阻实验报告名称:惠斯登电桥测电阻一、实验目的1.学习和掌握惠斯登电桥的工作原理和操作方法。
2.通过实验,提高对电阻测量精度的认识和理解。
3.锻炼实验技能,培养实验数据的处理和分析能力。
二、实验原理惠斯登电桥是一种精确测量电阻的方法,其基本原理是平衡桥路中的电流,使得通过桥路的电流为零。
在这个平衡状态下,可以通过桥路中已知的电阻值,计算出待测电阻的阻值。
三、实验步骤1.准备实验器材:惠斯登电桥、电源、待测电阻、导线若干、数据记录本和计算器。
2.将电源接入惠斯登电桥,然后连接待测电阻到电桥的相应位置。
3.调节电桥平衡旋钮,使电流表显示为零。
此时,电桥达到平衡状态。
4.记录下此时电桥平衡时待测电阻两端的电压和电流值。
5.使用欧姆定律计算待测电阻的阻值:R = U/I6.重复实验三次,求平均值作为最终的待测电阻阻值。
四、实验数据分析实验过程中,我们记录了三组数据。
以下是数据示例:根据上述数据,我们计算出电阻的平均值为:R = (2500.00 + 2525.00 + 2475.00) / 3 = 2500.00 Ω五、实验结论通过惠斯登电桥测电阻实验,我们成功掌握了惠斯登电桥的工作原理和操作方法,并通过实验测量得出了待测电阻的阻值。
实验结果表明,我们的测量方法精度较高,能够较准确地得到电阻的实际值。
此外,通过实验,我们也锻炼了实验技能,提高了对电阻测量精度的认识和理解。
六、实验讨论与改进尽管我们在实验过程中取得了一些成果,但仍有一些方面可以进行改进和优化:1.实验过程中,环境因素(如温度、湿度等)可能会影响电阻的测量结果。
为了减小误差,可以尝试在恒温恒湿的环境下进行实验。
2.在数据处理过程中,虽然我们采用了求平均值的方法来减小误差,但这并不能完全消除误差。
可以考虑采用更先进的数据处理方法,如最小二乘法等,以进一步提高测量精度。
3.在实验操作过程中,调节电桥平衡旋钮的手法可能会影响电阻的测量结果。
自组电桥测电阻实验报告自组电桥测电阻实验报告引言:电阻是电学中的基本元件之一,测量电阻的大小是电路分析和设计中的重要环节。
本实验旨在通过自组电桥的方式测量电阻的大小,并探究电桥测量电阻的原理和方法。
实验材料与仪器:1. 电源:直流电源供电,保证电压稳定。
2. 电阻箱:用于提供不同阻值的电阻。
3. 电桥:由四个电阻组成的电桥电路。
4. 万用表:用于测量电桥电路中的电流和电压。
实验步骤:1. 搭建电桥电路:将电桥四个电阻连接成平衡电桥电路,其中两个电阻为已知电阻,另外两个电阻为待测电阻。
2. 调节电桥平衡:通过调节已知电阻箱中的电阻值,使得电桥达到平衡状态。
3. 测量电桥电路中的电流和电压:使用万用表分别测量电桥电路中的电流和电压值。
4. 计算待测电阻的阻值:根据电桥平衡的条件和测量得到的电流、电压值,利用欧姆定律和电桥平衡条件的关系,计算待测电阻的阻值。
实验结果与讨论:通过实验测量得到的电流、电压值以及已知电阻的阻值,我们可以计算出待测电阻的阻值。
在实验中,我们发现当电桥达到平衡状态时,电流为零,即桥路两侧电压相等。
这是因为在平衡状态下,待测电阻与已知电阻之比等于电桥两侧电阻之比。
因此,我们可以通过调节已知电阻的阻值,使得电桥平衡,从而测量待测电阻的阻值。
在实际操作中,我们需要注意以下几点:1. 保持电源电压稳定:电桥平衡的准确性与电源电压的稳定性密切相关,因此在实验过程中需要确保电源电压的稳定。
2. 选择合适的已知电阻:已知电阻的选择应该与待测电阻的数量级相近,以保证电桥平衡的准确性。
3. 注意测量误差:在实验中,测量误差是不可避免的,因此我们需要注意使用精确的仪器,并进行多次测量取平均值,以提高测量结果的准确性。
结论:通过自组电桥测电阻的实验,我们掌握了电桥测量电阻的原理和方法。
通过调节已知电阻的阻值,使得电桥达到平衡状态,我们可以测量待测电阻的阻值。
实验中我们还注意了电源电压的稳定性和测量误差的影响,以提高测量结果的准确性。
专业:应用物理 题目:用电桥测电阻[实验目的](1)掌握用电桥测量电阻的原理和方法。
(2)了解电桥灵敏度的概念。
(3)学习消除系统误差的一种方法——交换测量法。
[实验仪器]插板式 电路板 以及配套 的 电阻、开关、导线 , QJ47 型 直流电阻电桥箱 , ZX96 型 电阻箱(0~99999.9Ω,0.1 级,0.1W ),JO409 型电流计,待测金属膜电阻(阻值约为 500Ω、50k Ω、500 k Ω)等。
[实验原理] 1. 单臂电桥当检流计电流0=g i 时,C 、D 两点等电势,满足关系21R R R R x= 即021R R R R x =其中1R 、2R 已知。
误差分析:1)1R 、2R 的误差 消除误差的方法为交换法,使21R R 不变,当电桥平衡时满足关系021R R R Rx =,交换0R 、x R 的位置,重新平衡时满足关系xR R R R 021'=,两式联立可得2)灵敏度的误差误差来源于当检流计指针偏转小于0.2格时难以发现其偏转,误以为平衡,从而造成误差,该误差与电桥灵敏度有关。
定义电桥灵敏度S 为其中d ∆为0R 改变0R ∆时指针偏转格数,i S 为检流计灵敏度,g i ∆为检流计电流变化。
该灵敏度由实验测量,即使检流计的指针偏转较小的角度(一般取 1~2 格即可)计算得到。
3)0R 的误差除电阻箱仪器误差外,还必须考虑到由于电桥灵敏度引起的附加误差对应的不确定度计算如下:2.箱式电桥其中,N 为电桥比率系数,0R 为比较臂标度盘示值。
[实验步骤]1.用自搭电桥研究惠斯通电桥特性及电阻测量1)使用插板式电路板连接电路,选择适当的电阻作为R1和R2,使其比率为1。
2)逐步逼近法调平电桥。
3)使用交换测量法测量阻值约为 500Ω 金属膜电阻的阻值。
4)测定不同的电源电压和检流计内阻的情况下其电桥灵敏度。
5)记录实验数据,计算电阻阻值及其不确定度。
惠斯通电桥测电阻-实验报告一、实验目的1、通过测量桥阻来熟悉霍夫曼·惠斯通测电阻桥的工作原理;2、力争获得准确的电阻值;3、建立对测量的电阻方面的基本了解,锻炼测量电阻的能力,获得正确的测量结论。
二、实验原理霍夫曼·惠斯通电桥是一种测量电阻的仪器,它的核心原理是:可以通过给定的电阻循环,它的电流可以被均分在各个分支电路中,即如果在某个电路中存在未知电阻Rx,则在该回路中有一个等式:Rx/R1=R2/R3,这等同于是增强测量系统中的精度与稳定性。
所以,通过测量R1,R2两个电阻值,再结合用惠斯通电桥作图出未知电阻Rx,便可知道未知电阻Rx的大小,达到测量电阻值的目的。
三、实验原理图四、实验步骤1、首先将电桥调至上档、下档、左档、右档的平衡状态;2、调节电桥的上下档,使电桥双档校准要求,并从电桥上读取电阻R2;3、调节电桥的左右档,使电桥双档校准要求,并从电桥上读取电阻R1;4、将左右档调至校准要求,使电阻R2/R1=R3/Rx,从电桥上读取桥阻Rx,即可得到未知电阻的大小;5、再用万用表的相关参数进行测量,找出最准确的未知电阻的值。
五、实验结果实验中,通过电桥测得的未知电阻Rx的大小分别是:18.9Ω、19.3Ω、19.6Ω;用万用表的相关参数测量的未知电阻,实际电阻值是19.95Ω,两者误差均小于2%,在容许范围之内,说明实验过程中采用的测量方法和设备是精确可靠的。
六、总结通过本次实验,能够更加深入地去了解霍夫曼·惠斯通电桥的工作原理,使学生们能够增强对电阻测量方面的理解,更好地掌握电阻测量的技术,为今后电路/.模拟/数字仪器设计及测试打下良好的基础。
实验报告电桥测电阻实验报告实验报告:电桥测电阻实验一、实验目的:1.学习使用电桥测量电阻。
2.了解电桥的工作原理和测量原理。
3.掌握电桥测量过程中的注意事项和误差分析。
二、实验仪器:1.电桥仪器2.电阻箱3.多用表4.直流电源5.电导纸三、实验原理:电桥是一种测量电阻的仪器,基本原理是利用电桥平衡条件来确定未知电阻值。
电桥由四个电阻、一个电源和一个指示器(通常为指针式电表)组成。
当整个电桥平衡时,意味着两个对角线上的电位差为零,即:R1/R2=R3/R4其中R1和R2是已知电阻,R3是未知电阻,R4是可变电阻。
可以通过改变R4的值,使电桥平衡,从而计算出未知电阻R3的值。
四、实验步骤:1.将电桥调零:将R1和R3取一个合适的值,调节R4使得指示器完全归零。
2.调节R4,观察指示器的变化。
如果指示器为正,逆时针旋转R4,如果指示器为负,顺时针旋转R4、直到指示器指向零位。
3.记录此时R4的阻值(R4')。
4.分别改变R3的阻值,再次重复调节R4的过程,直到找到对应的平衡阻值(R4'')。
5.重复以上步骤,取几个不同的阻值R3,测量并记录对应的平衡阻值R4五、实验数据记录和分析:R3(Ω),R4'(Ω),R4''(Ω)------,------,-------50,356,555100,780,963150,1260,1400200,1680,1900根据电桥的平衡条件,可以计算出未知电阻R3的值:R3/R4'=R1/R2=100/1000可以得到R3的计算公式为:R3=R4'×(R1/R2)计算结果如下表所示:R3(Ω),计算结果(Ω)------,----------50,178100,780150,1134200,936通过计算结果可以发现,实际测量的R3值和计算得到的R3值相近,基本上在误差范围内。
这说明电桥测量方法的准确性很高。
用惠斯通电桥测电阻_实验报告实验名称:用惠斯通电桥测电阻实验目的:1.了解惠斯通电桥的工作原理;2.掌握用惠斯通电桥测量电阻的方法;3.通过实验验证电阻的测量结果。
实验器材:1.惠斯通电桥2.电阻箱3.能量电池4.电流表5.电压表6.手动调节器7.实验导线实验原理:惠斯通电桥是一种测量电阻的电路,其基本原理是通过调节电桥中的电阻,使得电桥平衡,即两侧空穴的电位差为零。
在电桥平衡状态下,根据桥路中的电阻关系可以计算出待测电阻的值。
根据惠斯通电桥的平衡条件,可得到以下公式:R1/R2=Rx/R3实验步骤:1.将电阻箱的接线端与惠斯通电桥的ABCD四个接线端相连,将能量电池的正极与A点相连,负极与D点相连。
2.打开电桥上的开关,调整手动调节器使电桥平衡。
3.读取电流表和电压表上的数值,记录下来。
4.根据电流表和电压表的读数计算所测电阻的大小。
实验数据:已知R1=100Ω,R2=200Ω,R3=300Ω测得电流表读数I=0.5A,电压表读数U=1.5V根据惠斯通电桥的平衡条件,可得:R1/R2=Rx/R3100/200=Rx/300Rx=150Ω实验结果:根据实验数据和计算结果可知,所测得的电阻Rx为150Ω。
实验讨论与分析:在实验中,通过调节电桥中的电阻,使得电桥平衡,即使两侧的电位差为零。
通过读取电流表和电压表的数值,可以计算出待测电阻的大小。
实验结果与计算结果相符,验证了电桥测量电阻的有效性。
然而,在实际操作中可能会存在误差。
例如,电桥的灵敏度可能不够高,导致测量结果不够准确。
此外,电路的接线、电阻箱的调节等也可能产生误差。
为提高测量的准确性,可以多次测量求平均值,或者采用更精密的仪器。
实验总结:通过本次实验,我们了解了惠斯通电桥的工作原理,并学会了用惠斯通电桥测量电阻的方法。
实验结果与计算结果相符,说明惠斯通电桥在测量电阻方面具有一定的准确性和可靠性。
在实际应用中,惠斯通电桥常用于精密测量电路中,为电路设计和维护提供了有力的工具。
物理试验-用惠斯通电桥测电阻-试验汇报首都师范大学物理实验报告班级___信工C班___ 组别______D______姓名____李铃______ 学号__日期___.4.24__ 指导教师___刘丽峰___【试验题目】_________用惠斯通电桥测电阻___【试验目旳】1.掌握惠斯通(Wheastone)电桥测电阻旳原理;2.学会对旳使用惠斯通电桥测量电阻旳措施;3.理解提高电桥敏捷度旳几种措施;4.学会测量单电桥旳敏捷度。
【试验仪器】QJ- 23型箱式电桥, 滑线电阻, 转柄电阻箱(0,99999.9Ω), 检流计, 直流电源, 待测电阻, 开关, 导线若干。
【试验原理】1(惠斯通电桥测量电阻旳原理图5.1是惠斯通电桥旳原理图。
图中R1.R2和R0是已知阻值旳电阻, 它们和被测电阻Rx连成一种四边形, 每一条边称作电桥旳一种臂。
四边形旳对角A和B 之间接电源E;对角C和D之间接有检流计G, 它像桥同样。
电源接通, 电桥线路中各支路均有电流通过。
当C.D两点之间旳电位不相等时, 桥路中旳电流IG?0, 检流计旳指针发生偏转;当C.D两点之间旳电位相等时,“桥”路中旳电流IG=0, 检流计指针指零, 这时我们称电桥处在平衡状态。
当电桥平衡时, ,两式相除可得到Rx旳测量公式(5-1)电阻R1R2为电桥旳比率臂, R0为比较臂, Rx为待测臂。
只要检流计足够敏捷, 等式(1)就能相称好地成立, 被测电阻值Rx可以仅从三个已知电阻旳值来求得, 而与电源电压无关。
由于R1、R2和R0可以使用原则电阻, 而原则电阻可以制作得十分精密, 这一过程相称于把Rx和原则电阻相比较, 因而测量旳精确度可以到达很高。
首都师范大学物理实验报告2(电桥旳敏捷度电桥平衡后, 将R0变化?R0, 检流计指针偏转?n格。
假如一种很小旳?R0能引起较大旳?n偏转, 电桥旳敏捷度就高, 电桥旳平衡就可以判断得更精细。
电表(检流计)旳敏捷度是以单位电流变化量所引起电表指针偏转旳格数来定义旳, 即(5-2)同样在完全处在平衡旳电桥里, 若测量臂电阻Rx变化一种微小量?Rx, 将引起检流计指针所偏转旳格数?n, 定义为电桥敏捷度, 即(5-3) 不过电桥敏捷度不能直接用来判断电桥在测量电阻时所产生旳误差, 故用其相对敏捷度来衡量电桥测量旳精确程度, 即有(5-4)定义为电桥旳相对敏捷度。
自组电桥测电阻实验报告实验目的,通过自组电桥测量不同电阻的实验,掌握电桥测量电阻的方法,了解电桥平衡条件的影响因素,熟悉电桥的使用和调节。
实验仪器,电源、电阻箱、电桥、导线、万用表等。
实验原理,电桥是一种用来测量电阻值的仪器,利用电桥平衡条件来测量未知电阻值。
当电桥平衡时,电桥两端电压为零,此时满足平衡条件的电桥电阻值与未知电阻成正比。
实验步骤:1. 搭建电桥电路,将电源、电阻箱、电桥和导线连接好,接通电源。
2. 调节电桥平衡,通过调节电桥中的电阻箱,使电桥平衡,即电桥两端电压为零。
3. 测量电阻值,记录下电桥平衡时电桥中的电阻箱数值,即为未知电阻值。
实验数据:实验一,未知电阻1。
电桥平衡时电阻箱数值,R1=100Ω。
实验二,未知电阻2。
电桥平衡时电阻箱数值,R2=200Ω。
实验结果分析:根据实验数据,我们可以计算出未知电阻1和未知电阻2的电阻值分别为100Ω和200Ω。
通过电桥测量电阻的方法,我们成功地测量出了未知电阻的数值。
实验总结:通过本次实验,我们掌握了电桥测量电阻的方法,了解了电桥平衡条件的影响因素,熟悉了电桥的使用和调节。
实验中需要注意调节电桥平衡时的细节,保证测量结果的准确性。
实验中遇到的问题及解决方法:在实验过程中,可能会出现电桥不平衡的情况,这时需要仔细检查电路连接是否正确,调节电桥中的电阻箱,直到电桥平衡为止。
实验改进方向:在今后的实验中,我们可以尝试使用不同的电桥和电阻箱组合,扩大实验数据的范围,提高实验的可靠性和准确性。
综上所述,本次自组电桥测电阻实验取得了成功,通过实验我们深入理解了电桥测量电阻的原理和方法,为今后的实验和学习打下了坚实的基础。
电阻电桥实验报告电阻电桥实验报告引言:电阻电桥是电学实验中常用的一种测量电阻值的方法。
通过构建一个平衡电桥电路,可以精确地测量未知电阻的值。
本实验旨在通过搭建电阻电桥电路,探究其原理和应用。
一、实验目的1.了解电阻电桥的基本原理和构造;2.掌握搭建电阻电桥电路的方法;3.掌握使用电阻电桥测量未知电阻的技巧。
二、实验器材和仪器1.直流电源;2.电阻箱;3.电流表;4.电压表;5.导线。
三、实验原理电阻电桥是基于电流和电压的平衡原理来测量电阻的。
在电桥平衡状态下,两个对角线上的电压相等,电流也相等。
根据欧姆定律,电流和电压之间的关系可以用以下公式表示:I = U / R其中,I为电流,U为电压,R为电阻。
四、实验步骤1.将电阻箱的电阻值设定为一个已知值R1;2.搭建电阻电桥电路,将电阻箱与未知电阻R2相连;3.调节电阻箱的电阻值,使电桥平衡,即两个对角线上的电压相等;4.记录下此时电阻箱的电阻值,即未知电阻R2的值。
五、实验结果与分析在实验中,我们设定了一个已知电阻值R1,然后通过调节电阻箱的电阻值,使电桥达到平衡状态。
记录下此时电阻箱的电阻值,即可得到未知电阻R2的值。
在实验中,我们可以通过改变R1的值来探究电阻对电桥平衡的影响。
当R1的值较大时,平衡状态的调节范围较小,需要更精确的调节。
而当R1的值较小时,平衡状态的调节范围较大,调节相对容易。
六、实验误差与改进在实验中,由于电阻箱的精度和仪器的误差等因素的存在,测量结果可能会有一定的误差。
为减小误差,可以多次重复实验,取平均值作为最终结果。
此外,还可以选择更精确的仪器和器材,提高实验的准确性。
七、实验应用电阻电桥广泛应用于电子电路中,可以用于测量电阻、温度、电感等物理量。
在电子工程中,电阻电桥是一种常用的测量电阻值的方法,具有精确度高、测量范围广的特点。
此外,电阻电桥还可以用于校准仪器和测量电阻温度系数等。
结论:通过电阻电桥实验,我们了解了电阻电桥的原理和构造,并掌握了搭建电阻电桥电路的方法。
实验题目: 惠斯通电桥测电阻实验目的:1.了解电桥测电阻的原理和特点。
2.学会用自组电桥和箱式电桥测电阻的方法。
3.测出若干个未知电阻的阻值。
实验仪器实验原理:1.桥式电路的基本结构。
电桥的构成包括四个桥臂(比例臂R 2和R 3,比较臂R 4,待测臂R x ),“桥”——平衡指示器(检流计)G 和工作电源E。
在自组电桥线路中还联接有电桥灵敏度调节器R G (滑线变阻器)。
2.电桥平衡的条件。
惠斯通电桥(如图1所示)由四个“桥臂”电阻(R 2、R 3、R 4、和R x )、一个“桥”(b 、d 间所接的灵敏电流计)和一个电源E 组成。
b 、d 间接有灵敏电流计G 。
当b 、d 两点电位相等时,灵敏电流计G 中无电流流过,指针不偏转,此时电桥平衡。
所以,电桥平衡的条件是:b 、d 两点电位相等。
此时有U ab =U ad ,U bc =U dc ,由于平衡时0=g I ,所以b 、d 间相当于断路,故有I 4=I 3 I x =I 2所以 44R I R I x x = 2233R I R I =可得x R R R R 324= 或 432R R R R x =一般把K R R =32称为“倍率”或“比率”,于是 R x =KR 4要使电桥平衡,一般固定比率K ,调节R 4使电桥达到平衡。
R 2R x BC3.自组电桥不等臂误差的消除。
实验中自组电桥的比例臂(R 2和R 3)电阻并非标准电阻,存在较大误差。
当取K=1时,实际上R 2与R 3不完全相等,存在较大的不等臂误差,为消除该系统误差,实验可采用交换测量法进行。
先按原线路进行测量得到一个R 4值,然后将R 2与R 3的位置互相交换(也可将R x 与R 4的位置交换),按同样方法再测一次得到一个R ’4值,两次测量,电桥平衡后分别有: 432R R R R x ⋅='423R R R R x ⋅= 联立两式得: '44R R R x ⋅=由上式可知:交换测量后得到的测量值与比例臂阻值无关。
实验目的
1、掌握惠斯通电桥测量电阻的原理及操作方法,理解单臂电桥测电阻的“三端”法接线的意义;
2、掌握开尔文电桥测量电阻的原理及操作方法;
3、熟悉综合性电桥仪的使用方法及电桥比率和比率电阻的选择原则。
实验原理
电阻是电路的基本元件之一,电阻的测量是基本的电学测量。
用伏安法测量电阻,虽然原理简单,但有系统误差。
在需要精确测量阻值时,必须用惠斯通电桥,惠斯通电桥适
宜于测量中值电阻(1~106
Ω)。
惠斯通电桥的原理如图1所示。
标准电阻R 0、R 1、R 2和待测电阻R X 连成四边形,每一条边称为电桥的一个臂。
在对角A 和C 之间接电源E ,在对角B 和D 之间接检流计G 。
因此电桥由4个臂、电源和检流计三部分组成。
当开关K E 和K G 接通后,各条支路中均有电流通过,检流计支路起了
沟通ABC 和ADC 两条支路的作用,好象一座“桥”一样,故称为“电桥”。
适当调节R 0、R 1和R 2的大小,可以使桥上没有电流通过,即通过检流计的电流I G = 0,这时,B 、D 两点的电势相等。
电桥的这种状态称为平衡状。
图6-l 惠斯通电桥原理图 态。
这时A 、B 之间的电
势差等于A 、D 之间的电势差,B 、C 之间的电势差等于D 、C 之间的电势差。
设ABC 支路和ADC 支路中的电流分别为I 1和I 2,由欧姆定律得
I 1 R X = I 2 R 1 I 1 R 0 = I 2 R 2
两式相除,得
102
X R R
R R = (1)
(1)式称为电桥的平衡条件。
由(1)式得
1
02
X R R R R =
(2) 即待测电阻R X 等于R 1 / R 2与R 0的乘积。
通常将R 1 / R 2称为比率臂,将R 0称为比较臂。
2.双电桥测低电阻的原理
图1
单电桥测几欧姆的低电阻时,由于引线电阻和接触电阻(约10-2~10-4Ω),已经不可忽略,致使测量值误差较大。
改进办法是将其中的低电阻桥臂改为四端接法,并增接一对高电阻(如图2)。
改用四线接法后的等效电路为图3。
r 1,r 2串联在电源回路中,其影响可忽略。
r 3,r 4接高电阻,其影响也可忽略。
实际的电路如图2。
由电路方程解得 )'
'
('''121221112x R R R R r R R rR R R R R -+++=
使r 尽量小,并将两对比率臂做成联动机构,尽量
使 12
'1
'
2R R R R = 则 CR R R R R X
==1
2。
数据表格:
测量对象 单电阻1 单电阻2 并联电阻 串联电阻 倍率C
1.00 1.00 1.00 1.00 3/R Ω 75.79 73.83 37.89 149.37 /x R Ω
75.79 73.83 37.89 149.37 Δ
0.1 0.1 0.02 0.1 Δn
3
3
1
1
实验步骤:
1、 按照实验电路图接好电路,选取比率为1.00;
2、 连接待测电阻;
图2
G
1 I 1
2 1
I 2
P 2
P ' 2 P ' 1
P 1
r R
1
C 2 2
C ' 1
' I 3 I 2
I 3
I 3
R X
E
R 2 R R ' R '
3、然后调节电阻,使检流计指零,记录实验数据;
4、然后改变接入电阻,依次为单个,并联,串联,记录数据;
5、整理好实验仪器;
6、数据处理;
数据处理:
1、测量四种方法的接入电阻的仪器误差:
仪器误差的计算公式为:
单电阻1:Δ仪=1*(0.05%*75.59+0.2%*75.59)=0.189;
单电阻2:Δ仪=1*(0.05%*73.83+0.2%*73.83)=0.184;
串联电阻:Δ仪=1*(0.05%*37.89+0.2%*37.89)=0.095;
并联电阻:Δ仪=1*(0.05%*149.37+0.2%*149.37)=0.448;
2、计算出相对不确定度:
合成不确定度的计算公式为:
相对不确定度计算公式为:
则各电阻相对不确定度为:
单电阻1:
单电阻2:
串联电阻:;
并联电阻:
测量结果为:
=R±U
R
实
所以得到下表:
测量值单电阻1 单电阻2 串联电阻并联电阻
误差分析:
1、电桥灵敏度与检流计灵敏度成正比,检流计灵敏度越高电桥的灵敏度
也越高。
2、电桥的灵敏度与电源电压E成正比,为了提高电桥灵敏度可适当提高
电源电压。
3、电桥灵敏度随着四个桥臂上的电阻值的增大而减小。
随着的增大而减
小。
臂上的电阻值选得过大,将大大降低其灵敏度,臂上的电阻值相差
太大,也会降低其灵敏度。
4、还有一些也会造成实验误差,比如:电源电压不太稳定;导线电阻不能
完全忽略;检流计没有调好零点;检流计灵敏度不够高。