必修四第一章综合练习题
- 格式:doc
- 大小:610.00 KB
- 文档页数:12
必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。
2012年高考数学按章节分类汇编(人教A 必修四)第一章三角函数一、选择题1 .(2012年高考(浙江文理))把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【命题意图】本题主要考查了三角函数中图像的性质,具体考查了在x 轴上的伸缩变换,在x 轴、y 轴上的平移变化,利用特殊点法判断图像的而变换.【解析】由题意,y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为y=cosx+1,向左平移一个单位为y=cos(x-1)+1,向下平移一个单位为y=cos(x-1),利用特殊点,02π⎛⎫⎪⎝⎭变为1,02π⎛⎫- ⎪⎝⎭,选A. 2 .(2012年高考(天津文))将函数()sin (0)f x x ωω=>的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是 ( )A .13B .1C .53D .2[答案]B【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(s i n =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.3 .(2012年高考(四川文))如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=A .10B .10C .10D .15[答案]B1010cos 1sin 10103ECED 2CD-EC ED CED cos 1CD 5CB AB EA EC 2AD AE ED 11AE ][22222222=∠-=∠=∙+=∠∴==++==+=∴=CED CED )(,正方形的边长也为解析[点评]注意恒等式sin 2α+cos 2α=1的使用,需要用α的的范围决定其正余弦值的正负情况.4 .(2012年高考(山东文))函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为 ( )A.2.0C .-1D.1--【答案】A 解析:由90≤≤x 可知67363ππππ≤-≤-x ,可知 ]1,23[)36sin(-∈-ππx ,则2sin [63x y ππ⎛⎫=-∈⎪⎝⎭,则最大值与最小值之和为2-5 .(2012年高考(辽宁文))已知sin cos αα-=α∈(0,π),则sin 2α= ( )A .-1 B.2-C.2D .15.【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.6 .(2012年高考(课标文))已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( )A .π4B .π3C .π2D .3π4【答案】A 【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,πω=544ππ-,∴ω=1,∴4πϕ+=2k ππ+(k Z ∈), ∴ϕ=4k ππ+(k Z ∈),∵0ϕπ<<,∴ϕ=4π,故选A.7.(2012年高考(福建文))函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π=B .2x π=C .4x π=-D .2x π=-【答案】C【解析】把4x π=-代入后得到()1f x =-,因而对称轴为4x π=-,答案C 正确.【考点定位】此题主要考查三角函数的图像和性质,代值逆推是主要解法.9. 【解析】选Ccos 2cos(21)y x y x =→=+左+1,平移128.(2012年高考(大纲文))若函数[]()s i n (0,2)3x f x ϕϕπ+=∈是偶函数,则ϕ=( )A .2πB .23πC .32πD .53π 【答案】C【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,.【解析】由[]()sin(0,2)3x f x ϕϕπ+=∈为偶函数可知,y 轴是函数()f x 图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故3(0)sin13()3322f k k k Z ϕϕπππϕπ==±⇒=+⇒=+∈,而[]0,2ϕπ∈,故0k =时,32πϕ=,故选答案C.9.(2012年高考(安徽文))要得到函数cos(21)y x =+的图象,只要将函数cos 2y x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位 D .向右平移12个单位 【答案】C 【解析】选C cos 2cos(21)y x y x =→=+左+1,平移1210 .(2012年高考(新课标理))已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )A .15[,]24B .13[,]24C .1(0,]2D .(0,2] 【答案】A 【解析】选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂得:315,2424224πππππωπωω+≥+≤⇔≤≤二、解答题11.(2012年高考(重庆文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)设函数()sin()f x A x ωϕ=+(其中0,0,A ωπϕπ>>-<< )在6x π=处取得最大值2,其图象与轴的相邻两个交点的距离为2π(I)求()f x 的解析式; (II)求函数426cos sin 1()()6x x g x f x π--=+的值域.75)(,]422231cos 1(cos )22x x =+≠因2cos [0,1]x ∈,且21cos 2x ≠故()g x 的值域为775[1,)(,]44212.(2012年高考(陕西文))函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π,(1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 解析:(1)∵函数()f x 的最大值为3,∴13,A +=即2A =∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期为T π=∴2ω=,故函数()f x (2)∵()2sin()1226f απα=-+=即1sin()62πα-=∵02πα<<,∴63πππα-<-<∴66ππα-=,。
宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。
高一数学必修4第一章《三角函数》单元测试卷班级 ______学号 _______姓名 成绩__________. 一、选择题(本大题共10小题,每小题5分,共50分) 1、sin 210=AB. C .12D .12- ( )2、已知角α的终边经过点P (m 4-,m 3)(0≠m ),则α+αcos sin 2的值是 ( ) A 1或1- B.52或52- C. 1或52- D. 1-或52 3、若扇形的周长是16cm ,圆心角是2弧度,则扇形的面积是 (单位2cm ) ( ) A .16B .32C .8D .644、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是 ( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C5、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( )A .在x 轴上B .在直线y x =C .在y 轴上D .在直线y x =或y x =-上 6、为了得到函数2sin(),36x y x R π=+∈的图像,只需把函数2sin ,y x x R =∈的图像上所有的点 ( )A .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) B .向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) C .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D .向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)7、如图,曲线对应的函数是 ( )A .y=|sin x |B .y=sin|x |C .y=-sin|x |D .y=-|sin x |8、已知x x f 3cos )(cos =,则)(s i n x f 等于 ( )A . x 3sinB .x 3cosC .x 3cos -D .x 3sin -二、填空题(本大题共4小题,每小题5分,共20分) 9、若2cos 3α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=________ 10、不等式0tan 31≥+x 的解集是 . 11、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为_______12、设()f x 是定义域为R ,周期为32π的函数,若()()cos 02sin 0x x f x xx ππ⎧⎛⎫-≤≤ ⎪⎪⎝⎭=⎨⎪≤≤⎩则154f π⎛⎫-= ⎪⎝⎭________三、解答题(本大题共3小题,共30分)13、已知()2,A a -是角α终边上的一点,且sin α=,求cos α,αtan 的值.;14、求函数y=2sin (3π―2x ),),0(π∈x 的单调增区间和对称中心点.15、已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象过点(0,1),在相邻两最值点()0,2x ,()003,202x x ⎛⎫+-> ⎪⎝⎭上()f x 分别取得最大值和最小值.(1)求()f x 的解析式;(2)若函数()()g x af x b=+的最大和最小值分别为6和2,求,a b 的值.(3)如果在任意两个偶数内()f x 至少能同时取得最大值A 和最小值A -,那么正整数ω的最小值是多少?。
第一章综合能力检测一、选择题(本大题共12个小题,每小题5分,共60分) 1.下列等式成立的是( ) A .sin π3=12 B .cos 5π6=-12 C .sin(-7π6)=12 D .tan 2π3= 3答案:C解析:sin π3=32,cos 5π6=-32,tan 2π3=-3, sin(-7π6)=12.2.函数y =45sin(2x +π3)的图像( ) A .关于原点对称 B .关于点(-π6,0)对称 C .关于y 轴对称 D .关于直线x =π6对称 答案:B3.如果sin(π+A )=-12,那么cos(32π-A )的值是( ) A .-12 B.12 C .-32 D.32答案:A解析:由sin(π+A )=-12,得sin A =12,则cos(32π-A )=-sin A =-12.4.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则( )A .ω=π2,φ=π4 B .ω=π3,φ=π6 C .ω=π4,φ=π4 D .ω=π4,φ=5π4 答案:C解析:依图像可知,T 4=3-1=2,∴T =8,ω=2πT =π4.将点(1,1)代入y =sin(π4x +φ)中,得1=sin(π4+φ).∴π4+φ=π2,∴φ=π4.5.设0≤x ≤2π,使sin x ≥12且cos x <22同时成立的x 值是( ) A.π6≤x ≤5π6 B.π6≤x ≤74π C.5π6≤x ≤74π D.π4<x ≤56π答案:D解析:由正弦曲线得sin x ≥12时,x ∈[π6,56π];由余弦曲线得cos x <22时,x ∈(π4,74π),∴sin x ≥12且cos x <22时,x ∈(π4,56π].6.若函数y =sin(2x +θ)的图像向左平移π6个单位后恰好与y =sin2x 的图像重合,则θ的最小正值是( )A.4π3B.π3 C.5π6 D.5π3答案:D解析:将y =sin(2x +θ)的图像左移π6个单位得y =sin[2(x +π6)+θ]=sin(2x +π3+θ),故π3+θ=2k π,k ∈Z ,因此θ的最小正值为5π3.7. [2011·陕西卷]设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图像可能是( )答案:B解析:由f (-x )=f (x )得,f (x )为偶函数,所以图像关于y 轴对称. 又f (x +2)=f (x )得f (x )的周期为2,故选B.8. 令a =sin(π-1),b =sin2,c =cos1,则它们的大小顺序是( ) A .a >b >c B .b >a >c C .c >b >a D .c >a >b 答案:B解析:c =sin(π2+1),且π>π2+1>π-1>2>π2,又y =sin x 在[π2,π]上是减函数,∴sin(π2+1)<sin(π-1)<sin2,即c <a <b .9.已知f (x )=cos2x -1,g (x )=f (x +m )+n ,则使g (x )为奇函数的实数m ,n 的可能取值为( )A .m =π2,n =-1 B .m =π2,n =1 C .m =-π4,n =-1 D .m =-π4,n =1答案:D解析:显然n =1, ∴g (x )=cos(2x +2m ).∵g (x )为奇函数,∴cos2m =0,∴2m =k π+π2. 经检验D 符合条件.10.已知f (x )=sin(2x +φ)的一个单调区间是[π3,5π6],则φ的一个值是( )A .-π6 B.π6 C .-π2 D.π2答案:A解析:排除法,若φ=±π2,f (x )=±cos2x 不合题意,若φ=π6,也不适合题意,故选A.11.下列命题正确的个数是( ) ①函数y =sin|x |不是周期函数;②函数y =tan x 在定义域内是增函数; ③函数y =|cos 2x +12|的周期是π2; ④函数y =sin(5π2+x )是偶函数. A .0 B .1 C .2 D .3答案:B解析:用排除法将错误说法淘汰.对于①,从其图像可以说明其不是周期函数;对于②,∵0<π,而tan0=tanπ,∴y =tan x 在定义域内不是增函数;对于③,y =|cos2(x +π2)+12|=|12-cos2x |≠|cos2x +12|,因此π2不是y =|cos2x +12|的周期;对于④,f (x )=sin(5π2+x )=sin(2π+π2+x )=cos x ,显然是偶函数.12. [2011·辽宁卷]已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)=( )A. 2+ 3B. 3C. 33D. 2- 3答案:B解析:由图像可知:T 2=3π8-π8=π4,即T =π2. 所以ω=2.由图像知,图像过点(3π8,0), 所以0=A tan(2×3π8+φ), 即34π+φ=k π(k ∈Z ).所以φ=k π-3π4(k ∈Z ),又|φ|<π2, 所以φ=π4,再由图像过点(0,1), 所以A =1,则f (x )=tan(2x +π4), 故f (π24)=tan(2×π24+π4)=tan π3= 3.二、填空题(本大题共4个小题,每小题5分,共20分) 13.函数y =sin(π6-2x )的单调递减区间是________. 答案:[k π-π6,k π+π3],k ∈Z解析:∵y =sin(π6-2x )=-sin(2x -π6),∴令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,∴k π-π6≤x ≤k π+π3,k ∈Z .14.y =lg(cos x -sin x )的定义域是________. 答案:(2k π-34π,2kx +π4)(k ∈Z )解析:由cos x -sin x >0知,cos x >sin x ,由单位圆知2k π-34π<x <2k π+π4.15.如下图是函数y =A sin(ωx +φ)+k (|φ|<π2)在一个周期内的图像,那么这个函数的一个解析式是______.答案:y =3sin(2x +π3)-1解析:由图可知A =3,k =-1,ω=2,且当x =-π6时,sin(2x +φ)=0,又|φ|<π2,故φ=π3.16.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值是________.答案:32解析:函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ωx 的取值范围是[-ωπ3,ωπ4],∴-ωπ3≤-π2,或ωπ4≥3π2,∴ω≥32,即ω的最小值等于32.三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10分)设tan(α+8π7)=a , 求sin (15π7+α)+3cos (α-13π7)sin (20π7-α)-cos (α+22π7)的值. 解:原式=sin (π+8π7+α)+3cos (α+8π7-3π)sin (4π-8π7-α)-cos (α+8π7+2π) =-sin (8π7+α)-3cos (α+8π7)-sin (8π7+α)-cos (α+8π7) =tan (8π7+α)+3tan (8π7+α)+1=a +3a +1. 18. (本小题满分12分)[2011·浙江卷]已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2,y =f (x )的部分图像如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,A ).求f (x )的最小正周期及φ的值. 解:(1)由题意得,T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图像上, 所以sin(π3+φ)=1. 又因为0<φ<π2, 所以φ=π6.19.(本小题满分12分)函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图像与x 轴的交点中,相邻两个交点之间的距离为π2,且图像上一个最低点为M (2π3,-2).(1)求f (x )的解析式;(2)当x ∈[π12,π2]时,求f (x )的值域. 解:(1)由最低点为M (2π3,-2)得A =2.由x 轴上相邻两个交点之间的距离为π2得T 2=π2,即T =π, ∴ω=2πT =2ππ=2.由点M (2π3,-2)在图像上得2sin(2×2π3+φ)=-2, 即sin(4π3+φ)=-1, 故4π3+φ=2k π-π2,k ∈Z ,∴φ=2k π-116π. 又φ∈(0,π2),∴φ=π6,故f (x )=2sin(2x +π6). (2)∵x ∈[π12,π2],∴2x +π6∈[π3,7π6], 当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=7π6,即x =π2时,f (x )取得最小值-1, 故f (x )的值域为[-1,2].20.(本小题满分12分)[2011·福建卷]已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求f (x )的解析式.解:(1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2. (2)由(1)知a n =3n -2,所以a 3=3. 因为函数f (x )的最大值为3,所以A =3. 因为当x =π6时,f (x )取得最大值,所以sin(2×π6+φ)=1,又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin(2x +π6).21.(本小题满分12分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,且其图像上相邻的一个最高点和最低点之间的距离为4+π2.(1)求函数f (x )的表达式;(2)若sin α+f (α)=23,求2sin 2(3π-α)tan (3π+α)的值. 解:(1)∵f (x )为偶函数,∴sin(-ωx +φ)=sin(ωx +φ),即2sin ωx cos φ=0恒成立,∴cos φ=0,又0≤φ≤π,∴φ=π2.又其图像上相邻的一个最高点和最低点之间的距离为4+π2,设其最小正周期为T ,则T 2=4+π2-22=π.∴T =2π,∴ω=1,∴f (x )=cos x .(2)∵原式=2sin 2αtan α=2sin αcos α,又sin α+cos α=23,∴1+2sin αcos α=49,∴2sin αcos α=-59,即原式=-59.22.(本小题满分12分)设函数f (x )=2sin(2x +π4)+2.(1)用“五点法”作出函数f (x )在一个周期内的简图;(2)求函数f (x )的周期、最大值、最小值及当函数取最大值和最小值时相应的x 值的集合;(3)求函数f (x )的单调递增区间;(4)说明函数f (x )的图像可以由y =sin x (x ∈R )的图像经过怎样的变换而得到.解:(1)列表:函数图像如下图:(2)周期T =π,f (x )max =2+2,此时x ∈{x |x =k π+π8,k ∈Z }.f (x )min =2-2,此时x ∈{x |x =k π+58π,k ∈Z }.(3)函数f (x )的单调递增区间为:[k π-38π,k π+π8](k ∈Z ).(4)先将y =sin x (x ∈R )的图像向左平移π4个单位长度,然后将所得图像上各点的横坐标缩小为原来的12(纵坐标不变),再将所得图像上各点的纵坐标伸长为原来的2倍(横坐标不变),最后将所得图像向上平移2个单位长度,就可得到f(x)=2sin(2x+π4)+2的图像.。
第一章1-3单元练习11、下列各角中,与角330°的终边相同的有是A .510°B .150°C .-150°D .-390°3、如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为A .5.0sin 1B .sin 0.5C .2sin 0.5D .tan 0.55、已知α是第二象限角, 则2α是A, 第一象限角 B, 第一、三象限角 C, 第二、四象限角 D, 锐角7、已知α角的正弦线和余弦线是符号相反、长度相等的有向线段,则α的终边在A.第一象限角的平分线上B.第四象限角的平分线上C.第二、四象限角的平分线上D.第一、三象限角的平分线上9、已知奇函数()[]上为,在01-x f 单调减函数,又α,β为锐角三角形内角,则A. f (cos α)>f (cos β)B. f (sin α)>f (sin β)C. f (sin α)<f (cos β) f (sin α)>f (cos β)11、已知1sin cos ,(0,)5αααπ+=∈,则tan α的值为A .-43或-34B .43或34C .-43D .-3413、如果点(2sin cos ,cos )P θθθ位于第三象限,那么角θ所在象限是A、第一象限 B 、第二象限 C 、第三象限 D 、第四象限15、若θ为第一象限角,则能确定为正值的是 A.2sin θ B.cos 2θ C.tan 2θD. cos 2θ17、角θ为第一或第二象限角的等价条件是A .sin 0θ>B 。
|sin |sin θθ=C 。
cos tan 0θθ>D 。
θ为锐角或钝角 19、为则若)12(sin ,2cos )(cos πf x x f =21.A B. 21- C. 23- D.2321、若角0600的终边上有一点()a ,4-,则a 的值是A .34B .34-C .34±D .323、已知α是第二象限角,下列四个不等式①2cos 2sin 2tan ααα>> ②2tan 2cos 2sin ααα>>③2sin 2cos 2tan ααα>> ④2sin 2tan 2cos ααα>>可能成立的是A .①②B .①③C .②③D .③④25、在[0,2π]上满足21sin ≥x 的x 的取值范围是 A.⎥⎦⎤⎢⎣⎡6,0π B.⎥⎦⎤⎢⎣⎡ππ65,6 C.⎥⎦⎤⎢⎣⎡ππ32,6 D.⎥⎦⎤⎢⎣⎡ππ,6527、若不等式a x >--1)32sin(π对于任意的实数x 都成立,则实数a 的取值范围是A .(-2,+∞)B .),2[+∞]2,(-∞ D .(-∞,-2)29、 设()f x 为偶函数,且(0,1)x ∈时,()2f x x =-+,则列说法正确的是 A,0(0.5)(30)f f < B,0(sin 0.5)(sin30)f f <C,(sin1)(cos1)f f < D,(sin 2)(cos 2)f f >31、一个扇形的弧长与面积都是5,则该扇形的圆心角为_________ 33、如图,已知∠AOy=30°,∠BOx=45°,终边落在阴影部分 (含边界)的角的集合是___________________________35、若角α与角β的终边关于y 轴对称,则+=αβ______ 37、=-++)425tan(325cos 625sin πππ39、与02002-终边相同的最小正角是________41、1024°是第_______象限角;1712π是第_______象限角43、已知53sin +-=m m θ,)2(524cos πθπθ<<+-=m m,则θtan =____45、sin 2(3x π-)+ sin 2(6x π+)=________47、已知角α为第二象限角,则化简cos sin 49、已知1sin()2πα+=,求角α=__________51、x 是三角形的一个内角,且sinx+cosx=15-,则tanx 的值是______53、化简:0sin(2)cos()cos(180)sin(3)sin()2παπαπαπαα-+----=55、已知角x 的终边过点P (1,3)(1)求sin(π-x)-sin(2π+x)的值 (2)写出角x 的集合S57、 已知tan α=求sin α 及 cos α59、已知sin 3cos x x =,计算2222cos cos sin x x x +-61、已知)2cos(2)sin(απαπ-=-,求下列各式的值(1)ααααcos 3sin 5cos 2sin 4+-(2)αααα22cos cos sin sin -⋅-63、化简:︒+︒︒︒+790cos 250sin 430cos 290sin 2165、已知33)6cos(=-a π,求)6(sin )65cos(2ππ--+a a 的值67、 (1)化简11sin(2)cos()cos()cos()229cos()sin(3)sin()sin()2πππαπαααππαπαπαα-++-----+, (2)化简44661sin cos 1sin cos αααα----69、解不等式sin cos x x >71、求函数22sin cos y x x =-+的最大值及相应的x 的值.。
z)(k k 223.k 22∈⎥⎦⎤⎢⎣⎡++πππz)(k 43k ,4k ∈⎥⎦⎤⎢⎣⎡++ππππz)(k 4k ,4k ∈⎥⎦⎤⎢⎣⎡+-ππππ1.下列函数中,最小正周期为π的是( ) A .cos 4y x = B .sin 2y x = C .sin 2x y = D .co s4x y =2.下列函数中,在区间[0,]2π上为减函数的是( )A .cos y x =B .sin y x =C .tan y x =D .sin ()3y x π=-3.半径为πcm ,中心角为120o 的弧长为 ()A .cm 3πB .cm 32πC .cm 32π D .cm 322π4.α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( )A .410 B .46 C .42 D .-4105.已知函数)cos()(,2sin)(x x g x x f -=+=ππ,则 ( )A .()f x 与()g x 都是奇函数B .()f x 与()g x 都是偶函数C .()f x 是奇函数,()g x 是偶函数D .()f x 是偶函数,()g x 是奇函数 6、函数)23cos(x y -=π的单调递减区间是( )7、已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数8、函数)292cos(π-=x y 是( )A .奇函数非偶函数B .偶函数非奇函数C .非奇非偶函数D .既是奇函数又是偶函数 9.函数x2sin 2y=的奇偶数性为( ).A. 奇函数B. 偶函数 C .既奇又偶函数 D. 非奇非偶函数 10.函数y=sin2x 的单调减区间是( )A. B.C. []z)(k k 23,k 2∈+ππππ+D.1. 函数y=2cosx-1的单调递减区间是__________________________。
第7课时 诱导公式(二)~(四)A .-32 B .32C .-12+32D .12+32答案 C解析 sin600°+tan240°+cos120°=sin(360°+240°)+tan(180°+60°)+co s(180°-60°)=sin240°+tan60°-cos60°=sin(180°+60°)+tan60°-cos60°=-sin60°+tan60°-cos60°=-32+3-12=-12+32. 2.化简sin 2(π+α)-cos(π+α)·cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .2 答案 D解析 原式=(-sin α)2-(-cos α)·c os α+1=sin 2α+cos 2α+1=2.A .1-a 2B .-1-a2aC .1-a2aD .1+a2a答案 B解析 cos165°=cos(180°-15°)=-cos15°=a , 故cos15°=-a (a <0),得sin15°=1-a 2,tan195°=tan(180°+15°)=t an15°=1-a2-a.4.已知tan α=43,且α为第一象限角,则sin(π+α)+cos(π-α)=________.答案 -75解析 由tan α=sin αcos α=43,sin 2α+cos 2α=1,且α为第一象限角,解得sin α=45,cos α=35.所以sin(π+α)+cos(π-α)=-sin α-cos α=-75.5.已知sin(α+π)=45,且sin αcos α<0,求2sin α-π+3tan 3π-α4cos α-3π的值.解 因为sin(α+π)=45,所以sin α=-45,又因为sin αcos α<0,所以cos α>0,cos α=1-sin 2α=35,所以tan α=-43.所以原式=-2sin α-3tan α-4cos α=2×-45+3×-434×35=-73.知识点三 化简问题(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)sin420°cos330°+sin(-690°)cos(-660°). 解 (1)原式=cos π5+cos 4π5+cos 2π5+cos 3π5=cos π5+cos π-π5+cos 2π5+cos π-2π5=cos π5-cos π5+cos 2π5-cos 2π5=0.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)·cos(-2×360°+60°)=sin60°cos30°+si n30°cos60°=32×32+12×12=1. 7.化简下列各式: (1)1+2sin280°·cos440°sin260°+cos800°;(2)sin540°+αcos -αtan α-180°.解(1)原式=1+2sin 360°-80°·cos 360°+80°sin 180°+80°+cos 720°+80°=1-2sin80°·cos80°-sin80°+cos80°=sin 280°+cos 280°-2sin80°·cos80°-sin80°+cos80°=sin80°-cos80°2-sin80°+cos80°=|sin80°-cos80°|cos80°-sin80°=sin80°-cos80°cos80°-sin80°=-1.(2)原式=sin180°+α·cos αtan α=-sin αcos αcos αsin α=-cos 2α.对应学生用书P16一、选择题1.sin 25π6的值为( )A .12B .22C .-12D .-32 答案 A解析 sin 25π6=sin ⎝ ⎛⎭⎪⎫4π+π6=sin π6=12,故选A .2.如图所示,角θ的终边与单位圆交于点P ⎝ ⎛⎭⎪⎫-55,255,则cos(π-θ)的值为( ) A .-255 B .-55C .55 D .255答案 C解析 由三角函数的定义知cos θ=-55,则cos(π-θ)=55,故选C . 3.下列各式不正确的是( ) A .sin(α+180°)=-sin α B .cos(-α+β)=-cos(α-β) C .sin(-α-360°)=-sin α D .cos(-α-β)=cos(α+β) 答案 B解析 cos(-α+β)=cos[-(α-β)]=cos(α-β),故B 项错误. 4.设tan(5π+α)=m ,则sin α+3π+cos π+αsin -α-cos π+α的值等于( )A .m +1m -1 B .m -1m +1C .-1D .1 答案 A解析 因为tan(5π+α)=tan[4π+(π+α)]=tan(π+α)=tan α,所以tan α=m .所以原式=sin π+α-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1.5.若cos(2π-α)=53且α∈⎝ ⎛⎭⎪⎫-π2,0,则sin(π-α)=( ) A .-53 B .-23 C .-13 D .±23答案 B解析 由已知,得cos α=53.∵α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin(π-α)=sin α=-1-cos 2α=-1-⎝⎛⎭⎪⎫532=-23,故选B . 二、填空题6.计算sin(-1560°)cos(-930°)-cos(-1380°)·sin1410°=________. 答案 1解析 sin(-1560°)cos(-930°)-cos(-1380°)·sin1410°=sin(-4×360°-120°)cos(-1080°+150°)-cos(-1440°+60°)sin(1440°-30°)=sin(-120°)·cos150°-cos60°sin(-30°)=-32×-32+12×12=34+14=1. 7.已知cos(75°+α)=13,且α为第三象限角,则sin(α-105°)=________.答案223解析 sin(α-105°)=sin(α+75°-180°)=-sin(α+75°). ∵cos(75°+α)=13,且α为第三象限角,∴α+75°为第四象限角, ∴sin(α+75°)=-1-cos 2α+75°=-223. ∴sin(α-105°)=223.8.满足sin(3π-x )=32,x ∈[-2π,2π]的x 的取值集合是________. 答案 -5π3,-4π3,π3,2π3解析 sin(3π-x )=sin(π-x )=sin x =32.当x ∈[0,2π]时,x =π3或2π3;当x ∈[-2π,0]时,x =-5π3或-4π3.所以x 的取值集合为-5π3,-4π3,π3,2π3.三、解答题 9.化简下列各式:(1)sin k π-αcos[k -1π-α]sin[k +1π+α]cos k π+α(k ∈Z ); (2)1+2sin290°cos430°sin250°+cos790°.解 (1)当k =2n (n ∈Z )时,原式=sin 2n π-αcos[2n -1π-α]sin[2n +1π+α]cos 2n π+α=sin -α·cos -π-αsin π+α·cos α=-sin α·-cos α-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[2n +1π-α]·cos [2n +1-1π-α]sin[2n +1+1π+α]·cos [2n +1π+α]=sin π-α·cos αsin α·cos π+α=sin α·cos αsin α·-cos α=-1.综上,原式=-1. (2)原式=1+2sin 360°-70°cos 360°+70°sin 180°+70°+cos 720°+70°=1-2sin70°cos70°-sin70°+cos70°=|cos70°-sin70°|cos70°-sin70°=sin70°-cos70°cos70°-sin70°=-1.10.已知α是第二象限角,且tan α=-2. (1)求cos 4α-sin 4α的值;(2)设角k π+α(k ∈Z )的终边与单位圆x 2+y 2=1交于点P ,求点P 的坐标.解 (1)原式=(cos 2α+sin 2α)(cos 2α-sin 2α)=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1--221+-22=-35. (2)由tan α=-2得sin α=-2cos α, 代入sin 2α+cos 2α=1得cos 2α=15,因为α是第二象限,所以cos α<0, 所以cos α=-55,sin α=tan αcos α=255. 当k 为偶数时,P 的坐标⎩⎪⎨⎪⎧x =cosk π+α=cos α=-55,y =sink π+α=sin α=255,即P -55,255. 当k 为奇数时,P 的坐标⎩⎪⎨⎪⎧x =cosk π+α=cos π+α=-cos α=55,y =sink π+α=sin π+α=-sin α=-255,即P55,-255. 综上,点P 的坐标为-55,255或55,-255.。
班级 姓名 学号 分数必修四第一章综合测试题(测试时间:120分钟 满分:150分)一、选择题:本大题共11个小题,每小题3分,共33分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α是第四象限的角,则 ( )A. sin 0α> ;B. cos 0α> ;C. tan 0α> ;D. cot 0α> 2.函数sin y x =的最小正周期是( ) A. π ; B. 2π ; C.π2 ; D. π43.若cos 0,tan 0θθ<>,则θ是第( )象限角.A.第一象限角;B.第二象限角;C.第三象限角;D.第四象限角 4. 函数的一个单调递增区间是( )A.;B.;C.;D. 5.若角α的终边经过点)2,1(-P ,则αtan 的值为( ) A.55 B. 552-C. 2-D. 21-6.正弦函数x x f sin )(=图象的一条对称轴是( ) A. 0=xB. 4π=x C. 2x π=D. π=x7. 下列函数中,既是偶函数又存在零点的是( ) A. x x f sin )(=B. 1)(2+=x x fC. x x f ln )(=D.x x f cos )(=()cos f x x =(0)2π,(,)22ππ-(0)-π,(0,)π8.若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( )A. B. C. D. 9.若角α与角β的终边关于y 轴对称,则( ) A. )(Z k k ∈+=+ππβαB. )(2Z k k ∈+=+ππβαC. )(2Z k k ∈+=+ππβαD. )(22Z k k ∈+=+ππβα10.先将函数的图像纵坐标不变,横坐标压缩为原来一半,再将得到的图像向左平移个单位,则所得图像的对称轴可以为( )A .B .C .D .11.已知函数的最小正周期是,将函数图象向左平移个单位长度后所得的函数图象过点,则函数( )A .在区间上单调递减B .在区间上单调递增C .在区间上单调递减D .在区间上单调递增 二、填空题(每题5分,满分20分,将答案填在答题纸上) 12.=-)600cos( .2sin 2y x =12π()26k x k Z ππ=-∈()26k x k Z ππ=+∈()212k x k Z ππ=-∈()212k x k Z ππ=+∈2sin y x =12π12x π=-1112x π=6x π=-6x π=()sin()(0,0)f x x ωϕωπϕ=+>-<<π()f x 3π(0,1)P ()sin()f x x ωϕ=+[,]63ππ-[,]63ππ-[,]36ππ-[,]36ππ-13. 已知角的终边经过点13(,)22P ,则tan α的值为____________.14.已知函数(其中)图象过点,且在区间上单调递增,则的值为_______.15.函数()sin()f x A x ωϕ=+,0,0,A ω>>02πϕ<<的图象如右图所示,则f (x ) = .三、解答题 (本大题共4小题,共47分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题10分)已知A 是角终边上一点,且A 点的坐标为,求.(12分)17.(本小题12分)已知函数()sin f x x ωϕ,π(0,)2ωϕ的部分图象如图所示.(13分)(Ⅰ)写出函数)(x f 的最小正周期和其单调递减区间; (Ⅱ)求)(x f 的解析式.18.(本小题12分)已知函数()13sin 24πf x x ⎛⎫=- ⎪⎝⎭,x R ∈.列表并画出函数在922ππ⎡⎤⎢⎥⎣⎦,上的简图;(10分)19.(本小题12分)已知11tan tan -=-αα,求下列各式的值。
一、选择题1.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+ ⎪⎝⎭D .30sin 62t ππ⎛⎫- ⎪⎝⎭2.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6πB .4π C .3π D .2π 3.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2b a < B .()2cos >cos 3a b -C .()2sin sin3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭4.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( )A .34B .14C .32D .125.下列结论正确的是( )A .sin1cos1<B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭6.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 7.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+ ⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭8.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->-B .cos tan cos tan αββα+<+C .sin tan sin tan αββα> D .tan sin tan sin αββα<9.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.函数()sin ln ||f x x x =⋅的部分图象大致为( )A .B .C .D .12.若函数)22()sin 23cos sin f x x x x =-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 二、填空题13.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.14.已知函数()cos (0)f x a x b a =+>的最大值为3,最小值为1,则函数(2)2()([,]3y f x f x x ππ=-∈的值域为_________.15.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号). ①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数; ④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 16.已知函数()sin 2sin 23f x x x π⎛⎫=++⎪⎝⎭,将其图象向左平移(0)ϕϕ>个单位长度后,得到的图象为偶函数,则ϕ的最小值是_______ 17.函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位后与函数()f x 的图象重合,则下列结论正确的是______.①()f x 的一个周期为2π-; ②()f x 的图象关于712x π=-对称; ③76x π=是()f x 的一个零点; ④()f x 在5,1212ππ⎛⎫- ⎪⎝⎭单调递减; 18.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?19.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________.20.如图,某地一天从614时的温度变化曲线近似满足函数()sin y A x b ωϕ=++,则这段曲线的函数解析式为______________.三、解答题21.如图,正方形ABCD 边长为5,其中AEF 是一个半径为4的扇形,在弧EF 上有一个动点Q ,过Q 作正方形边长BC ,CD 的垂线分别交BC ,CD 于G ,H ,设EAQ θ∠=,长方形QGCH 的面积为S .(1)求S 关于θ的函数解析式; (2)求S 的最大值. 22.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式;(2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -⋅-=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.24.已知函数()3sin 22sin cos 6f x x x x π⎛⎫=+- ⎪⎝⎭. (1)当0,4x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值; (2)若不等式()1f x m -<在,42x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围. 25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.如图,在平面直角坐标系xOy 中,31,2A ⎛⎫⎪ ⎪⎝⎭为单位圆上一点,射线OA 绕点O 按逆时针方向旋转θ后交单位圆于点B ,点B 的纵坐标y 关于θ的函数为()y fθ=.(1)求函数()y f θ=的解析式,并求223f f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭; (2)若1()3f θ=,求7cos sin 36ππθθ⎛⎫⎛⎫--+⎪ ⎪⎝⎭⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭.故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤:(1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.2.C解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.3.D解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断;因为0<2a <b <3-2a 对于A. 有0<2b a <, 若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a - ∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对.故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.4.C解析:C 【分析】 由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦, 由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦, 所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=.【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.5.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.6.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫= ⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+=⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z . 故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.7.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D .因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍;故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.8.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫ ⎪⎝⎭上单调递增可判断.【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递减, 因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-,所以cos tan cos tan αββα+<+,所以B 对,不符合题意; C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫⎪⎝⎭都为正数,且都单调递增, 所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫ ⎪⎝⎭上单调递增,因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.9.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确;对于③:sin 26y x π⎛⎫=-⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .10.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.11.D解析:D 【分析】先根据函数的奇偶性,可排除A ,C ,根据当01x <<时,()0f x <即可排除B .得出答案. 【详解】因为()sin ln ||(0)f x x x x =⋅≠,所以()sin()ln ||sin ln ||()f x x x x x f x -=-⋅-=-=-,所以()f x 为奇函数,故排除A ,C .当01x <<时,sin 0x >,ln ||0x <,则()0f x <,故排除B , 故选:D .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角, 则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.14.【分析】根据三角函数性质列方程求出得到进而得到利用换元法即可求出的值域【详解】根据三角函数性质的最大值为最小值为解得则函数则函数令则令由得所以的值域为故答案为:【点睛】关键点睛:解题关键在于求出后利解析:7,12⎡⎤-⎢⎥⎣⎦【分析】根据三角函数性质,列方程求出,a b ,得到()cos 2f x x =+, 进而得到22cos 2cos 3(2)2()y x f x f x x =-=--,利用换元法, 即可求出(2)2()([,]3y f x f x x ππ=-∈的值域【详解】根据三角函数性质,()cos (0)f x a x b a =+>的最大值为3a b +=,最小值为1b a -=,解得2,1b a ==,则函数()cos 2f x x =+,则函数(2)2()cos 222cos 4y f x f x x x =-=+--cos22cos 2x x =--22cos 2cos 3x x =--,3x ππ≤≤,令cos t x =,则112t -≤≤, 令2()223g t t t =--,由112t -≤≤得,7(),12g t ⎡⎤∈-⎢⎥⎣⎦, 所以,(2)2()([,]3y f x f x x ππ=-∈的值域为7,12⎡⎤-⎢⎥⎣⎦故答案为:7,12⎡⎤-⎢⎥⎣⎦【点睛】关键点睛:解题关键在于求出()cos 2f x x =+后,利用换元法得出2()223g t t t =--,112t -≤≤,进而求出()g t 的范围,即可求出所求函数的值域,难度属于中档题 15.①②③【分析】利用整体代入的方式求出对称中心和对称轴分析单调区间利用函数的平移方式检验平移后的图象【详解】由题:令当时即函数的一条对称轴所以①正确;令当时所以是函数的一个对称中心所以②正确;当在区间解析:①②③ 【分析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象. 【详解】由题:()3sin 23x f x π⎛⎫=- ⎪⎝⎭,令2,32x k k Z πππ-=+∈,5,122k x k Z ππ=+∈, 当1k =时,1112π=x 即函数的一条对称轴,所以①正确; 令2,3x k k Z ππ-=∈,,62k x k Z ππ=+∈,当1k =时,23x π=, 所以2,03π⎛⎫⎪⎝⎭是函数的一个对称中心,所以②正确; 当5,1212x ππ⎛⎫∈- ⎪⎝⎭,,2223x ππ⎛⎫∈- ⎪⎝π⎭-,()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,所以③正确;3sin 2y x =的图象向右平移3π个单位长度得到23sin 23sin 233y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,与函数()3sin 23x f x π⎛⎫=- ⎪⎝⎭不相等,所以④错误. 故答案为:①②③ 【点睛】此题考查三角函数的图象和性质,利用整体代入的方式求解对称轴对称中心,求解单调区间,根据函数的平移变换求解平移后的函数解析式.16.【分析】先利用两角和的正弦公式化简的解析式然后再利用图象平移变换的规律求平移后的解析式最后由奇偶性可得的最小值【详解】将其图象向左平移个单位长度后得的图象由图象为偶函数图象可得所以令得故答案为:【点 解析:6π【分析】先利用两角和的正弦公式化简()f x 的解析式,然后再利用图象平移变换的规律求平移后的解析式,最后由奇偶性可得ϕ的最小值. 【详解】1()sin 2sin 2sin 2sin 2232f x x x x x x π⎛⎫=++=++ ⎪⎝⎭3sin 2cos 22226x x x π⎛⎫=+=+ ⎪⎝⎭ , 将其图象向左平移(0)ϕϕ>个单位长度后,得()22266y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭的图象,由图象为偶函数图象可得262k ππϕπ+=+()k Z ∈所以62k ϕππ=+ ()k Z ∈ 令0k =,得6π=ϕ. 故答案为:6π 【点睛】本题主要考查了三角函数图象的平移变换,以及三角函数的奇偶性,属于中档题.17.①②③【分析】先由图像的平移变换推导出的解析式再分析函数的周期零点对称性单调性判断是否正确【详解】解:函数的图象向右平移个单位后与函数的图象重合的一个周期为故①正确;的对称轴满足:当时的图象关于对称解析:①②③ 【分析】先由图像的平移变换推导出()f x 的解析式,再分析函数的周期、零点、对称性、单调性,判断是否正确. 【详解】解:函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移π3个单位后与函数()f x 的图象重合,()sin 2sin 2333f x x x πππ⎡⎤⎛⎫⎛⎫∴=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()f x ∴的一个周期为2π-,故①正确; ()y f x =的对称轴满足:232x k ππ-=π+,k Z ∈, ∴当2k =-时,()y f x =的图象关于7πx 12=-对称,故②正确;由()sin 203f x x π⎛⎫=-= ⎪⎝⎭,23x k ππ-=得26k x ππ=+, 76x π∴=是()f x 的一个零点,故③正确; 当5,1212x ππ⎛⎫∈- ⎪⎝⎭时,2,322x πππ⎛⎫-∈- ⎪⎝⎭, ()f x ∴在5,1212ππ⎛⎫- ⎪⎝⎭上单调递增,故④错误.故答案为:①②③. 【点睛】本题考查命题真假的判断,考查三角函数的平移变换、三角函数的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.18.【分析】根据题意得到化简得到或得到答案【详解】设时间为根据题意:故故或故或故故答案为:【点睛】本题考查了三角函数的应用意在考查学生的应用能力解析:【分析】 根据题意得到40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,化简得到124t k =+或128t k =+,得到答案. 【详解】设时间为t ,0t >,根据题意:40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,故1sin 622t ππ⎛⎫-= ⎪⎝⎭.故2626t k ππππ-=+或52626t k ππππ-=+,故124t k =+或128t k =+,k Z ∈. 故1234564,8,16,20,28,32t t t t t t ======. 故答案为:32. 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.19.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=,∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.20.【分析】根据图象得出该函数的最大值和最小值可得结合图象求得该函数的最小正周期可得出再将点代入函数解析式求出的值即可求得该函数的解析式【详解】由图象可知从题图中可以看出从时是函数的半个周期则又得取所以解析:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈ 【分析】根据图象得出该函数的最大值和最小值,可得max min 2y y A -=,max min2y y b +=,结合图象求得该函数的最小正周期T ,可得出2Tπω=,再将点()10,20代入函数解析式,求出ϕ的值,即可求得该函数的解析式.【详解】由图象可知,max 30y =,min 10y =,max min 102y y A -∴==,max min202y y b +==, 从题图中可以看出,从614时是函数()sin y A x b ωϕ=++的半个周期,则()214616T =⨯-=,28T ππω∴==. 又10228k πϕππ⨯+=+,k Z ∈,得()324k k Z πϕπ=+∈,取34πϕ=, 所以310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈. 故答案为:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈. 【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.三、解答题21.(1)2520(cos sin )16sin cos S θθθθ=-++,0,2π⎡⎤θ∈⎢⎥⎣⎦;(2)5.【分析】(1)先根据题意计算AQ 在竖直方向上和水平方向上的投影的长度,即可计算,HQ QG 的长度,计算长方形QGCH 的面积再化简即得结果;(2)先换元sin cos t θθ+=,确定新元的范围和函数,再根据二次函数求最值即得结果. 【详解】解:⑴EAQ θ∠=,则AQ 在竖直方向上的投影的长度为4cos θ,在水平方向上的投影长度为4sin θ,故54cos ,54sin HQ QG θθ=-=-,θ0,2π⎡⎤∈⎢⎥⎣⎦,(54cos )(54sin )S θθ=--,θ0,2π⎡⎤∈⎢⎥⎣⎦,整理得:2520(cos sin )16sin cos S θθθθ=-++,θ0,2π⎡⎤∈⎢⎥⎣⎦; (2)2520(cos sin )16sin cos S θθθθ=-++,θ0,2π⎡⎤∈⎢⎥⎣⎦,令sin cos t θθ+=)4t πθ+=,平方可得22sin cos 1t θθ=-,当θ0,2π⎡⎤∈⎢⎥⎣⎦时,可求得t ⎡∈⎣. 222525208(1)820178492S t t t t t ⎛⎫∴=-+-=-+=-⎪⎭+ ⎝,t ⎡∈⎣, 根据二次函数对称性可知,当1t =时,max 820175S =-+=. 【点睛】 方法点睛:求含有正余弦函数的和(或差)及乘积的函数求最值(范围)时,常进行三角换元,令和(或差)为新变量,形成二次函数,求二次函数最值(范围)即可. 22.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期; (2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间;(3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值. 【详解】(1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭, 所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈.即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值). 23.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==, 又26312f ππ⎛⎫+ ⎪=- ⎪ ⎪⎝⎭,故5cos 2+112πϕ⎛⎫⨯=- ⎪⎝⎭, 所以526k πϕππ+=+即2,6k k Z πϕπ=+∈, 因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x x π=+. (2)()cos(2)cos 266g x x x ππ=-+=,故()()cos(2)26f xg x m x x m π-=+-cos 2cossin 2sin2cos 2666x x x m m x πππ⎛⎫=--=--- ⎪⎝⎭ 故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭图象交点的个数,cos 26y x π⎛⎫=- ⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得: 当1m -=-31m <-<即1m =或31m -<<时,方程有2个不同的解; 当31m -<-≤31m ≤<时,方程有4个不同的解; 当33m <-≤33m ≤<时,方程有3个不同的解; 【点睛】 方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x 做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.24.(1)最大值为1,最小值为12;(2)13,12⎛- ⎝⎭. 【分析】(1)化简函数为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,根据04x π≤≤,求得1sin 2123x π⎛⎫≤+≤ ⎪⎝⎭,进而取得函数的最值;(2)把不等式()1f x m -<在,42x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,转化为不等式1()1m f x m -+<<+在,42x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,根据42ππx ≤≤,求得31sin 232x π⎛⎫≤+≤ ⎪⎝⎭,列出不等式组,即可求解. 【详解】(1)由题意,函数()322sin cos 6f x x x x π⎛⎫=+- ⎪⎝⎭3sin 2cos cos 2sin sin 266x x x ππ⎫=+-⎪⎭13sin 22sin 223x x x π⎛⎫=+=+ ⎪⎝⎭因为04x π≤≤,所以52336x πππ≤+≤, 所以1sin 2123x π⎛⎫≤+≤ ⎪⎝⎭,且142f π⎛⎫= ⎪⎝⎭,112f π⎛⎫= ⎪⎝⎭, 即函数()y f x =在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值为1,最小值为12.(2)因为不等式()1f x m -<在,42x ππ⎡⎤∈⎢⎥⎣⎦上恒成立, 所以不等式1()1m f x m -+<<+在,42x ππ⎡⎤∈⎢⎥⎣⎦上恒成立, 又由42ππx ≤≤,所以542633x πππ≤+≤,所以1sin 2232x π⎛⎫-≤+≤ ⎪⎝⎭,则1112m m ⎧-<⎪⎪⎨⎪+>⎪⎩,解得112m -<<-,所以实数m的取值范围是1,12⎛- ⎝⎭. 【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解. 25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可; (3)先由()32fx ≥可得sin 232x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232f x x π⎛⎫=+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭, 由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦. 【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解.26.(1)()sin 6f πθθ⎛⎫=+ ⎪⎝⎭,21232f f ππ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭;(2)23. 【分析】(1)由三角函数的定义得到()sin 6f πθθ⎛⎫=+ ⎪⎝⎭,进而代入计算;(2)由已知得1sin 63πθ⎛⎫+= ⎪⎝⎭,将所求利用诱导公式转化即得. 【详解】解:(1)因为12A ⎫⎪⎪⎝⎭,所以6xOA π∠=,由三角函数定义,得()sin 6f πθθ⎛⎫=+ ⎪⎝⎭.所以22511sin sin 2336222f f ππππ⎛⎫⎛⎫+=+=+=⎪ ⎪⎝⎭⎝⎭. (2)因为1()3f θ=,所以1sin 63πθ⎛⎫+= ⎪⎝⎭, 所以7cos sin cos sin 36626πππππθθθθπ⎛⎫⎛⎫⎛⎫⎛⎫--+=+--++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭sin sin 66ππθθ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭22sin 63πθ⎛⎫=+= ⎪⎝⎭.【点睛】本题考査三角函数的定义,三角函数性质,诱导公式.考查运算求解能力,推理论证能力.考查转化与化归,数形结合等数学思想. 已知1sin 63πθ⎛⎫+= ⎪⎝⎭求7cos sin 36ππθθ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭时要将已知中的角作为整体不分离,观察所求中的角与已知中的角的关系,利用诱导公式直接转化是化简求值的常见类型.。