运筹学第四章作业答案1ppt课件
- 格式:ppt
- 大小:405.50 KB
- 文档页数:31
《运筹学》第四章习题及答案一、思考题1.运输问题的数学模型具有什么特征?为什么其约束方程的系数矩阵的秩最多等于m,n,1?2.用左上角法确定运输问题的初始基本可行解的基本步骤是什么? 3.最小元素法的基本思想是什么?为什么在一般情况下不可能用它直接得到运输问题的最优方案?4.沃格尔法(Vogel 法)的基本思想是什么?它和最小元素法相比给出的运输问题的初始基本可行解哪一个更接近于最优解?为什么?5.试述用闭回路法检验给定的调运方案是否最优的原理,其检验数的经济意义是什么?6.用闭回路法检验给定的调运方案时,如何从任意空格出发去寻找一条闭回路?这闭回路是否是唯一的?7.试述用位势法求检验数的原理、步骤和方法。
8.试给出运输问题的对偶问题(对产销平衡问题)。
9.如何把一个产销不平衡的运输问题(产大于销或销大于产)转化为产销平衡的运输问题。
10.一般线性规划问题应具备什么特征才可以转化为运输问题的数学模型?11.试述在表上作业法中出现退化解的涵义及处理退化解的方法。
二、判断下列说法是否正确1.运输问题模型是一种特殊的线性规划模型,所以运输问题也可以用单纯形方法求解。
2.因为运输问题是一种特殊的线性规划模型,因而求其解也可能出现下列四种情况:有唯一最优解;有无穷多个最优解;无界解;无可行解。
3.在运输问题中,只要给出一组(,,xijm,n,1)个非零的,且满足nmx,aijix,b,,ijjj,1 i,1,,就可以作为一个基本可行解。
4.表上作业法实质上就是求解运输问题的单纯形法。
5.按最小元素法或元素差额法给出的初始基本可行解,从每一空格出发都可以找到一闭回路,且此闭回路是唯一的。
6.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案将不会发生变化。
7.如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k ,最优调运方案将不会发生变化。
8.用位势法计算检验数时,先从某一行(或列)开始,给出第一个位势的值,这个先给出的位势值必须是正的。
第4章训练题实践能力训练1.某工厂生产A 、B 两种产品,产品A 每件利润为$10,而产品B 每件利润为$8,产品A 每件需3小时装配时间,而B 为2小时,每周总装配有效时间为120小时。
工厂允许加班,但加班生产出来的产品的利润得减去1美元,根据最近合同,厂商每天至少得向用户提供两种产品各30件。
通过与厂商经理交谈,确认如下事实:(1)与用户签定的合同必须遵守,且工厂正常工作时间只有120小时; (2)尽可能不加班;(3)求利润最大; 试建立此问题的数学模型。
1.设正常生产A 产品1x 件,B 产品3x 件,加班生产A 产品2x 件,B 产品4x 件。
则},,{m in 5443321ηρ-ηρ-η+η+η=a lex30..1121=ρ-η++x x t s 302243=ρ-η++x x 120233331=ρ-η++x x0234442=ρ-η++x x54078910554321=ρ-η++++x x x x0,,41≥x x 且为整数2.考虑双A 牌啤酒的混合问题。
D 厂用三种级别的白兰地(一,二,三)来生产三种混合酒(DT ,DTA ,QL ),三种级别的白兰地酒供应量受到严格限制,他们的供应量和成本如下: 一级 1,500加仑/日 $6.00 /加仑 二级 2,100加仑/日 $4.50 /加仑 三级 950 加仑/日 $3.00 /加仑双A 牌酒的信誉很高,为了保证质量,其生产配方受到严格控制,其配方如右表所示。
在此题中,把日供应量和混合比例设为硬约束,其余按其优先顺序表示如下:(1)求利润极大;(2)每日至少生产2,000加仑DT 酒。
试建立此问题的数学模型。
2.变量假设如表:},,{m in 1110987654321ηηη+ρ+η+ρ+η+ρ+ρ+ρ+ρ=a lex 1500..11312111=ρ-η+++x x x t s 210022322212=ρ-η+++x x x 95033332313=ρ-η+++x x x1.04413121112=ρ-η+++x x x x5.05513121111=ρ-η+++x x x x6.06623222123=ρ-η+++x x x x2.07723222121=ρ-η+++x x x x5.08833323133=ρ-η+++x x x x1.09933323131=ρ-η+++x x x x13650)(3)(5.4)(6)(5)(5.5)(61010332313322212312111333231232221131211=ρ-η+++-++-++-++++++++x x x x x x x x x x x x x x x x x x20001111131211=ρ-η+++x x x .3,2,1,,0=≥j i x ij3.动力公司生产单一类型的机动自行车(即小型汽油机动摩托车),称为美洲神风,这家公司同时也进口意大利的安全牌机器摩托车,神风牌每辆售价为$650,安全牌$725,需求情况是厂家生产或进口摩托车都能轻易地卖出去。
管理运筹学第四章习题答案管理运筹学第四章习题答案管理运筹学是一门研究如何有效管理和运用资源的学科,它涉及到决策、优化和模型等方面的知识。
第四章是管理运筹学中的重要章节,主要讲述了线性规划的基本概念和解法。
在本文中,我们将针对第四章的习题进行回答,并给出详细的解析和思路。
1. 线性规划的基本概念线性规划是一种数学建模方法,用于解决在给定约束条件下的最优化问题。
它的目标是通过线性函数的最大化或最小化来实现资源的有效利用。
线性规划的基本要素包括决策变量、目标函数和约束条件。
决策变量是问题中需要决策的变量,通常用x1、x2等表示。
目标函数是需要最大化或最小化的线性函数,可以是利润、成本等。
约束条件是问题中的限制条件,可以是资源的限制、技术要求等。
2. 线性规划的解法线性规划可以通过图形法、单纯形法和对偶理论等方法进行求解。
其中,单纯形法是最常用的解法之一。
单纯形法的基本思想是通过不断地移动解空间中的顶点,逐步接近最优解。
它的步骤包括初始化、选择进入变量、选择离开变量、计算新的基变量等。
3. 习题解答以下是第四章习题的答案和解析:习题1:某公司生产两种产品A和B,每单位产品A的利润为3万元,产品B 的利润为4万元。
产品A的生产需要2台机器和3名工人,产品B的生产需要1台机器和4名工人。
机器和工人的数量分别为6台和18名。
如何安排生产,使得利润最大化?解析:设生产产品A的数量为x,产品B的数量为y。
根据题意,可以列出以下线性规划模型:目标函数:Maximize 3x + 4y约束条件:2x + y ≤ 63x + 4y ≤ 18x, y ≥ 0通过求解上述线性规划模型,可以得到最优解x=2,y=4,利润最大化为22万元。
习题2:某公司生产两种产品A和B,产品A的利润为2万元,产品B的利润为3万元。
产品A的生产需要1台机器和2名工人,产品B的生产需要1台机器和3名工人。
机器和工人的数量分别为5台和10名。
如何安排生产,使得利润最大化?解析:设生产产品A的数量为x,产品B的数量为y。