地下室上浮事故实例分析及处理
- 格式:doc
- 大小:29.00 KB
- 文档页数:5
地下室上浮事故原因分析与加固处理方法(全文)范本一:地下室上浮事故原因分析与加固处理方法一、引言本文针对地下室上浮事故进行了原因分析和加固处理方法的研究,旨在通过深入分析事故原因,提供科学且有效的处理方案,以确保地下室结构的安全稳定。
本文主要包括四个章节,分别是引言、事故原因分析、加固处理方法、总结与展望。
二、事故原因分析2.1 水源泄漏2.1.1 水管漏水2.1.2 地下水渗漏2.2 地下水位上升2.2.1 降雨量增加2.2.2 地下水系统失效2.3 地下室排水系统故障2.3.1 排水管道堵塞2.3.2 排水泵故障2.4 地下室结构设计不合理2.4.1 基坑设计不当2.4.2 地基处理不足三、加固处理方法3.1 密闭加固3.1.1 施工要点3.1.2 材料选择3.2 排水加固3.2.1 开挖排水沟3.2.2 提升排水系统能力3.3 表面加固3.3.1 防水处理3.3.2 保护层施工四、总结与展望本文通过对地下室上浮事故的原因分析,提出了一系列的加固处理方法。
然而,这些方法仅供参考,具体实施应根据实际情况进行调整和完善。
未来,在地下室结构设计和施工过程中,需更加注重细节和科学性,以提高地下室的安全性和稳定性。
附件:1. 图纸:地下室结构示意图2. 图表:地下室上浮事故统计数据法律名词及注释:1. 基坑设计不当:指地下室施工过程中,基坑的设计不符合相关法律法规和工程规范的要求。
2. 地基处理不足:指地下室施工过程中,对地基的处理不充分,导致地下室结构无法承受地基的负荷。
3. 密闭加固:指在地下室结构中加入密闭材料,以减少水分进入地下室的可能性,提高地下室的抗浮力。
4. 排水加固:指通过改善地下室排水系统,减少地下室内部水分的积聚,提高地下室的稳定性。
5. 表面加固:指在地下室结构外表面进行防水处理和保护层施工,以提高地下室的防水性能和抗浮力。
范本二:地下室上浮事故原因分析与加固处理方法一、问题陈述本文旨在分析地下室上浮事故的原因,并提出相应的加固处理方法。
某工程地下室上浮原因分析及处理措施摘要:某房地产项目设计为多栋塔楼带单层整体大地下室,在一次暴雨后地下室底板局部上浮约20~140mm,框架柱与地面和柱帽连接处出现裂缝,部分柱顶混凝土破坏。
文章分析了地下室上浮原因,并介绍了处理措施,为类似事故处理提供参考。
关键词:地下室,上浮,结构破坏,处理措施1 引言随着经济的发展和城市进程的加快,在土地资源有限的情况下,人们对地下空间的开发利用越来越重视。
为了解决城市空间不足,大量带有地下室的高层建筑物、下沉式广场、地下车库、地下商场等建筑大量出现。
在施工过程中,由于荷载还未完全加上,基坑降水过早停止,或突遇到强降水等原因,地下室容易发生上浮、倾斜,进而导致地下室结构发生开裂、隆起等现象。
如何防止和处理地下室上浮事故,已经成为建设方、设计院、施工单位等共同关心和研究课题[1]。
2 工程概况及上浮事故过程拟建项目位于武汉市汉阳区四新片区,为54栋32~45层住宅楼,分三个地块开发,每个地块均设一层整体地下室。
出现地下室上浮地块地面设计标高22.8m,基础埋深为-5.6~-7.7m。
相邻其它两个地块地下室在此之前已完工。
拟建地下室为整体结构,呈不规则形状,基坑开挖深度最大约为4.7米,一般为3.5米左右。
基坑西侧和南侧为在建市政道路,最近处距离约8m(市政道路路面高程约21.58m)。
拟建场地在勘探深度(53.7米)范围内除表层分布有(1-1)杂填土和(1-2)吹填土(Qml)外,其下为湖积成因的(1-3)淤泥(Ql)、全新统冲积和湖积成因的(2)、(3)层粘性土(Q4al+l、Q4al)和中更新统冲洪积成因的(4-1)、(4-2)层粘性土和(5)层含粉质粘土中粗砂夹角砾(Q3al+pl),下伏基岩为白垩系—下第三系(K-E)泥质粉砂岩。
基坑开挖深度范围内周边土层为:(1-1)层杂填土,(1-2)层吹填土,(1-3)层淤泥,(2)层粘土,基坑坑底座落于(1-1)层杂填土、(1-2)层吹填土、(1-3)层淤泥和(2)层粘土等不同的土层中,局部基坑开挖深度较大,基坑周边土层强度偏低,且基坑内有工程桩需要保护,基坑工程重要性等级可定为一~二级。
地基与基础D I J I Y U J I C H U王子安,等:某办公楼工程地下室上浮事故实例分析及处理848年第23卷第6期收稿日期:2009-09-02;修改日期:2009-09-28作者简介:王子安(1986-),男,安徽定远人,合肥工业大学硕士生;关 群(1962-),女,江苏扬州人,博士,合肥工业大学副教授.某办公楼工程地下室上浮事故实例分析及处理王子安, 关 群(合肥工业大学土木与水利工程学院,安徽合肥 230009)摘 要:文章通过某办公楼地下室上浮事故处理实例,综合考虑各种因素,分析了其产生的原因,通过技术和经济分析,提出了解决地下室抗浮及结构加固处理方案,可为今后类似问题的分析和处理提供参考。
关键词:地下室;抗浮;排水;加固中图分类号:TU924 文献标识码:A 文章编号:1673-5781(2009)06-0848-03近年来,随着城市建设的发展,地下空间的建设项目日趋增多,由于设计、施工等诸多因素的不完善,地下室工程质量事故频繁出现,最为常见的就是地下室上浮事故。
本文通过对某工程实例进行分析并提出和处理方案。
1 工程概况及上浮状况某办公楼工程建筑面积约为99870m 2,地上24层为框架剪力墙核心筒结构,地下2层,设计为地下停车场。
1-2轴、9-13轴和20-26轴为地下室两层,2-9层和13-20轴为地上24层。
1-20轴为人工挖孔桩桩基基础,21-26轴及1#、2#车道为独立基础,底板厚为350mm,地下室深度为9.75m 。
主体施工结束半年后,发现地下室底板及外墙出现了裂缝和渗漏,并在18-19轴/D-E 轴间出现拱起达200mm 左右。
经专家会审分析认为,该地下室产生破坏的原因主要是地下室抗浮能力不足,从而在地下水位升高的情况下,部分结构因受的浮力超出了承受范围,从而使底板起拱,导致板和和墙体的变形与开裂。
2 工程场地地质与水文条件由勘察单位提供的勘察报告,本工程场地岩土层分布自上而下依次为: 1层杂素填土:厚0.3~7.3m,透水性强, 2层淤泥质素填土:厚0~3.2m,渗透系数K =1.0 10-5cm/s; 1层黏土,层厚0.0~2.9m,渗透系数K =1.0 10-7cm/s, 2层粘土,层厚1.3~2.4m,渗透系数K =1.0 10-6cm/s; 层粉质黏土夹细粉砂,层厚2.5~5.3m,渗透系数K = 1.0 10-5cm/s; 层强分化砂岩,层厚2.1~3.4m,渗透系数K =1.0 10-4cm/s; 层中分化砂岩夹泥岩,层厚大约15m,透水性差。
地下室上浮的原因分析与风险控制引言随着城市基建用地日趋紧张,充分开发利用地下空间越来越显得十分必要,因此,不断涌现城市综合体建设项目,同时,在一个综合体建设项目中往往存在一个平面尺寸较大的地下室同时承载着超高层塔楼和多层商业公共建筑。
而在这种综合体项目建设中或者工程竣工使用期内,时有发生地下结构上浮或伴有地下室底板隆起、开裂、渗水,甚至出现地下结构柱、墙等竖向结构产生水平裂缝和斜裂缝现象,给楼房的结构安全带来极大的风险,根据本人以往经历的工程案例,针对地下室上浮的风险控制进行分析与探讨。
一、地下室上浮案例1 项目概况本人作为监理单位项目总监负责的某住宅项目,包括9幢22至31层高层住宅、3幢多层住宅(联排别墅)及一座大型地下车库(埋深6.5m,局部11.0m),高层住宅楼采用PHC 600AB 130 管桩桩基,别墅和地下车库采用PHC B500 100管桩桩基。
地下室出现上浮期间,地下室结构已施工完毕,工程上部主体结构也已封顶。
在某年6月10日左右,1号楼至4号楼合围区域地下室出现上浮现象(图1中红色字体区域),到6月12日,上浮区域开始回落,最大上浮量约30cm,到6月13、14日,进一步回落。
上浮区域混凝土柱上端靠近地下室顶板梁附近出现水平裂缝,填充墙斜裂缝等损伤(详见照片1)。
为评估上浮对地下室结构的损伤以及现有损伤对地下室结构的影响,该项目的施工单位和监理单位配合岩土工程勘察单位对其进行了检测评估。
同时,根据现状,施工方、监理方与勘察方议定了基础加固处理措施。
红色文字表示地下室柱上浮区域图1 地下室上浮区域照片12 地下室上浮检测评估依据(1)建设单位、施工单位提供的工程相关资料(2)《建筑结构检测技术标准》GB/T50344-2004(3)《房屋质量检测规程》DGJ08-79-2008(4)《既有建筑物结构检测与评定标准》DB/TJ08-804-2005(5)《建筑结构荷载规范》GB50009-2012(6)《建筑变形测量规范》JGJ 8-2007(7)《混凝土结构设计规范》GB20010-2010(8)《建筑地基基础设计规范》GB50007-2011(9)本项目岩土工程勘察报告(详勘)3 工程地质水文概况3.1 工程地质概况该项目建设场区属滨海平原沉积类型,场地位于上海市闸北区,周边以企事业单位和住宅为主。
地下室上浮事故实例分析及处理摘要:近年来,随着城市建设的发展,地下空间的建设项目日趋增多,由于设计、施工等诸多因素的不完善,地下室工程质量事故频繁出现,最为常见的就是地下室上浮事故。
文章通过某工程地下室底板隆起事故处理实例分析并提出处理方案。
关键词:地下室地板;抗浮;排水;加固一、工程概况某项目水位相对较高。
该项目占地约5万平米,地下室两层(基坑围护结构采用钻孔桩外加2排∮600水泥土搅拌桩),投影面积约3万平米,做停车场使用。
基础形式为桩基,主要为高强预应力管桩(PHC500A型),单桩抗拔力承载力特征值为500KN。
四周采用围合点状布置塔楼,楼高100米,地下室顶板中间部位0.00作绿化休闲区,留有800厚覆土以便绿化和种植乔木。
在发现底板隆起后,马上采用措施在底板隆起地方开孔放水,刚开的孔水冲上来的水柱达到3米左右,随着开孔的增加,流出的水量逐渐减少且隆起的板块处于稳定。
项目地质情况根据地质报告显示,场地于强风化以上的覆盖层范围内,主要埋藏地层为①人工填土②淤泥③粉质粘土④砾砂⑤强风化层⑥中风化,残积土为软弱土及中硬土,强风化层层厚0.50~7.10米,层顶标高-14.67~-34.68米,地质报告建议抗浮设计水位标高2.5M,相当于地面以下1.50M。
二、事故分析主要原因就是地下室无降水措施而连下暴雨造成水头压过高水浮力大于当时的结构自重。
我们首先查看抗浮设计计算书,地下室抗浮计算:按地质报告建议,抗浮设计水位为绝对高程2.5m,其相对高程为-5.0m。
高强预应力管桩桩型为A型,直径φ500,壁厚125,管桩混凝土有效预压应力3.5MPa,桩内纵向预应力钢筋10φ9,每米重3.68KN。
桩身抗拔承载力设计值:Rpl=3.5×3.14×(2502-1252) N=515 KN;公式5.2.9-2)单桩抗拔极限承载力标准值:Uk=∑ξsi·λi·qsi·u·li=1090KN;(公式5.2.8)单桩自重(取17m长桩的浮重):Gp=17×[3.68-10×(3.14×0.252)]=29KN由于施工期间,在底板及顶板负荷加载前就已停止降水,在大雨后水位接近设计抗浮水位的情况下,桩的拔力情况分析:计算取地下室柱网标准跨8.1m×8.1m,地下室底板面相对标高为-9.50M,底板厚度为450MM。
地下室上浮的原因分析与应对措施【文档一】地下室上浮的原因分析与应对措施一、背景介绍地下室上浮是指地下室结构由于压力变化等原因,从原来的位置上浮升起的现象。
本文将从原因分析和应对措施两个方面详细介绍地下室上浮的问题。
二、地下室上浮的原因分析1. 水压增加:地下水位上升或降雨造成地下室周围水压增加,导致地下室上浮。
2. 地基沉降:地基沉降会改变地下室的水平位置,使地下室失去支撑而上浮。
3. 地下室开放:地下室入口未完全封闭或密封不良,使得地下室容易受到外界水压的影响而上浮。
4. 过于轻质的建筑材料:过于轻质的建筑材料会增加地下室浮起来的可能性。
5. 地下室结构设计缺陷:地下室结构设计不合理,例如基础承载能力不足等问题,会导致地下室上浮。
三、地下室上浮的应对措施1. 合理设计地下室结构:进行合理的地下室结构设计,确保地下室的稳定性和承载能力,减少上浮风险。
2. 加固地基:通过加固地基的方式来提高地基的承载能力,从而减少地下室上浮的发生。
3. 加密地下室入口:完全封闭地下室入口,确保其严密性,阻止外界水压对地下室造成影响。
4. 使用合适的建筑材料:选择密度适中的建筑材料来建造地下室,以避免过于轻质材料导致地下室上浮。
5. 定期检查和维护:定期检查地下室的结构和周围环境,及时发现问题并采取相关维护措施,防止地下室上浮。
【附件】:无【法律名词及注释】:无【文档二】地下室上浮问题的原因分析及解决方案一、问题背景地下室上浮是指地下室结构由于各种因素造成整体或局部上浮的现象。
本文将从原因分析和解决方案两个方面,详细介绍地下室上浮问题的应对方法。
二、地下室上浮原因分析1. 地下水位上升:地下水位上升会增加地下室周围水压,导致地下室上浮。
2. 地基问题:如地基沉降、地基松动等,都可能导致地下室上浮。
3. 建筑材料轻质化:使用轻质建筑材料建造地下室,降低了其自重,增加了上浮的概率。
4. 地下室密闭性问题:地下室入口未完全封闭或密封不良,容易受外界水压影响,引发上浮。
随着城市进程的迅速发展,土地资源得到合理利用,各类建筑尤其是高层建筑普遍设有地下室。
地下室防水是地下室施工过程中的关键环节,地下室上浮不仅导致产生裂缝引起渗漏水,严重时还会影响结构的安全性能。
由此可见地下室上浮控制的重要性和必要性。
建设过程中各阶段、各环节须从设计、监理、施工方面高度重视、严格把关。
本文通过分析-起地下室上浮案例的发生原因及处理过程,对预防、处理地下室上浮的施工方法进行介绍。
1 工程概况某工程地下1层,地上14层,建筑面积9万m2,地下室面积1.5万m2,采用框架-剪力墙结构,筏形基础,室内标高为+0.000,筏板底标高-6.000m,抗水板厚300mm,筏板厚800mm,顶板厚160mm,顶板主梁截面尺寸为350mmx850mm,次梁250mm x650mm,地下室抗水板上回填砂石料厚450mm、C20混凝土面层厚80mm,顶板上回填土厚1000mm。
2 水文地质条件场地内主要地下水类型是赋存于砂卵石层中的孔隙潜水,受大气降水及临江上游河水补给,地下水水位变化受季节及临近江河水位影响。
此工程勘察期间为丰水期,5月测得稳定水位一般为0.6~2.0m,水位黄海标高450.920~451 .320m。
据该地区已有地下水动态变化观测资料可知,本场地年水位变化幅度约0.5m,最高水位黄海标高约450.500m,地下室抗浮设计水位取黄海标高450920m。
3 发现问题与紧急处理6月上旬连续降雨4d,地下水位不断上涨,在沉降观测过程中发现,主楼间距较大的地下室中部出现起拱,最大起拱量约150mm;另外,地下室顶板混凝土表面出现不同程度裂缝,框架柱与顶板交接处出现细微裂缝。
问题发生后,立即对裂缝部位标记并加强观测,在地下室上浮量较大部位用砂石料加载反压,并同时于地下室剪力墙上开孔放水,降低室内外地下水水压差,使地下室内外水压接近平衡。
经3d持续观测,趋于稳定,梁板交接处细微裂缝全部闭合。
4 事故原因分析该工程于7月开始施工,次年3月主体结构封顶。
地下室上浮事故实例分析及处理
摘要:近年来,随着城市建设的发展,地下空间的建设项目日趋增多,由于设计、施工等诸多因素的不完善,地下室工程质量事故频繁出现,最为常见的就是地下室上浮事故。
文章通过某工程地下室底板隆起事故处理实例分析并提出处理方案。
关键词:地下室地板;抗浮;排水;加固
一、工程概况
某项目水位相对较高。
该项目占地约5万平米,地下室两层(基坑围护结构采用钻孔桩外加2排∮600水泥土搅拌桩),投影面积约3万平米,做停车场使用。
基础形式为桩基,主要为高强预应力管桩(PHC500A型),单桩抗拔力承载力特征值为500KN。
四周采用围合点状布置塔楼,楼高100米,地下室顶板中间部位0.00作绿化休闲区,留有800厚覆土以便绿化和种植乔木。
在发现底板隆起后,马上采用措施在底板隆起地方开孔放水,刚开的孔水冲上来的水柱达到3米左右,随着开孔的增加,流出的水量逐渐减少且隆起的板块处于稳定。
项目地质情况根据地质报告显示,场地于强风化以上的覆盖层范围内,主要埋藏地层为①人工填土②淤泥③粉质粘土④砾砂⑤强风化层⑥中风化,残积土为软弱土及中硬土,强风化层层厚0.50~7.10米,层顶标高-14.67~-34.68米,地质报告建议抗浮设计水位标高2.5M,相当于地面以下1.50M。
二、事故分析
主要原因就是地下室无降水措施而连下暴雨造成水头压过高水浮力大于当时的结构自重。
我们首先查看抗浮设计计算书,地下室抗浮计算:按地质报告建议,抗浮设计水位为绝对高程2.5m,其相对高程为-5.0m。
高强预应力管桩桩型为A型,直径φ500,壁厚125,管桩混凝土有效预压应力3.5MPa,桩内纵向预应力钢筋10φ9,每米重3.68KN。
桩身抗拔承载力设计值:Rpl=3.5×3.14×(2502-1252) N=515 KN;公式5.2.9-2)
单桩抗拔极限承载力标准值:Uk=∑ξsi·λi·qsi·u·li=1090KN;(公式5.2.8)
单桩自重(取17m长桩的浮重):Gp=17×[3.68-10×(3.14×0.252)]=29KN
由于施工期间,在底板及顶板负荷加载前就已停止降水,在大雨后水位接近设计抗浮水位的情况下,桩的拔力情况分析:
计算取地下室柱网标准跨8.1m×8.1m,地下室底板面相对标高为-9.50M,底板厚度为450MM。
顶板厚180,加上主次梁,折算厚度为300:25×0.3=7.5 KN/m2;
半地下室楼面板厚120,加上主次梁,折算厚度为180:25×0.18=4.5 KN/m2;
底板厚450:25×0.45=11.25 KN/m2;
柱子600×600,净高为(9.2-1.1-1.8)=6.3m :25×0.6×0.6×6.3=56.7 KN;
两桩承台在底板底面以下的厚度为1.35m:25×1.35×2.5×1.0=84 KN;
地梁:25×(7.1×0.55×0.4+5.6×0.45×0.4)=64 KN;
地下室底板300厚石粉:0.4X22=8.8 KN/m2;
800厚园林覆土: 0.8X18=14.4 KN/m2
则标准跨每根柱底处自重力为:
8.12×(a+b+c+g+h)+d+e+f=8.12×(7.5+4.5+11.25+8.8+14.4)+56.7+84+64=3252 KN
浮力(此时不考虑分项系数)为:10×(9.5+0.45-5.0)×8.12=3247 KN
按照建筑结构荷载规范2006版3.2.5
永久荷载分项系数,当其对结构不利时,对由可变荷载效应控制的组合,取1.2;当其对结构有利时,取1.0;此时浮力(考虑分项系数)为:1.2X3247=3896KN;减去自重需考虑的上浮力为:3896-3331=565KN,而柱下桩数为两根,也就是说设计时已考虑了设计水位对正常使用工况下的影响,如果在施工时始终进行了降水,控制水位在地下室底板以下,就不可能出现上面说的情况。
三、事故处理
1详细了解事故情况:在底板上对应每个柱顶的位置布置沉降观测点107个,每天观测一次,连续观测一个月,观测数据显示,顶板上浮已基本处在稳定状态,观测到最高上浮位移为246mm。
2工程桩质量状态的判断:为确认原工程桩的质量,检测接头位置的工作状态。
首先选择处在上浮位移最大区域的工程桩进行桩身接头位置完整性检测,随机抽取2根。
基桩检测结果及分析
检测结论:
通过对基桩的综合分析,可判定如下结论:
1)、桩号为1108的基桩,在-4.0m至-3.2m处存在缺陷;
2)、桩号为1066的基桩,在-7.0m至-6.1m处存在缺陷;
注:缺陷可能是桩头之间的焊接所引起的,但从反射的波形分析来看没有发现接头处焊完全空缺的情况。
3经与设计单位复核后,对顶板上进行2米厚的石粉进行堆载,再对各点进行沉降观测,在堆载一个月后,上浮点位基本复位。
4经多方分析,决定采用在底板上增加抗浮锚杆进行处理。
4.1抗浮锚杆承载力特征值估算:
Fa=∑qsiuili=25×3.14×0.2×9=141.3(KN)
4.2标准跨8.1m×8.1m里均匀布置抗浮锚杆4根,每根抗浮锚杆抗拔力设计值为565/4=141.25(KN)<Fa,符合要求。
在原混凝土底板上新增400厚混凝土底板,原底板仅作为基底垫层考虑,抗浮锚杆成孔直径200(150)mm,在8.1m×8.1m区域内均匀布置4根锚杆,设计锚杆主筋为3φ22。
锚杆定位误差不大于5cm,垂直度偏差不大于1%,当遇到柱位置时,向跨中调整锚杆间距,数量不变,锚杆成孔要求先采用直径200mm 成孔到强风化岩面,遇强风化后采用150mm成孔,成孔深度要求进入强风化岩层不少于5.0m或中(微)风化岩层不少于2.5米。
锚杆采用二次注浆成锚,第一次常压注1:0.5纯水泥浆,水泥采用P.O.42.5R普硅水泥,初凝后进行第二次注纯水泥浆,水灰比1:0.5,第二次注浆压力≥1.5MPa,第二次注浆水泥用量≥20kg/m,可根据试验结果适当调整,锚杆清孔时必须将泥浆清除干净。
锚杆主筋需接长时,采用套筒对接,对接后抗拉强度应不小于钢筋的抗拉强度,锚杆主筋与底板连接处涂抹环氧树脂防腐,在水泥浆中掺加水泥量3%的钢筋阻锈剂。
4.3抗浮锚杆检测,本次地下室抗浮锚杆施工共163根,根据规范要求,抗浮锚杆检测数量为3根,试验时单根锚杆抗拔力设计值取170KN,检验荷载按设计图纸要求取设计抗拔力的1.5倍,即255KN。
经检测,3根抗浮锚杆在最大检验荷载作用下变形均趋于稳定,经综合分析,受检的3根锚杆符合抗拔力验收标准,满足设计要求。
锚杆试验荷载-位移数据
4.4后期沉降观测:锚杆完成施工后,堆载也逐步卸去,在卸载后半年的时间里,对地下室顶板进行了沉降观测,观测点最大上浮位移值为22.3mm,平均位移值为17.6mm。
目前,尚未找到规范对该限值的规定,但就工程使用效果来看,还是比较合理和可以接受的。
4.5抗浮锚杆变形的理论计算:
锚杆在抗拔过程中,其变形由以下四个部分组成:∑S=S1+S2+S3+△S,式中:∑S为锚杆总变形,S1为锚杆自由段变形,S2为锚固段的拉伸变形,S3为土体的剪切变形,△S为锚固段与土体的相对变形。
假定锚固段、土体处在弹性变形阶段,通过弹性力学理论可计算出S1、S2、S3,运用双曲线函数可表达出锚固段与土体的相对变形,锚杆总变形可写成:∑S=式中,P为张拉荷载;lf为自由段长度;lm为锚固段长度;Eg为钢筋弹性模量;Es为锚固体弹性模量;Gs为土体剪切模量;Ag为锚筋截面积;A为锚杆截面积;d为锚固体直径;τs为平均摩阻力;rm为剪切影响半径;a、b为锚固体与土体接触面有关参数。
在本工程中,锚固地层为粘土层,锚固段长为17米,自由段为1米,锚固钢筋为3φ22,工作荷载为140KN,土层摩阻力为120KPa,钢筋弹性模量为2.1×105MPa, 锚固体弹性模量为1.13×105MPa, 土体剪切模量为10Mpa,剪切影响半径取15d(d 为锚固体直径),a取0.0202m3/MN,b取7.08 m3/MN,因此可计算出S1=0.58mm,S2=0.34mm,S3=3.24mm,△S=16.12mm, ∑S=20.28mm,由此可见,理论计算值与试验数据是基本吻合的。
因为规范对锚杆位移限值没有明确的规定,从本工程实例和试验的结果来分析,在砾质粘土中,锚杆的上浮位移限值取≤25mm是可行的。
四、结论
1忽视地下室抗浮设计和施工将造成重大工程问题,会出现较大的安全事故,同时也会造成较大的经济损失和不必要的麻烦;
2抗浮锚杆用于地下室抗浮加固是一种可靠的技术措施,但要做好设计
及质量监督管理,防止出现二次事故;
3土层抗浮锚杆地下室在正常使用状态下,上浮位移限值可取≤25mm;
注:文章内所有公式及图表请以PDF形式查看。