习题假设检验答案
- 格式:doc
- 大小:1.36 MB
- 文档页数:13
第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
一、单选题1、在假设检验中,我们认为()。
A.原假设是不容置疑的B.拒绝域总是位于检验统计量分布的两边C.小概率事件在一次抽样中实际上不会发生D.检验统计量落入拒绝域是不可能的正确答案:C2、在假设检验中,显著性水平确定后()。
A.双边检验的拒绝域小于单边检验的拒绝域B.双边检验的拒绝域大于单边检验的拒绝域C.双边检验的拒绝域与单边检验的拒绝域不可简单直接对比D.双边检验的拒绝域等于单边检验的拒绝域正确答案:C3、单个正态总体均值的检验时若总体方差已知,()。
A.设计的检验统计量服从卡方分布B.设计的检验统计量服从F分布C.设计的检验统计量服从标准正态分布D.设计的检验统计量服从t分布正确答案:C4、总体成数的假设检验()。
A.设计的检验统计量服从标准正态分布B.设计的检验统计量服从卡方分布C.设计的检验统计量近似服从卡方分布D.设计的检验统计量近似服从标准正态分布正确答案:D5、两个正态总体均值之差的检验中,如果两个总体方差未知但相等,检验统计量t的自由度是()。
A.两样本容量之和B.两样本容量之和减2C.两样本容量之积D.两样本容量之和减1正确答案:B6、假设检验是检验()的假设值是否成立。
A.总体均值B.总体指标C.样本方差D.样本指标正确答案:B7、在大样本条件下,样本成数的抽样分布近似为()。
A.均匀分布B.卡方分布C.二项分布D.正态分布正确答案:D8、下列关于假设检验的说法,不正确的是()。
A.作出“拒绝原假设”决策时可能会犯第一类错误B.作出“不能拒绝原假设”决策时意味着原假设正确C.作出“不能拒绝原假设”决策时可能会犯第二类错误D.作出“接受原假设”决策时意味着没有充分的理由认为原假设是错误的正确答案:B9、将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两,每边占显著性水平的二分之一,这是()。
A.右侧检验B.单侧检验C.左侧检验D.双侧检验正确答案:D10、如果使用者偏重于担心出现纳伪错误而造成的损失,则应把显著性水平定得()。
1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
习题八假设检验答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量tX2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。
要检验假设0μμ=应用 U 检验法,检验的统计量是X U =0H 成立时该统计量服从N (0,1) 。
3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。
(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为X YT =0H 成立时该统计量服从(2)t m n +- 。
5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-=;当0H 成立时,该统计量服从 2(1)n χ- 。
6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
要检验假设220:X YH σσ=,应用 F 检验法,检验的统计量为 22XYS F S = 。
7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ;8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U ={}U u α≤- 。
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
第八章 假设检验1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X ~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25(2)选取检验统计量为)1(~25.3--=n t nS X t (3)H 0的拒绝域为|t |≥).1(2-n t α (4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==∑=i i X Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α (5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21≈-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、 工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05) H 0:μ= 0.618 H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933.解:步骤:(1)H 0:μ= 0.618; H 1:μ≠0.618(2)选取检验统计量为)1(~618.0--=n t nS X t (3)H 0的拒绝域为|t |≥).1(2-n t α(4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===∑∑==n i i n i i x x n S xn x ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα (5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ=100小时的正态分布。
假设检验习题答案 Prepared on 22 November 20201.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显着性水平=与=,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量n x t /0σμ-=。
查出α=和两个水平下的临界值(df=n-1=15)为和。
334.116/60800820=-=t 。
因为t <<,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显着增加(=解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显着增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=水平下的反查正态概率表得到临界值到之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显着性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>(>,所以拒绝原假设,无故障时间有显着增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显着水平下,能否认为这批产品的指标的期望值μ为1600解: 01:1600, :1600,H H μμ=≠标准差σ已知,当0.05,α=26,n =96.1579.02/1==-z z α,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在Ω,改变加工工艺后,测得100个零件的平均电阻为Ω,如改变工艺前后电阻的标准差保持在Ω,问新工艺对此零件的电阻有无显着影响(α=解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=, 当0.05,α=96.1579.02/1==-z z α100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显着影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
第5章假设检验课后习题解答第五章假设检验⼀、选择题1.单项选择题(1)将由显著性⽔平所规定的拒绝域平分为两部分,置于概率分布的两边,每边占显著性⽔平的1/2,这是( B )。
A.单侧检验B.双侧检验C.右单侧检验D.左单侧检验(2)检验功效定义为( B )。
A.原假设为真时将其接受的概率B.原假设不真时将其舍弃的概率C.原假设为真时将其舍弃的概率D.原假设不真时将其接受的概率(3)符号检验中,(+)号的个数与(-)号的个数相差较远时,意味着( C )。
A.存在试验误差(随机误差)B.存在条件误差C.不存在什么误差D.既有抽样误差,也有条件误差(4)得出两总体的样本数据如下:甲:8,6,10,7,8;⼄:5,11,6,9,7,10秩和检验中,秩和最⼤可能值是( C )。
A.15B.48C.45D.662.多项选择题(1)显著性⽔平与检验拒绝域的关系是( ABD )。
A.显著性⽔平提⾼(α变⼩),意味着拒绝域缩⼩B.显著性⽔平降低,意味着拒绝域扩⼤C.显著性⽔平提⾼,意味着拒绝域扩⼤D.显著性⽔平降低,意味着拒绝域扩⼤化E.显著性⽔平提⾼或降低,不影响拒绝域的变化(2)β错误( ACDE )。
A.是在原假设不真实的条件下发⽣的B.是在原假设真实的条件下发⽣的C.决定于原假设与实际值之间的差距D.原假设与实际值之间的差距越⼤,犯β错误的可能性就越⼩E.原假设与实际值之间的差距越⼩,犯β错误的可能性就越⼤⼆、计算题1.某牌号彩电规定⽆故障时间为10000⼩时,⼚家采取改进措施,现在从新批量彩电中抽取100台,测得平均⽆故障时间为10150⼩时,标准差为500⼩时,能否据此判断该彩电⽆故障时间有显著增加(α=0.01)?解:假设检验为H 0:µ0=10000,H 1:µ0<10000(使⽤寿命应该使⽤单侧检验)。
n =100可近似采⽤正态分布的检验统计量z α=0.01⽔平下的反查正态概率表得到临界值2.34到2.36之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性⽔平应先乘以2,再查到对应的临界值)。
第八章假设检验1、原假设与备选假设一定是对应的关系。
()是: 否: 2、假设检验中犯1类错误的后果比犯2类错误的后果更为严重。
()是: 否: 3、显著性水平越小,犯检验错误的可能性越小。
()是: 否: 4、假设检验一般是针对错误的抽样推断做的。
()是: 否: 5、对总体成数的检验一般采用Z检验法为好。
()是: 否:1、下面有关小概率原则说法中正确的是()。
小概率原则事件就是不可能事件它是指当一个事件的概率不大于充分小的界限α(0<α<1)时,可认为该事件为不可能事件基于”小概率原则”完全可以对某一事件发生与否作出正确判断总体推断中可以不予考虑的事件2、假设检验中的1类错误也叫()。
弃真错误纳伪错误假设错误判断错误3、如果是小样本数据的均值检验,应该采用()。
t 检验z 检验秩符检验以上都不对4、如果检验总体方差的显著性,应采用哪种检验方法?()。
t 检验Z 检验X2检验以上都对、 一个优良的统计量通常要符合( )标准。
无假性一致性有效性完整性随机性2、在统计检验假设中,通常要对原假设作出判断,就有可能会犯错误。
这些错误分别是( )。
1类错误(α类)2类错误(β类)功效错误 系统错误代表性错误3、 科学的抽样估计方法要具备的要素是( )。
合适的统计量抽样方法合理的误差范围可接受的置信度严格遵守随机原则1、用一台自动包装机包装葡萄糖,按规格每袋净重0.5千克。
长期积累的数据资料表明,每袋的实际净重服从正态分布,标准差为0.015千克。
现在从成品中随机抽取9袋,结果其净重分别为0.479,0.5006,0.518,0.511,0.524,0.488,0.515,0.512。
试根据抽样结果说明:(1)标准差有无变化?(2)袋糖的平均净重是否符合规格?(α=0.05)2、环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰,现在取5份水样测定有害物质含量,得到如下数据:0.53‰,0.542‰,0.51‰,0.495‰,0.515‰。
习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量t2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。
要检验假设0μμ=应用 U 检验法,检验的统计量是U =0H 成立时该统计量服从N (0,1) 。
3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X XX N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。
(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为 X YT = ;当0H 成立时该统计量服从 (2)t m n +- 。
5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-= ;当0H 成立时,该统计量服从 2(1)n χ- 。
6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X XX N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
要检验假设220:X Y H σσ=,应用 F 检验法,检验的统计量为 22X YS F S = 。
7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ; 8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U = ,拒绝域为 {}U u α≤- 。
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50)=1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。
假设检验习题及答案填空题1.原假设与备择假设是一个__________,也就是说在假设检验中原假设与备择假设只有一个成立,且必有一个成立。
(完备事件组)2.我们在检验某项研究成功与否时,一般以研究目标作为__________,如在研究新管理方法是否对销售业绩(周销售量)产生影响时,设原周销售量为A 元,欲对新管理方法效果进行检验,备择假设为__________。
(备择假设H1:μ>A)单选题从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断的过程称为( )A.参数估计B.统计推断C.区间估计D.假设检验答案:d2.假设检验的概率依据是( )。
A.小概率原理B.最大似然原理C.大数定理D.中心极限定理答案:a多选题1.统计推断包括以下几个方面的内容( )。
A.通过构造统计量,运用样本信息,实施对总体参数的估计B.从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断C.相关分析D.时间序列分析E.回归分析答案:a, b2.假设检验的基本思想是( )。
A.先对总体的参数或分布函数的表达式做出某种假设,然后找出一个在假设成立条件下出现可能性甚小的(条件)小概率事件。
B.如果试验或抽样的结果使该小概率事件出现了,这与小概率原理相违背,表明原来的假设有问题,应予以否定,即拒绝这个假设。
C.若该小概率事件在一次试验或抽样中并未出现,就没有理由否定这个假设,表明试验或抽样结果支持这个假设,这时称假设也实验结果是相容的,或者说可以接受原来的假设。
D.如果试验或抽样的结果使该小概率事件出现了,则不能否认这个假设。
E.若该小概率事件在一次试验或抽样中并未出现,则否定这个假设。
答案:a, b, c3.假设检验的具体步骤包括( )。
A.根据实际问题的要求,提出原假设及备择假设;B.确定检验统计量,并找出在假设成立条件下,该统计量所服从的概率分布;C.根据所要求的显着性水平和所选取的统计量,查概率分布临界值表,确定临界值与否定域;D.将样本观察值代入所构造的检验统计量中,计算出该统计量的值。
习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则检验假设0:0H μ=的t -t -检验使用统计量tX 2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。
要检验假设0μμ=应用 U 检验法,检验的统计量是U =0H 成立时该统计量服从N (0,1) 。
3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X XX N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。
(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为 T = ;当0H 成立时该统计量服从 (2)t m n +- 。
5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-= ;当0H 成立时,该统计量服从 2(1)n χ- 。
6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X XX N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
要检验假设220:X Y H σσ=,应用 F 检验法,检验的统计量为 22X YS F S = 。
7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ; 8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U = ,拒绝域为 {}U u α≤- 。
当2σ未知时,在显著性水平α下,检验假设0010:;:H H μμμμ≤>的统计量为 X T =,拒绝域为 (1)T t n α≥- 。
9.设总体22~(,),,X N μσμσ都是未知参数,从X 中抽取的容量为50n =的样本,已知样本均值1900X ,样本标准差S =490(修正),检验假设01:2000;:2000;H H μμ=≠的统计量为 1.443T =- ;在显著性水平0.01α=下,检验结果是 接受 0H 。
二、选择题1.在假设检验中,用α和β分别表示犯第一类错误和第二类错误的概率,则当样本容量一定时,下列说法正确的是( C )A .α减小β也减小B .α增大β也增大C .α与β不能同时减小,减小其中一个,另一个往往就会增大D .A 和B 同时成立2.在假设检验中,一旦检验法选择正确,计算无误( C )A .不可能作出错误判断B .增加样本容量就不会作出错误判断C .仍有可能作出错误判断D .计算精确些就可避免错误判断3.在一个确定的假设检验问题中,与判断结果有关的因素有( D )A .样本值及样本容量B .显著性水平αC .检验的统计量D .A 和B 同时成立4.对于总体分布的假设检验,一般都使用2χ拟合优度检验法,这种检验法 要求总体分布的类型为( D )A .连续型分布B .离散型分布C .只能是正态分布D .任何类型的分布5.在假设检验中,记1H 为备择假设,则称( B )为犯第一类错误A .1H 真,接受1HB .1H 不真,接受1HC .1H 真,拒绝1HD .1H 不真,拒绝1H6.机床厂某日从两台机器所加工的同一种零件中,分别抽取20,25n m ==的两个样本,检验两台机器的台工精度是否相同,则提出假设( B )A .012112:;:H H μμμμ=≠B .2222012112:;:;H H σσσσ=≠ C .012112:;:H H μμμμ=> D .2222012112:;:;H H σσσσ=> 7 .设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X XX N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
样本均值X 和Y ,而2X S 和2Y S 相应为样本方差,则检验假设220:X Y H σσ=( D )A .要求X Y μμ=B .要求22X Y S S =C .使用2χ--检验D .使用F --检验8.检验的显著性水平是( B )A .第一类错误概率B .第一类错误概率的上界C .第二类错误概率D .第一类错误概率的上界10.在假设检验中,如果原假设0H 的否定域是W ,那么样本观测值12,,...,n x x x 只可能有下列四种情况,其中拒绝H 且不犯错误的是( C )A.0H 成立,12(,,...,)n x x x W ∈B.0H 成立12(,,...,)n x x x W ∉C.0H 不成立,12(,,...,)n x x x W ∈D.0H 不成立,12(,,...,)n x x x W ∉三、解答题1. 根据以往资料分析,某种电子元件的使用寿命服从正态分布,σ =11.25 。
现从周内生产的一批电子元件中随机的抽取9只,测得其使用寿命为(单位:时): 2315,2360,2340,2325,2350,2320,2335,2335,2325问这批电子元件的平均使用寿命可否认为是2350时(0.05α=)。
解:设X 为这批电子元件的使用寿命,则待检验的原假设和备择假设为:0:2350H μ= VS 1:2350H μ≠,采用U 检验法,在显著性水平α下,检验的拒绝域为2{||}u u α≥,则当0.05α=时候,则0.025 1.96u =,经计算2333.89x =,则检验统计量4.296u ==-,u 值落入了拒绝域内,故拒绝原假设,则这批电子元件的平均使用寿命不可认为是2350时。
2. 某厂生产的维尼伦在正常生产条件下纤度服正态分布N(1.405,0.048 ),某日抽取 5 根纤维,测得其纤维度为 1.32 1.55 1.36 1.40 1.44。
问这天生产的维尼伦纤度的均值有无显著变化。
(0.05α=)解:设X 为某厂生产的维尼伦在正常生产条件下纤度,则待检验的原假设和备择假设为:0: 1.405H μ= VS 1: 1.405H μ≠,采用U 检验法,在显著性水平α下,检验的拒绝域为2{||}u u α≥,则当0.05α=时候,则0.025 1.96u =,经计算 1.414x =,则检验统计量0.419u ==,u 值没有落入了拒绝域内,故接受原假设。
则这天生产的维尼伦纤度的均值无显著变化。
3.设有甲、乙两台机床加工同样产品。
分别从甲、乙机床加工的产品中随机的抽取8件和7件,测得产品直径(单位;mm )为甲 20.5 19.8 19.7 20.4 20.1 20.0 19.6 19.9乙 19.7 20.8 20.5 19.8 19.4 20.6 19.2已知两台机床加工产品的直径长度分别服从方差为2222120.3, 1.2σσ==的正态分布,问两台机床加工产品直径的长度有无显著差异。
(0.01α=)解:设X ,Y 分别表示甲乙两台机床加工产品的直径长度,则211~(,)X N μσ,222~(,)Y N μσ,则待检验的原假设和备择假设为:012:H μμ= VS 012:H μμ≠,则采用U 检验法,在显著性水平α下,检验的拒绝域为2{||}u u α≥,则当0.01α=时候,则0.005 2.575u =,经计算20x =,20y =,则检验统计量0u =,则u 值没有落入了拒绝域内,故接受原假设。
则可以认为两台机床加工产品直径的长度无显著差异。
4.某砖瓦厂有两个砖窑生产同一规格的砖块。
从两窑中分别取砖 7 块和 6 块测定其抗断强度(单位:10 Pa)如下:甲 2.051 2.556 2.078 3.727 3.628 2.597 2.462乙 2.666 2.564 3.256 3.300 3.103 3.487设砖的抗断强度服从正态分布且20.32σ=两窑生产的砖抗折强度有无明显差异(0.05α=)。
解:设X ,Y 分别表示甲、乙两窑生产的砖抗折强度,则21~(,)X N μσ,22~(,)Y N μσ,则待检验的原假设和备择假设为:012:H μμ= VS 012:H μμ≠,则采用U 检验法,在显著性水平α下,检验的拒绝域为2{||}u u α≥,则当0.05α=时候,则0.025 1.96u =,经计算 2.728x =, 3.063y =, 1.0645u ==-。
则u 值没有落入了拒绝域内,故接受原假设。
则可以认为两窑生产的砖抗折强度无明显差异。
5. 在正常情况下,某肉类加工厂生产的小包装精肉每报重量 X 服从正态分 布,标准差10σ=。
某日抽取12包,测得其重量(单位:g )为:501 497 483 492 510 503 478 494 483 496 502 513 问该日生产的纯精肉每包重量的标准差是否正常(0.10α=)。
解:则待检验的原假设和备择假设为:220:10H σ= VS 221:10H σ≠, 采用2χ检验法,在显著性水平α下,检验的拒绝域为2222122{(1)(1)}n n ααχχχχ-≤-≥-或,则当0.1α=,12n =时候,则220.950.05(11) 4.5748,(11)19.6751χχ==,经计算 10.77877S =,22211(10.77877)12.7810χ⨯==,则2χ值没有落入了拒绝域内,故接受原假设,可认为该日生产的纯精肉每包重量的标准差是正常的。
6.某种轴料的椭圆度服从正态分布。
现从一批该种轴料中抽取 15 件测量其 椭圆度,计算得到样本标准差0.035s =。
试问这批轴料椭圆度的总体方差与规定方差200.0004σ=有无显著差(0.05α=)。
解:则待检验的原假设和备择假设为:220:0.02H σ= VS 221:0.02H σ≠,采用2χ检验法,在显著性水平α下,检验的拒绝域为2222122{(1)(1)}n n ααχχχχ-≤-≥-或,则当0.05α=,15n =时候,则220.9750.025(14) 5.6287,(14)26.1189χχ==,由已知 0.035s =,222140.03542.875(0.02)χ⨯==,则2χ值落入了拒绝域内,故拒绝原假设,因而这批轴料椭圆度的总体方差与规定方差200.0004σ=有显著差。