苏教版七年级数学上册第二章复习_有理数的加减法测试题(A卷)
- 格式:doc
- 大小:69.50 KB
- 文档页数:3
南天教育有理数复习练习题(完成时间:30分钟;命题老师:蒋老师)一、填空题 -21+(-31)= -21+31= 21+31= 21-31= -31-41= -41-(-51)= 2.两个相反数之和为_____.3.0减去一个数得这个数的_____.4.两个正数之和为_____,两个负数之和为_____,一个数同0相加得_____.5.某地傍晚气温为-2℃,到夜晚下降了5℃,则夜晚的气温为_____,第二天中午上升了10℃,则此时温度为_____.6.异号两数相加和为正数,则_____的绝对值较大,如和为负数,则_____的绝对值较大,如和为0,则这两个数的绝对值______.7.两个数相加,交换加数的位置和_____,两个数相减交换减数的位置,其得数与原得数的关系是_____.8.已知一个数是-2,另一个数比-2的相反数小3,则这两个数和的绝对值为_____.二、选择题9.下列结论不正确的是 [ ]A .两个正数之和必为正数B .两数之和为正,则至少有一个数为正C .两数之和不一定大于某个加数D .两数之和为负,则这两个数均为负数10.下列计算用的加法运算律是 [ ] -32+3.2-32+7.8 =-31+(-32)+3.2+7.8 =-(31+32)+3.2+7.8 =-1+11=10A .交换律B .结合律C .先用交换律,再用结合律D .先用结合律,再用交换律11.若两个数绝对值之差为0,则这两个数 [ ]A .相等B .互为相反数C .两数均为0D .相等或互为相反数12.-[0.5-31-(61+2.5-0.3)]等于 [ ] A .2.2B .-3.2C .-2.2D .3.2 三、计算题13.计算 (1)-31+25+(-69) (2)(-21)-(-31)-(+41)14.已知两个数的和为-252,其中一个数为-143,求另一个数.15.如果两个数的和的绝对值,等于这两个数差的绝对值,这两个数是什么样的数.16.1984年全国高考数学试题共15个选择题,规定答对一个得4分,答错一个扣1分,不答得0分,某人选对12个,错2个,未选一个,请问该生选择题得多少分?17.弘文中学定于十一月份举行运动会,组委会在整修百米跑道时,工作人员从A 处开工,约定向东为正,向西为负,从开工处A 到收工处B 所走的路线(单位:米),分别为+10、-3、+4、-2、+13、-8、-7、-5、-2,工作人员整修跑道共走了多少路程?参考答案一、1.-65 -61 65 61 -127 -201 2. 0 3.相反数 4.正数 负数 这个数5.-7℃ +3℃6.正数 负数 相等7.不变 互为相反数 8. 3二、9.D 10.D 11.D 12.A三、13.-75 -125 14.-2013 15.至少有一个数为0 16.46 17. 54米。
章节测试题1.【答题】某城市三月末连续四天的天气情况如图所示,这四天中温差(最高气温与最低气温的差)最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】D【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数,分别计算出每天的温差,然后比较大小即可.【解答】每天的温差分别为:A.星期一:5-(-6)=5+6=11;B.星期二:7-(-5)=7+5=12;C.星期三:8-(-2)=8+2=10;D.星期四:6-(-7)=6+7=13;星期四的温差最大.选D.2.【答题】随着北京公交票制票价调整,公交集团换成了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版公交站牌每一个站名上方都有一个对应的数,将上下车站站名所对应数相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体内容如下:乘车路程计价区段0~10 11~15 16~20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行五折优惠,学生卡实行二五折优惠.小明用学生卡乘车,上车时站名上对应的数是5,下车时站名上对应的数是22,那么小明乘车的费用是______元.【答案】1【分析】先用下车时站名上对应的数减去上车时站名上对应的数,求出小明乘车的路程是多少,进而得到对应的票价,然后用它乘以0.25,即可得到小明的乘车费用.【解答】小明的乘车路程为:22-5=17,故小明的乘车费用为4×0.25=1(元).故答案为1.3.【题文】全班同学分成五个组进行游戏,每个组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各组的分数如下:第一组第二组第三组第四组第五组100 150 -400 350 -100若按成绩从高到低排列.(1)第一名超出第四名多少分?(2)第四名超出第五名多少分?【答案】(1)450分;(2)300分.【分析】本题考查有理数的比较大小和有理数的减法法则,根据题题意先比较有理数的大小,再进行有理数的减法即可.先对五个组进行排名的350>150>100>-100>-400,然后用对应的名次相减即可得到结果.【解答】(1)∵350>150>100>-100>-400,∴第一名超出第四名的分数为350-(-100)=350+100=450(分).(2)第四名超出第五名的分数为-100-(-400)=-100+400=300(分).答:第一名超出第四名的分数为450(分);第四名超出第五名的分数为-300(分).4.【题文】把几个数用大括号括起来,中间用逗号断开,如:{1,2,-3},{-2,7,,19},我们称之为集合,其中的数称为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5-a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好的集合.(1)请你判断集合{1,2},{-2,1,2.5,4,7}是不是好的集合?(2)请你再写出两个好的集合(不得与上面出现过的集合重复);(3)写出所有好的集合中,元素个数最少的集合.【答案】(1){1,2}不是好的集合,{-2,1,2.5,4,7}是好的集合;(2)答案不唯一,如{8,-3};{8,2.5,-3};(3)元素个数最少的好的集合是{2.5}.【分析】本题考查有理数的减法以及新定义问题.(1)根据“好集合”的定义:a,5-a都是这个集合的元素检验即可;(2)满足“好集合”的条件即可;(3)元素个数最少的集合即只有一个数,∴a=5-a,∴a=2.5.【解答】(1)∵5-1=4,5-2=3,4,3不在集合{1,2}中,∴{1,2}不是“好集合”;{-2,1,2.5,4,7}是“好集合”;(2)答案不唯一,如{2,3,1,4}、{2.5,10,﹣5};满足“好集合”的条件即可;(3)元素个数最少的集合即只有一个数,∴a=5-a,∴a=2.5.∴元素个数最少的集合为{2.5}.5.【答题】把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是()A. -6-7+2-9B. -6-7-2+9C. -6+7-2-9D. -6+7-2+9【答案】B【分析】本题考查有理数的加减混合运算.【解答】原式=-6-7-2+9.选B.6.【答题】式子-20+3-5+7的正确读法是()A. 负20加3减5加7的和B. 负20加3减负5加正7C. 负20加3减5加7D. 负20加正3减负5加正7【答案】C【分析】本题考查有理数的加减混合运算.正负数加减运算时,负号要读出来,正号不需要读出来.【解答】式子-20+3-5+7的正确读法是负20加3减5加7.故答案选C.7.【答题】下列交换加数位置的变形中,正确的是()A. 1﹣4+5﹣4=1﹣4+4﹣5B. 1﹣2+3﹣4=2﹣1+4﹣3C. 4﹣7﹣5+8=4﹣5+8﹣7D. ﹣3+4﹣1﹣2=2+4﹣3﹣1【答案】C【分析】本题考查有理数的加减混合运算.【解答】A.1﹣4+5﹣4=1﹣4-4+5,故原选项错误;B.1﹣2+3﹣4=-2+1-4+3,故原选项错误;C.4﹣7﹣5+8=4﹣5+8﹣7,正确;D.﹣3+4﹣1﹣2=-2+4﹣3﹣1,故原选项错误.选C.8.【答题】某地冬季一天中午的气温是5℃,下午上升到7℃,受冷空气影响,到夜间气温最低时又下降了9℃,则这天夜间的最低气温是______℃.【答案】-2【分析】有关温度的计算时,上升为加法,下降为减法,再列式计算即可.本题要注意温度是上升到,不是上升,要仔细审题.根据题意温度最高为7℃,下降为减法,然后列式计算即可得到结果.【解答】根据题意得:7-9=-2℃.故答案为-2.9.【答题】在算式-1+7-()=-3中,括号里应填()A. +2B. -2C. +9D. -9【答案】C【分析】本题考查有理数的加减混合运算.根据题意可知括号里的数等于-1+7-(-3),通过计算即可得到结果.【解答】根据题意得:-1+7-(-3)=-1+7+3=9.选C.10.【答题】下列各式中,与式子-1-2+3不相等的是()A. (-1)+(-2)+(+3)B. (-1)-2+(+3)C. (-1)+(-2)-(-3)D. (-1)-(-2)-(-3)【答案】D【分析】本题考查有理数的加减混合运算.根据有理数的减法法则,将各个选项去括号,再与原式进行比较即可得解.【解答】A.(-1)+(-2)+(+3)=-1-2+3,与原式相等;B.(-1)-2+(+3)=-1-2+3,与原式相等;C.(-1)+(-2)-(-3)=-1-2+3,与原式相等;D.(-1)-(-2)-(-3)=-1+2+3,与原式不相等.选D.11.【答题】若x是最大的负整数,y是最小的正整数,z是绝对值最小的数,w是相反数等于它本身的数,则x-z+y-w的值是()A. 0B. -1C. 1D. -2【答案】A【分析】本题考查有理数的加减混合运算.本题根据题意结合整数的分类和绝对值的知识,得到每个字母所代表的数,然后再进行有理数的加减法计算即可.先根据题意得,最大的负整数x为-1,最小的正整数y为1,绝对值最小的数z为0,相反数等于它本身的数w为0,再进行计算即可得解.【解答】根据题意得:x=-1,y=1,z=0,w=0,则x-z+y-w=-1-0+1-0=0.选A.12.【答题】运用去括号法则和加法交换律后,8-(-3)+(-5)+(-7)等于()A. 8-3+5-7B. 3+8-7-5C. -5-7-3+8D. 8+3-5+7【答案】B【分析】本题考查有理数的加减混合运算.根据有理数的减法法则,将原式去括号得8+3-5-7,再与各个选项进行比较即可.【解答】8-(-3)+(-5)+(-7)=8+3-5-7.选B.13.【答题】若表示运算x+z-(y+w),则的值是()A. 5B. 7C. 9D. 11【答案】C【分析】本题是一道新定义类型的题目,关键是要理解定义表示的运算,然后根据有理数的加减法法则进行运算即可.根据题意将数字代入对应字母得到算式3-1-(-2-5),再求出式子的值即可.【解答】由题意得=3+(-1)-[(-2)+(-5)]=3-1+7=9.选C.14.【答题】请指出下面的计算从哪一步开始出现错误()1-(+1)-(-1)-(+1)=1-1+1-1①=(1+1)-(1-1)②=2-(1-1)③=2-0=2④.A. ①B. ②C. ③D. ④【答案】B【分析】本题考查有理数的减法运算.此题错在(1+1)-(1-1)②,把(1+1)写成了(1-1),应该是(1+1)-(1+1).【解答】1-(+1)-(-1)-(+1)=1-1+1-1①=(1+1)-(1+1)②=2-(1+1)③=2-2=0④.错在②.选B.15.【答题】1减去-5与5的和,所得的差是______.【答案】1【分析】本题考查有理数的减法运算.两个互为相反数的数相加为零,1减去0还是为1.【解答】根据题意得1-(-5+5)=1-0=1.故答案为1.16.【答题】已知有理数-1,-8,+11,-2,请你设计一种有理数的加减混合运算,使这四个数的运算结果最大,则列式为______.【答案】答案不唯一,如-(-1)-(-8)+(+11)-(-2).【分析】本题的解题思路为:要使运算结果最大,则正数前面应取“+”,负数前面应取“-”.要使四个数的运算最大,相当于让它们的绝对值相加,负数的绝对值等于它的相反数,如:-1,-8,-2,就是加上它们的相反数,然后再加上+11即可.【解答】答案不唯一,如-(-1)-(-8)+(+11)-(-2).17.【题文】计算:-20+(-14)-(-18)-13.【答案】-29.【分析】本题考查有理数的加减混合运算. 利用有理数加减运算法则:同号两数相加,取相同符号,并把绝对值相加;绝对值不相等异号两数相加,取绝对值较大的加数的符号,并用加大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;从而求解.【解答】-20+(-14)-(-18)-13=-20-14+18-13=-34+18-13=-16-13=-29.18.【答题】大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计了一种新的加减记数法,比如:9可以写成,=10-1;198可以写成,=200-2;7683可以写成,=10000-2320+3.总之,数字上画一杠表示减去它,按这个方法请计算的结果为()A. 1990B. 2068C. 2134D. 3024【答案】B【分析】本题考查新定义运算,要理解并准确按照新定义写出算式,再根据有理数的加减法法则进行计算.根据题意数字上画一杠表示减去它,分别求出的值各是多少,然后用即可得到结果.【解答】根据题意得:=(5000-201+30)-(3000-240+1)=4829-2761=2068.选B.19.【题文】请根据如图所示的对话解答下列问题.求:(1)a,b,c的值;(2)8-a+b-c的值.【答案】(1)a=-3,b=±7;(2)33或5.【分析】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.(1)首先根据相反数的概念求得a的值,根据绝对值求得b,b的值有了两个;(2)根据b的两个取值,分别求出两个c的值,再分别代入8-a+b-c,求值即可.【解答】(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7;(2)∵a=-3,b=±7,c和b的和是-8,∴当b=7时,c=-15,当b=-7时,c=-1,当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.20.【题文】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值.【答案】(1)-1,-4;(2)-88.【分析】本题考查有理数的加减混合运算.(1)根据以B为原点,则C表示1,A表示-2,进而得到p的值;根据以C为原点,则A表示-3,B表示-1,进而得到p的值;(2)根据原点O在图中数轴上点C的右边,且CO=28,可得C表示-28,B表示-29,A 表示-31,据此可得p的值.【解答】(1)若以B为原点,则C表示1,A表示−2,∴p=1+0−2=−1;若以C为原点,则A表示−3,B表示−1,∴p=−3−1+0=−4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示−28,B表示−29,A表示−31,∴p=−31−29−28=−88.。
有理数加减法【知识扫描】1、减去__________________________这个数的相反数。
即a -b=a+( )2、有理数减法操作步骤:(1)化-为+;(2)按加法法则计算。
【基础训练】1、判断下列说法是否正确:(1)减去一个数等于加上这个数的相反数 ( ) (2)如果两个有理数互为相反数,那么它们的差为零 ( ) (3)如果两个数的差是正数,那么被减数是正数 ( ) (4)0减去一个有理数,其差是减数的相反数 ( ) 2、计算(请写出详细的解题过程!)(1)49- (2)(13)22-- (3)0(5)--(4)9(3)--- (5)32.375(2)8-- (6)53()64---(7)23155--- (8)6(37)5----3、(1)温度3℃比-5℃高_________;从海拔11m 到-28m ,下降了___________;(2)比+3的相反数小4的数是________;31的相反数减去-4的差的是____________;(3)从12中减去-2.5与215的和是_______________;(4) 数轴上表示323的点与表示324-的点之间的距离为_______________;(5)(+14)+( )=-37 ; 1(2)3--( )=1;6()5++( )=-0.2 ; 1(5)4-+( )=384-。
4、甲、乙、丙三地的海拔高度分别是18米,-4米,-16米,那么最高的地方比最低的地方高多少米? ( ) A 、 2米 B 、34米 C 、14米 D 、22米5、较小的数减去较大的数,所得的差一定是 ( ) A 、正数 B 、负数 C 、0 D 、不能确定正负6、下列说法中,正确的是 ( ) A 、减去一个数,等于加上这个数 B 、零减去一个数,仍得这个数 C 、一个负数减去一个负数结果还是负数D 、在有理数的减法中,被减数不一定比减数或差大7、下列计算正确的是 ( ) A 、422--=- B 、5(5)0--= C 、10(8)2+-=- D 、53(3)5----=- 8、下列说法中正确的是 ( ) A 、两数之差一定小于被减数 B 、减去一个负数,差一定大于被减数 C 、0减去任何数,差都是负数 D 、减去一个正数,差不一定小于被减数9、某地一周内每天的最高气温(℃)与最低气温记录如下表,其中哪天的温差最大?哪天的温差最小?【拓宽视野】10、已知b<0,则 a ,a b -,a b +中,最大的是 ( ) A 、a B 、a b - C 、a b + D 、不一定 11、(1)已知1a =,2b =,则a b -的值为___________;(2)已知1a =,2b =,且a <b ,则a b -的值为___________。
章节测试题1.【答题】计算(-2)+(-3)的结果等于()A. -5B. -1C. 1D. 5 【答案】A【分析】本题考查有理数的加法运算.【解答】(-2)+(-3)=-(2+3)=-5.选A.2.【答题】计算的结果等于()A. B. C. D.【答案】B【分析】本题考查有理数的减法运算.【解答】(-10)-5=-10+(-5)=-(10+5)=-15.选B.3.【答题】温度由上升7℃是()A. 3℃B.C. 11℃D.【答案】A【分析】本题考查有理数的加法运算.【解答】温度由−4℃上升7℃是−4+7=3℃,选A.4.【答题】下列运算正确的有()①;②;③;④;⑤.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查有理数的加法运算.【解答】①(-2)+(-2)=-4,故错误;②(-6)+(+4)=-2,故错误;③0+(-5)=-5,故正确;④,故正确;⑤原式=,故正确.故答案为C.5.【答题】计算-7+1的结果是()A. 6B. -6C. 8D. -8【答案】B【分析】本题考查有理数的加法运算.【解答】原式=-(7-1)=-6,选B.6.【答题】某景点山上的温度是﹣3℃,山下的温度是8℃,则山下的温度比山上高______℃.【答案】11【分析】本题考查有理数的减法运算.【解答】∵某景点山上的温度是﹣3℃,山下的温度是8℃,∴山下的温度比山上的温度高:8﹣(﹣3)=11(℃),故答案为11.7.【答题】在算式的每一步后面填上这一步所运用的运算律:____________.【答案】加法交换律加法结合律【分析】本题考查有理数加法的运算律.【解答】第一步是加法交换律;第二步是加法结合律;第三步是互为相反数和为0;故答案为:加法交换律;加法结合律.8.【答题】表示不超过x的最大整数,如,则______.【答案】−2【分析】本题考查有理数的加法运算.【解答】[3.7]+[−4.5]=3+(−5)=−2,故答案为−2.9.【答题】某地某天上午的气温是-2℃,中午上升了6℃,下午下降了3℃,到了夜间又下降了7℃,夜间的气温是______℃.【答案】-6【分析】本题考查有理数的加减混合运算.【解答】夜间的气温是-2+6-3-7=6-12=-6℃,故填-6.10.【题文】计算:(1)(-2)+(+3)+(+4)+(-3)+(+5)+(-4);(2).【答案】(1)3;(2)-4.【分析】本题考查有理数的加法运算.【解答】(1)原式=[(-2)+(+5)]+[(+3)+(-3)]+[(+4)+(-4)]=(+3)+0+0=3.(2)原式=.11.【题文】阅读下面文字:对于()+()+17+(),可以按如下方法计算:原式=[(-5)+()]+[(-9)+()]+()+[(-3)+()]=[(-5)+(-9)+17+(-3)]+[()+()++()]=0+()=-1.上面这种方法叫拆项法.仿照上面的方法,请你计算:(-2018)+(-2017)+(-1)+4036.【答案】-2.【分析】本题考查有理数的加法运算.【解答】原式=[(-2018)+()]+[(-2017)+()]+[(-1)+(-)]+4036 =[(-2018)+(-2017)+(-1)+4036]+[(-)+(-)+(-)]=0+[(-)+(-)+(-)]=-2.12.【题文】计算:(1);(2);(3).【答案】(1);(2)1;(3)-1010.【分析】本题考查有理数的加法运算.【解答】(1).(2)原式=.(3)原式===-1010.13.【题文】有5筐蔬菜,以每筐50千克为标准质量,超过的千克数记为正数,不足的记为负数,称重记录如下:,,,,.与标准质量相比较,这5筐蔬菜的总质量是超过还是不足?相差多少?这5筐蔬菜的总质量是多少?【答案】不足,相差6千克,5筐蔬菜的总重量是244千克.【分析】本题考查有理数的加法运算.【解答】与标准重量比较,5筐菜总计超过3+(−6)+(−4)+2+(−1)=−6千克;5筐蔬菜的总重量=50×5+(−6)=244千克.14.【题文】芳芳家门前有一棵葡萄树,果实离地3米,一只蜗牛在离葡萄成熟还有6天时,从地面沿树干向上爬,第一天向上爬了0.5米,却下滑了0.1米;第二天向上爬了0.48米,却下滑了0.15米;第三天向上爬了0.7米,却下滑了0.18米;第四天向上爬了0.75米,却下滑了0.1米;第五天向上爬了0.55米,没有下滑.试想蜗牛要吃上新鲜葡萄,第六天还要不要向上爬?如果需要向上爬,至少还要爬多少米?【答案】要向上爬,至少还要爬0.55米.【分析】本题考查有理数的加减混合运算.【解答】把向上爬记为正,向下滑记为负,则五天向上爬的距离为5-0.1+0.48-0.15+0.7-0.18+0.75-0.1+0.55=2.45(米),∴第六天至少要爬3-2.45=0.55米.15.【题文】已知某水库正常水位是20 m,下表是该水库今年某周的水位记录情况:星期—二三四五六日水位/m 0注:高于正常水位记作正,低于正常水位记作负.(1)本周二的水位是______m;(2)本周最高水位是______m,最低水位是______m;(3)请用折线统计图表示本周的水位情况.【答案】(1)20;(2)22.5,17;(3)见解答.【分析】本题考查有理数的加减法.【解答】(1)本周二的水位是20+0=20m;(2)本周最高水位在周四,水位是20+2.5=22.5m,最低水位在周三,水位是20-3=17m;(3)作出折线统计图如下:16.【题文】计算:(1);(2);(3);(4).【答案】(1)-10;(2)-1;(3)0.9;(4).【分析】本题考查有理数的加减混合运算.【解答】(1)=-7-[-2-(-5)]=-7-3=-10.(2)====-1.(3)=-8.5-(-6.5+3.3-6.2)=-8.5+9.4=0.9.(4)==7-5=.17.【答题】计算(﹣3)﹣(﹣9)的结果等于()A. 12B. ﹣12C. 6D. ﹣6【答案】C【分析】本题考查了有理数的加法运算,正确掌握运算法则是解题关键.根据减去一个数等于加上这个数相反数,可得答案.【解答】原式=(﹣3)+9=(9﹣3)=6,选C.18.【答题】比﹣3小1的数是()A. 2B. ﹣2C. 4D. ﹣4【答案】D【分析】本题考查了有理数的减法运算.【解答】-3-1=-4,选D.19.【答题】已知室内温度为3℃,室外温度为﹣3℃,则室内温度比室外温度高()A. 6℃B. ﹣6℃C. 0℃D. 3℃【答案】A【分析】本题考查了有理数的减法运算.【解答】3-(-3)=3+3=6,选A.20.【答题】若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是()A. 5或1B. 1或﹣1C. 5或﹣5D. ﹣5或﹣1【答案】A【分析】本题考查了绝对值的意义,解题时先根据绝对值的意义,求出a、b的值,然后根据a、b的关系分类讨论求解即可.【解答】根据绝对值的意义,得到a=±3,b=±2,然后由a+b>0,可知a=3,b=2或a=3,b=-2,因此可求得a-b=1或a-b=3-(-2)=5.选A.。
第二章复习 有理数的加减法测试题(A 卷)一、填空题(每小题3分,共30分)1.(-4)+(-6)=________;(-4)+|-6|=________; 2.(-21)-(+31)=________;(-21)-(-31)=________;3.(+3)+________=0;(-5)-________=0; 4.(-8)+________=-6;(+15)+________=2; 5.|-2.1|+|-1.5|=________;132-143=________. 6.把(+21)+(-31)-(+5)-(-4)写成省略括号的和的形式是__________;读作______________或读作______________.7.比0小3的数是________,比16大-9的数是________. 8.按要求交换加数的位置:(1)-5+6-5=-________-________+________.(2)-6-5+8-9=________9________6________8________5. 9.绝对值小于6的所有整数的和为______________.10.已知a 的相反数是最大的非正整数,b 的绝对值为1,则a+b=________.二、判断题(每小题2分,共10分) 11.两数的和必大于其中任一加数( ) 12.零减去一个数,仍得这个数( ) 13.两数的差必小于被减数( ) 14.-1.2的相反数与151的绝对值的和为零( ) 15.若a+b=0,则a 与b 互为相反数( )三、选择题(每小题3分,共15分) 16.运用加法的运算律计算(+631)+(-18)+432+(-6.8)+18+(-3.2)最适当的是A .[(+631)+432+18]+[(-18)+(-6.8)+(-3.2)]B .[(+631)+(-18)]+[432+(-6.8)]+[18+(-3.2)] C .[(+632)+432]+[(-18)+18]+[(-3.2)+(-6.8)] D .[(+632)+(-6.8)+432]+[(-18)+18+(-3.2)] 17.室内温度是16℃,室外温度是-7℃,室内温度比室外温度高 A .9℃ B .23℃ C .-9℃D .以上都不对18.下列说法中,正确的是A .两数相加,符号不变,并把绝对值相加B .异号两数相加,取较大数的符号C .异号两数相加,取绝对值较大的加数的符号,并用绝对值较大的数减去绝对值较小的数D .同号两数相加,取原来的符号,并把绝对值相加 19.若两数的和为负数,则这两个数 A .都是负数B .一个为负数,一个为零C .一个为正数,一个为负数,且负数的绝对值大D .以上三种情况都有可能20.较小的数减去较大的数,所得的差一定是 A .正数 B .负数 C .零D .不能确定四、计算题(共30分)21.(6分)(-18)+12+(-7)+(-21)+6+3522.(6分)(-5.4)-(+2)+(-1.4)-(-0.5)23.(6分)8-3+5-9-624.(6分)-131+21+41-221+4325.(6分)(+1)+(-2)+(+3)+(-4)+……+(-10)+(+11)-(-12)五、解答题(共15分)26.(7分)某架飞机的飞行高度为8000米,下表是这架飞机5次升降的情况(上升记为正),求经过5次升降后的飞机飞行高度.计算:(1)1011001431321211⨯++⨯+⨯+⨯ (2))1(1431321211-++⨯+⨯+⨯n n参考答案一、1.-10 2 2.-65 -61 3.-3 -5 4.2 -13 5.3.6 -1216.21-31-5+4 21减31减5加4 正21,负31,负5,正4的和 7.-3 78.(1)5 5 6 (2)- - + - 9.0 10.±1 二、11.× 12.× 13.× 14.× 15.√ 三、16.C 17.B 18.D 19.D 20.B 四、21.7 22.-8.3 23.-5 24.-23125.-6 五、26.8000+540-750-320+600+380=8450 27.(1)101110013131212111011001321211-+++-+-=⨯++⨯+⨯ 10110010111=-= (2)原式=1-21+21-31+31+……+12111111--=--=--n n n n n。
苏科版七年级上册第二章2.5有理数的加法与减法同步练习一.选择题(共14小题)1.计算﹣3+|﹣5|的结果是()A.﹣2B.2C.﹣8D.82.已知|m|=5,|n|=2,且n<0,则m+n的值是()A.﹣7B.+3C.﹣7或﹣3D.﹣7或33.﹣7的相反数加上﹣3,结果是()A.10B.﹣10C.4D.﹣44.计算:﹣3﹣|﹣6|的结果为()A.﹣9B.﹣3C.3D.95.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>06.如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b<0,那么a+b>0C.如果a>0,b<0,那么a+b<0D.如果a<0,b>0,且|a|>|b|,那么a+b<07.已知x=4,|y|=5且x>y,则2x﹣y的值为()A.13B.3C.13或3D.﹣13或﹣38.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个9.若一个有理数与它的相反数的差是一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可以为正数、负数D.这个有理数为零10.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2B.﹣2C.2或﹣2D.以上都不对11.把6﹣(+3)﹣(﹣7)+(﹣2)写成省略括号的形式应是()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣212.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)13.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.﹣1B.0C.1D.214.(2009秋•荔城区期末)去年7月份小明到银行开户,存入1500元,以后每月根据收支情况存入一笔钱,下表为该人从8月份到12月份的存款情况:则截止到去年12月份,存折上共有()元钱.A.9750B.8050C.1750D.9550二.填空题(共9小题)15.一组数:1,﹣2,3,﹣4,5,﹣6,…,99,﹣100,这100个数的和等于.16.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=.17.已知m是6的相反数,n比m的相反数小2,则m﹣n等于.18.已知|a+2|+|b﹣1|=0,则(a+b)﹣(b﹣a)=.19.绝对值不大于2.1的所有整数是,其和是.20.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=.21.我们规定“※”是一种数学运算符号,A※B=(A+B)﹣(A﹣B),那么3※(﹣5)=.22.一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.23.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.三.解答题(共7小题)24.(1)0﹣11(2)(﹣13)+(﹣8)(3)(﹣2)﹣(﹣9)(4)(﹣4)﹣5(5)23+(﹣17)+6+(﹣22)(6)(﹣)+(﹣)++(﹣)(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)(8)﹣4.2+5.7﹣8.4+10.25.解答下列各题:(1)(﹣3.6)+(+2.5)(2)﹣(﹣3)﹣2(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)﹣(﹣)(5)3﹣(﹣)+(﹣)(6)﹣|﹣1|﹣()﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)26.已知|a|=9,|b|=6,且a+b<0,求a﹣b的值.27.若有理数x、y满足|x|=7,|y|=4,且|x+y|=x+y,求x﹣y的值.28.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c 的值.29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a升/千米,则这次养护共耗油多少升?30.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?2.5有理数的加法与减法参考答案与试题解析一.选择题(共14小题)1.(计算﹣3+|﹣5|的结果是()A.﹣2B.2C.﹣8D.8【分析】先化去绝对值,再进行有理数加法运算,求得计算结果.【解答】解:∵﹣3+|﹣5|=﹣3+5=2,∴计算﹣3+|﹣5|的结果是2.故选B【点评】本题主要考查了有理数的运算,解决问题的关键是掌握有理数的加法运算法则以及绝对值的性质.注意:①一个负数的绝对值是它的相反数;②在进行有理数加法运算时,首先判断两个加数的符号,是同号还是异号.2.已知|m|=5,|n|=2,且n<0,则m+n的值是()A.﹣7B.+3C.﹣7或﹣3D.﹣7或3【分析】先根据绝对值的定义及已知条件n<0,分别求出m与n的值,再代入m+n,即可得出结果.【解答】解:因为|m|=5,|n|=2,所以m=±5,n=±2,又∵n<0,所以n只能取﹣2.当m=5,n=﹣2时,m+n=3;当m=﹣5,n=﹣2时,m+n=﹣7.故选D.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.3.﹣7的相反数加上﹣3,结果是()A.10B.﹣10C.4D.﹣4【分析】根据相反数的定义与有理数的加法列出算式,然后进行计算即可得解.【解答】解:根据题意得,﹣(﹣7)+(﹣3)=7﹣3=4.故选C.【点评】本题考查了有理数的加法,相反数的定义,是基础题.4.(计算:﹣3﹣|﹣6|的结果为()A.﹣9B.﹣3C.3D.9【分析】根据绝对值的性质去掉绝对值号,再根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣|﹣6|=﹣3﹣6=﹣9.故选A.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则是解题的关键.5.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>0【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.【点评】本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.6.如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b<0,那么a+b>0C.如果a>0,b<0,那么a+b<0D.如果a<0,b>0,且|a|>|b|,那么a+b<0【分析】利用有理数的加法法则判断即可得到结果.【解答】解:如果a<0,b>0,且|a|>|b|,那么a+b<0,故选D【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.7.已知x=4,|y|=5且x>y,则2x﹣y的值为()A.13B.3C.13或3D.﹣13或﹣3【分析】根据绝对值的性质求出y,再根据x>y确定出y的值,然后代入代数式进行计算即可得解.【解答】解:∵|y|=5,∴y=5或﹣5,∵x=4,x>y,∴y=﹣5,∴2x﹣y=2×4﹣(﹣5)=8+5=13.故选A.【点评】本题考查了有理数的减法,绝对值的性质,熟记减去一个数等于加上这个数的相反数是解题的关键,易错点在于判断出y的值.8.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个【分析】可用举特殊例子法解决本题.可以举个例子.如①3+(﹣1)=2,得出①、②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以③、④都是正确的.【解答】解:∵①3+(﹣1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥﹣1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.【点评】本题考查了有理数的加法,有理数的选择题可以用特例法来做,其效果往往是事半功倍的,做题时注意应用.9.若一个有理数与它的相反数的差是一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可以为正数、负数D.这个有理数为零【分析】根据减去一个数等于加上这个数的相反数,负数减正数等于负数加负数,可得答案.【解答】解:若一个有理数与它的相反数的差是一个负数,这个有理数一定是负数,故选:A.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数,注意负数减正数等于负数加负数.10.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2B.﹣2C.2或﹣2D.以上都不对【分析】由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可分别得出a、b、c的值,代入计算可得结果.【解答】解:由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可得a=1,b=﹣1,c=0,所以a﹣b+c=1﹣(﹣1)+0=1+1+0=2,故选:A.【点评】本题主要考查有理数的概念的理解,能正确判断有关有理数的概念是解题的关键.11.把6﹣(+3)﹣(﹣7)+(﹣2)写成省略括号的形式应是()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】根据有理数的减法法则即可得到原式=6﹣3+7﹣2.【解答】解:原式=6﹣3+7﹣2.故选C.【点评】本题考查了有理数的加减混合运算:有理数加减法运算统一成加法运算.先转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.12.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【解答】解:根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a﹣b﹣c,B的结果为a﹣b+c,C的结果为a﹣b﹣c,D的结果为a﹣b﹣c,故选B.【点评】本题主要考查有理数的加减混合运算,化简即可.去括号法则为+(+)=+,+(﹣)=﹣,﹣(+)=﹣,﹣(﹣)=+.13.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.﹣1B.0C.1D.2【分析】最小的自然数为0,最大的负整数为﹣1,绝对值最小的有理数为0,由此可得出答案.【解答】解:由题意得:a=0,b=﹣1,c=0,∴a﹣b+c=1.故选C.【点评】本题考查有理数的知识,难度不大,根据题意确定a、b、c的值是关键.14.去年7月份小明到银行开户,存入1500元,以后每月根据收支情况存入一笔钱,下表为该人从8月份到12月份的存款情况:则截止到去年12月份,存折上共有()元钱.A.9750B.8050C.1750D.9550【分析】把实际问题转化成有理数的加减法,分别根据上一月的存钱和与上一月的差值求出下一个月的存钱数,然后相加即可.【解答】解:小明从8月份到12月份的存款情况:1500+(1500﹣100)+(1500﹣100﹣200)+(1500﹣100﹣200+500)+(1500﹣100﹣200+500+300)+(1500﹣100﹣200+500+300﹣250)=9550元.故选D.【点评】解决问题的关键是正确列式,细心计算.二.填空题(共9小题)15.一组数:1,﹣2,3,﹣4,5,﹣6,…,99,﹣100,这100个数的和等于﹣50.【分析】将100个相加时,将相邻的两个数相加得﹣1,然后将50个﹣1相加即可得到答案.【解答】解:1﹣2+3﹣4+5﹣6+…+99﹣100=﹣1﹣1﹣1﹣…﹣1=﹣50,故答案为:﹣50.【点评】本题考查了有理数的加法,解题的关键是发现相邻的两个有理数的和等于﹣1.16.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=2或﹣4.【分析】由a、b互为相反数,可得a+b=0;由于不知a、b的正负,所以要分类讨论b的正负,才能利用|a﹣b|=6求b的值,再代入所求代数式进行计算即可.【解答】解:∵a、b互为相反数,∴a+b=0即a=﹣b.当b为正数时,∵|a﹣b|=6,∴b=3,b﹣1=2;当b为负数时,∵|a﹣b|=6,∴b=﹣3,b﹣1=﹣4.故答案填2或﹣4.【点评】本题主要考查了代数式求值,涉及到相反数、绝对值的定义,涉及到绝对值时要注意分类讨论思想的运用.17.已知m是6的相反数,n比m的相反数小2,则m﹣n等于﹣10.【分析】根据相反数的定义求出m的值,再根据n比m的相反数小2列出方程求出n的值,然后代入代数式进行计算即可得解.【解答】解:∵m是6的相反数,∴m=﹣6,∵n比m的相反数小2,∴﹣m﹣n=2,即﹣(﹣6)﹣n=2,解得n=4,所以,m﹣n=﹣6﹣4=﹣10.故答案为:﹣10.【点评】本题考查了相反数的定义,有理数的减法运算,本题容易出错,要注意符号.18.已知|a+2|+|b﹣1|=0,则(a+b)﹣(b﹣a)=﹣4.【分析】利用非负数的性质求出a与b的值,所求式子去括号合并后,将a与b的值代入计算即可求出值.【解答】解:∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,则原式=a+b﹣b+a=2a=﹣4.故答案为:﹣4.【点评】此题考查了有理数的加减混合运算,以及非负数的性质,熟练掌握运算法则是解本题的关键.19.绝对值不大于2.1的所有整数是﹣2,﹣1,0,1,2,其和是0.【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【解答】解:绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=2或0.【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.21.我们规定“※”是一种数学运算符号,A※B=(A+B)﹣(A﹣B),那么3※(﹣5)=﹣10.【分析】根据新运算代数计算即可.【解答】解:∵A※B=(A+B)﹣(A﹣B),∴3※(﹣5)=【3+(﹣5)】﹣【3﹣(﹣5)】=(﹣2)﹣8=﹣10.故答案为:﹣10.【点评】此题考查了有理数的加减混合运算,解答此题的关键是根据所给的式子,找出新运算的运算方法,再用新运算方法计算要求的式子即可.22一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50个单位.【分析】由题意可知,第1、2次落点处离O点的距离是1个单位,第3、4次落点处离O 点的距离是2个单位,以此类推,找出规律可求.【解答】解:由题意可知,第1、2次落点处离O点的距离是1个单位,第3、4次落点处离O点的距离是2个单位,以此类推,第100次落下时,落点处离O点的距离是50个单位.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是﹣4.【分析】根据数轴的单位长度,判断墨迹盖住部分的整数,然后求出其和.【解答】解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是1,2,3,4;所以他们的和是﹣4.故答案为:﹣4.【点评】此题的关键是先看清盖住了哪几个整数值,然后相加.三.解答题(共7小题)24.(1)0﹣11(2)(﹣13)+(﹣8)(3)(﹣2)﹣(﹣9)(4)(﹣4)﹣5(5)23+(﹣17)+6+(﹣22)(6)(﹣)+(﹣)++(﹣)(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)(8)﹣4.2+5.7﹣8.4+10.【分析】(1)将减法转化为加法,然后按照加法法则计算即可;(2)利用有理数的加法法则计算即可;(3)将减法转化为加法,然后按照加法法则计算即可;(4)将减法转化为加法,然后按照加法法则计算即可;(5)先将正数和正数相加,负数和负数相加,最后按照加法法则计算;(6)先将互为相反数的两数相加,然后再按照加法法则计算即可;(7)先将算式统一为加法运算,然后再按照加法法则计算即可;(8)先将正数和正数相加,负数和负数相加,最后按照加法法则计算.【解答】解:(1)0﹣11=0+(﹣11)=﹣11;(2)(﹣13)+(﹣8)=﹣(13+8)=﹣21;(3)(﹣2)﹣(﹣9)=﹣2+9=7;(4)﹣=﹣4+(﹣5)=﹣(4+5)=﹣10;(5)23+(﹣17)+6+(﹣22)=23+6+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(6)(﹣)+(﹣)++(﹣)=(﹣)++(﹣)+(﹣)=0+(﹣1)=﹣1;(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)=0+6+2+13﹣8=13;(8)﹣4.2+5.7﹣8.4+10=﹣4.2﹣8.4+5.7+10=﹣12.6+15.7=3.1.【点评】本题主要考查的是有理数的加减混合运算,掌握有理数的加减运算法则是解题的关键.25.解答下列各题:(1)(﹣3.6)+(+2.5)(2)﹣(﹣3)﹣2(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)﹣(﹣)(5)3﹣(﹣)+(﹣)(6)﹣|﹣1|﹣()﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)【分析】有理数加减混合运算的方法:有理数加减法统一成加法,据此求出每个算式的结果是多少即可.【解答】解:(1)(﹣3.6)+(+2.5)=﹣3.6+2.5=﹣1.1(2)﹣(﹣3)﹣2=(﹣2)+(3)=﹣3+4=1(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49﹣91﹣9)+5=﹣149+5=﹣144(4)﹣5﹣(﹣11)﹣(﹣)=﹣5+11+=6+3=9(5)3﹣(﹣)+(﹣)=(3﹣)+()=3+3=6(6)﹣|﹣1|﹣()﹣(﹣2.75)=﹣1﹣2+2.75=0.4+2.75﹣(1+2)=3.15﹣3.75=﹣0.6(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)=﹣7+11﹣9﹣2=11﹣(7+9+2)=11﹣18=﹣7(8)(﹣4)﹣(+5)﹣(﹣4)=(﹣4)+4﹣5=0﹣5=﹣5【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确有理数加减混合运算的方法:有理数加减法统一成加法.26.)已知|a|=9,|b|=6,且a+b<0,求a﹣b的值.【分析】根据绝对值的性质求出a、b,再根据有理数的加法运算法则判断出a、b的对应情况,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a|=9,|b|=6,∴a=±9,b=±6,∵a+b<0,∴a=﹣9,b=±6,当a=﹣9,b=6时,a﹣b=﹣9﹣6=﹣15,当a=﹣9,b=﹣6时,a﹣b=﹣9﹣(﹣6)=﹣9+6=﹣3,综上所述,a﹣b的值为﹣15或﹣3.【点评】本题考查了有理数的减法,有理数的加法,绝对值的性质,熟记运算法则和性质并判断出a、b的对应情况是解题的关键.27.若有理数x、y满足|x|=7,|y|=4,且|x+y|=x+y,求x﹣y的值.【分析】根据绝对值的性质求出x、y,再判断出x、y的对应情况,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|x|=7,∴x=±7,∵|y|=4,∴y=±4,又∵|x+y|=x+y,∴x+y≥0,∴x=7,y=±4,当x=7,y=4时,x﹣y=7﹣4=3,当x=7,y=﹣4时,x﹣y=7﹣(﹣4)=11.【点评】本题考查了有理数的减法,绝对值的性质,有理数的减法,是基础题,熟记运算法则与性质是解题的关键.28.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c 的值.【分析】根据数轴上a、b、c和原点的位置,判断出三个数的取值,然后再代值求解.【解答】解:由数轴上a、b、c的位置知:b<0,0<a<c;又∵|a|=2,|b|=2,|c|=3,∴a=2,b=﹣2,c=3;故a+b+c=2﹣2+3=3.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.能够正确的判断出a、b、c的符号是解答此题的关键.29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a升/千米,则这次养护共耗油多少升?【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)求出每个记录点得记录数据,绝对值最大的数对应的点就是所求的点;(3)所走的路程是这组数据的绝对值的和,然后乘以a,即可求得耗油量.【解答】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16=+15千米.则在出发点的东边15千米的地方;(2)最远处离出发点有17千米;(3)(17+9+7+15+3+11+6+8+5+16)a=97a(升).答:这次养护共耗油97a升.【点评】本题考查了有理数的加减运算,以及正负数表示一对具有相反意义的量.30.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?【分析】(1)根据题意画出即可;(2)计算2+1即可求出答案;(3)求出每个数的绝对值,相加即可求出答案.【解答】(1)解:能,如图:(2)解:2+|﹣1|=3,答:小彬家距中心广场3千米.(3)解:|2|+|1.5|+|4.5|+|1|=9,答:小明一共跑了9千米.【点评】本题考查了有理数的加减运算,正数和负数,绝对值等知识点的应用,进而此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.。
苏科版七年级数学上册《2.4有理数加减法》同步练习题及答案学校:___________班级:___________姓名:___________考号:___________一.选择题1.7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律2.有理数a、b在数轴上对应的点的位置如图所示,则下面结论:①a<0;②|a|>|b|;③a+b>0;④b﹣a>0;其中正确的个数有()个.A.1 B.2 C.3 D.43.某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃-2℃-3℃A.星期一B.星期二C.星期三D.星期四4.两个数相加,其和小于每个加数,那么这两个数()A.同为负数B.异号C.同为正数D.零或负数5.下面的四个说法:①若a+b=0,则|a|=|b|;②若|a|=﹣a,则a<0;③若|a|=|b|,则a=b;④若|a|+|b|=0,则a=b=0,其中,正确的是()A.①②B.①④C.②③D.③④6.有理数m,n在数轴上的位置如图所示,则下列关系式中正确的有()①m+n<0;②n﹣m>0;③1m >1n;④﹣n﹣m>0.A.1个B.2个C.3个D.4个二.填空题1.利用加法的交换律和结合律,将+327+15-517-317写成______________________________________,可以使运算简便.2.数轴上的点A 、B 分别表示3 、2,则点__________离原点的距离较近(填“A ”或“B ”).3.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位.三.计算 1.计算:(1)(﹣18.35)+(+6.15)+(﹣3.65)+(﹣18.15);(2)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3;(3)(−357)+(+15.5)+(−627)+(−512);(4)334−(−16)−(+212)+(﹣156).四.解答题1.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.A B C,回答下列问题:2.如图,在数轴上有三个点,,(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到,A C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.3.如表为本周内某农产品每天的批发价格比前一天的涨跌情况(上周末该农产品的批发价格为2.7元/斤).星期一二三四五六日+0.2 ﹣0.3 +0.5 +0.2 ﹣0.3 +0.4 ﹣0.1 与前一天的价格涨跌情况(元)注:正号表示价格比前一天上涨,负号表示价格比前一天下跌.(1)本周哪天该农产品的批发价格最高,批发价格是多少元/斤?本周哪天该农产品的批发价格最低,批发价格是多少元/斤?(2)与上周末相比,本周末该农产品的批发价格是上升了还是下降了?变化了多少?参考答案一.选择题1.7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【提示】式子由7+(–3)+(–4)+18+(–11)变为(7+18)+[(–3)+(–4)+(–11)]在这个过程中运用了加法的运算定律加法交换律和加法结合律.【详解】7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了加法交换律与结合律.故选D.2.有理数a、b在数轴上对应的点的位置如图所示,则下面结论:①a<0;②|a|>|b|;③a+b>0;④b﹣a>0;其中正确的个数有()个.A.1B.2C.3D.4【分析】根据a<|a|判断①;根据|a|>0,b>0判断②;根据有理数的加法法则判断③;根据有理数的减法法则判断④.【解答】解:∵a<|a|∴a<0,故①符合题意;由题意可知:|a|>0,b>0∴|a|<|b|,故②不符合题意;∵a<0,b>0,|a|<|b|∴a+b>0,故③符合题意;∵a<0,b>0∴b﹣a>0,故④符合题意;综上所述,符合题意的有3个故选:C.3.某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃-2℃-3℃A.星期一B.星期二C.星期三D.星期四【答案】C【分析】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答.【详解】星期一温差:10﹣3=7℃;星期二温差:12﹣0=12℃;星期三温差:11﹣(﹣2)=13℃;星期四温差:9﹣(﹣3)=12℃;综上,周三的温差最大.故选C.4.两个数相加,其和小于每个加数,那么这两个数()A.同为负数B.异号C.同为正数D.零或负数【分析】根据有理数的加法法则,两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.【解析】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(﹣1)+(﹣3)=﹣4,﹣4<﹣1,﹣4<﹣3故选:A.5.下面的四个说法:①若a+b=0,则|a|=|b|;②若|a|=﹣a,则a<0;③若|a|=|b|,则a=b;④若|a|+|b|=0,则a=b=0,其中,正确的是()A.①②B.①④C.②③D.③④【分析】根据有理数的加法的运算方法,以及绝对值的性质和应用,逐项判断即可.【解析】∵若a+b=0,则|a|=|b|∴选项①符合题意;∵若|a|=﹣a,则a≤0∴选项②不符合题意;∵若|a|=|b|,则a=b或a=﹣b∴选项③不符合题意;∵若|a|+|b|=0,则a=b=0∴选项④符合题意∴正确的是:①④.故选:B.6.有理数m,n在数轴上的位置如图所示,则下列关系式中正确的有()①m+n<0;②n﹣m>0;③1m>1n;④﹣n﹣m>0.A.1个B.2个C.3个D.4个【分析】根据数轴得出n<0<m,|n|>|m|,再根据有理数的加减、乘除法则进行判断即可.【解答】解:由数轴知,n<0<m,|n|>|m|∴m+n<0,n﹣m<0,1m >1n,﹣n﹣m>0∴正确的有:①③④共3个.故选:C.二.填空题1.利用加法的交换律和结合律,将+327+15-517-317写成______________________________________,可以使运算简便.【答案】211+3-3-5777⎛⎫⎪⎝⎭+15.【提示】运用加法交换律和结合律改变运算顺序可以使运算简便.【详解】+327+15-517-317=+327-317-517+15=211+3-3-5777⎛⎫⎪⎝⎭+15.故答案为:211335777⎛⎫+--⎪⎝⎭+15.2.数轴上的点A、B分别表示3-、2,则点__________离原点的距离较近(填“A”或“B”).【答案】B【分析】先求出A、B点所对应数的绝对值,进而即可得到答案.【详解】解:∵数轴上的点A、B分别表示-3、2∵33,22-==,且3>2 ∵点B 离原点的距离较近 故答案是:B .3.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 【答案】50 【解析】解:由题意可知,第1、2次落点处离O 点的距离是1个单位,第3、4次落点处离O 点的距离是2个单位,以此类推,第100次落下时,落点处离O 点的距离是50个单位.三.计算1.计算:(1)(﹣18.35)+(+6.15)+(﹣3.65)+(﹣18.15); (2)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3; (3)(−357)+(+15.5)+(−627)+(−512); (4)334−(−16)−(+212)+(﹣156).【分析】(1)利用加法的交换律和结合律,将(﹣18.35)与(﹣3.65),(﹣18.15)与(+6.15)结合先进行计算即可;(2)将正数、负数分别结合在一起先计算即可; (3)将分母相同的分数结合在一起先计算即可; (4)将分母相同的分数结合在一起先计算,使运算简单.【解答】解:(1)原式=[(﹣18.35)+(﹣3.65)]+[(﹣18.15)+(+6.15)] =(﹣22)+(﹣12) =﹣34;(2)原式=9﹣10﹣2+8+3 =9+8+3﹣(10+2)=20﹣12 =8;(3)原式=[(﹣357)+(﹣627)]+[(+15.5)+(﹣512)]=﹣10+10 =0;(4)原式=334−212+(16−156)=114−123=−512.四.解答题1.若|a |=2,|b |=3,|c |=6,|a +b |=﹣(a +b ),|b +c |=b +c .计算a +b ﹣c 的值. 【分析】根据题意可以求得a 、b 、c 的值,从而可以求得所求式子的值. 【解答】解:∵|a |=2,|b |=3,|c |=6 ∴a =±2,b =±3,c =±6 ∵|a +b |=﹣(a +b ),|b +c |=b +c ∴a +b ≤0,b +c ≥0 ∴a =±2,b =﹣3,c =6 ∴当a =2,b =﹣3,c =6时 a +b ﹣c =2+(﹣3)﹣6=﹣7 a =﹣2,b =﹣3,c =6时 a +b ﹣c =﹣2+(﹣3)﹣6=﹣11.2.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.-或7-【答案】(1)1-(2)0.5(3)3【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1∵-1<1<2∵三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上则点E表示的数为-3.3.如表为本周内某农产品每天的批发价格比前一天的涨跌情况(上周末该农产品的批发价格为2.7元/斤).星期一二三四五六日+0.2﹣0.3+0.5+0.2﹣0.3+0.4﹣0.1与前一天的价格涨跌情况(元)注:正号表示价格比前一天上涨,负号表示价格比前一天下跌.(1)本周哪天该农产品的批发价格最高,批发价格是多少元/斤?本周哪天该农产品的批发价格最低,批发价格是多少元/斤?(2)与上周末相比,本周末该农产品的批发价格是上升了还是下降了?变化了多少?【分析】(1)根据有理数的加法,可得每天的价格,根据有理数的大小比较,可得答案;(2)求出本周末的价格即可.【解答】解:(1)星期一的价格:2.7+(+0.2)=2.9(元);星期二的价格:2.9+(﹣0.3)=2.6(元);星期三的价格:2.6+(+0.5)=3.1(元);星期四的价格:3.1+(+0.2)=3.3(元);星期五的价格:3.3+(﹣0.3)=3(元);星期六的价格:3+(+0.4)=3.4(元);星期日的价格:3.4+(﹣0.1)=3.3(元);故本周星期六,该农产品的批发价格最高,批发价格是3.4元;本周星期二,该农产品的批发价格最低,批发价格是2.6元.(2)由(1)可知,星期日的价格为3.3元,3.3>2.7,3.3﹣2.7=0.6(元)答:与上周末相比,本周末该农产品的批发价格是上升了,上升了0.6元.第11页共11页。
章节测试题1.【答题】在算式中,【】里应填()A. 17B. 7C. ﹣17D. ﹣7 【答案】B【分析】本题考查有理数的减法运算.【解答】∵,∴【】里应填7.选B.2.【答题】下列各式运算正确的是()A. B.C. D.【答案】D【分析】本题考查有理数的加法运算.【解答】A.原式=﹣14,不符合题意;B.原式,不符合题意;C.原式=﹣101,不符合题意;D.原式=0,符合题意,选D.3.【答题】已知|x|=5,|y|=2,且x>y,则x﹣y的值等于()A. 7或﹣7B. 7或3C. 3或﹣3D. ﹣7或﹣3 【答案】B【分析】本题考查有理数的减法运算.【解答】∵|x|=5,|y|=2,且x>y,∴x=5,y=2或x=5,y=﹣2,则x﹣y=3或7,选B.4.【答题】下列说法中,不正确的是()①符号不同的两个数互为相反数②所有有理数都能用数轴上的点表示③绝对值等于它本身的数是正数④两数相加和一定大于任何一个加数⑤有理数可分为正数和负数A. ①②③⑤B. ③④C. ①③④⑤D. ①④⑤【答案】B【分析】本题考查数轴,绝对值,有理数的分类以及有理数的加法.【解答】①只有符号不同的两个数互为相反数,错误;②所有有理数都能用数轴上的点表示,正确;③绝对值等于它本身的数是非负数,错误;④两数相加和不一定大于任何一个加数,错误⑤有理数可分为正数、0和负数,错误;选B.5.【答题】若x的相反数是3,|y|=6,且x+y<0,则x﹣y的值是()A. 3B. 3或﹣9C. ﹣3或﹣9D. ﹣9【答案】A【分析】本题考查相反数,有理数的加减法运算.【解答】x的相反数是3,则x=﹣3,|y|=6,y=±6,∵且x+y<0,∴y=﹣6,∴x﹣y=﹣3﹣(﹣6)=3.选A.6.【答题】为计算简便,把(﹣1.4)﹣(﹣3.7)﹣(+0.5)+(+2.4)+(﹣3.5)写成省略加号的和的形式,并按要求交换加数的位置正确的是()A. ﹣1.4+2.4+3.7﹣0.5﹣3.5B. ﹣1.4+2.4+3.7+0.5﹣3.5C. ﹣1.4+2.4﹣3.7﹣0.5﹣3.5D. ﹣1.4+2.4﹣3.7﹣0.5+3.5【答案】A【分析】本题考查有理数的运算律.【解答】原式=﹣1.4+3.7﹣0.5+2.4﹣3.5=﹣1.4+2.4+3.7﹣0.5﹣3.5,选A.7.【答题】如图,在数轴上有a、b两个数,则下列结论错误的是()A. a+b<0B. a﹣b>0C.D.【答案】D【分析】本题考查数轴,绝对值的定义以及有理数的加减法运算.【解答】A.由于|a|<|b|,a>0,b<0,∴a+b<0,正确,不符合题意;B.由于a>b,∴a﹣b>0,正确,不符合题意;C.由图可知,正确,不符合题意;D.a>0,b<0,∴,不正确,符合题意.选D.8.【答题】在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是______.【答案】-4【分析】本题考查有理数的大小比较,有理数的加法运算.【解答】,.故答案为-4.9.【答题】a是绝对值最小的数,b的相反数是最大的负整数,则a+b=______.【答案】1【分析】本题考查有理数的加法运算.【解答】∵a是绝对值最小的数,b的相反数是最大的负整数,∴a=0,﹣b=﹣1,∴b=1,∴a+b=0+1=1.故答案为1.10.【题文】计算:(1);(2);(3);(4).【答案】(1);(2);(3);(4).【分析】本题考查有理数的加减混合运算. 【解答】(1);(2);(3);(4).11.【答题】小磊解题时,将式子+(−7)+(−4)先变成再计算结果,则小磊运用了()A. 加法交换律B. 加法交换律和加法结合律C. 加法结合律D. 无法判断【答案】B【分析】本题考查了有理数加法的运算律.【解答】将式子+(−7)+(−4)先变成再计算结果,运用了加法交换律和加法结合律,选B.12.【答题】下列变形,运用运算律正确的是()A. 2+(−1)=1+2B. 3+(−2)+5=(−2)+3+5C. [6+(−3)]+5=[6+(−5)]+3D. +(−2)+()=()+(+2)【答案】B【分析】本题考查了有理数加法的运算律.【解答】A.2+(−1)=(−1)+2,错误;B.3+(−2)+5=(−2)+3+5,正确;C.[6+(−3)]+5=(6+5)+(−3),错误;D.+(−2)+()=()+(−2),错误,选B.13.【答题】下列交换加数的位置的变形中,错误的是()A. 30+(−20)=(−20)+30B. (−5)+(−13)=(−13)+(−5)C. (−37)+16=16+(−37)D. 10+(−20)=20+(−10)【答案】D【分析】本题考查了有理数加法的运算律.【解答】A.30+(−20)=(−20)+30是正确的,不符合题意;B.(−5)+(−13)=(−13)+(−5)是正确的,不符合题意;C.(−37)+16=16+(−37)是正确的,不符合题意;D.10+(−20)=(−20)+10,原来的变形是错误的,符合题意.选D.14.【答题】计算()+(−3.5)+(−6)+(+2.5)+(+6)+()的结果是()A. 12B. −12C.D. 0【分析】本题考查有理数加法的运算律.【解答】原式=()+(−3.5+2.5)+(−6+6)=1−1+0=0,选D.15.【答题】下列说法中正确的是()A. 若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0【答案】D【分析】本题考查了有理数的加法法则及绝对值的定义与性质.【解答】A.如果a=−3,b=5,那么a+b=2>0,但是a<0,故本选项错误;B.如果a=3,b=−5,那么a+b=−2<0,但是a>0,故本选项错误;C.如果a=−3,b=5,那么a+b=2>−3=a,但是a+b=2<5=b,故本选项错误;D.若|a|=|b|,则a=b或a+b=0,故本选项正确.选D.16.【答题】在数轴上表示有理数a的点在表示–2的点的左边,则a+2()A. 一定是正数B. 一定是负数C. 可能是正数,可能是负数D. 等于0【分析】根据题意可知a与2异号,根据绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值即可作出选择.【解答】∵在数轴上表示有理数a的点在表示−2的点的左边,∴a<−2,∴a+2<0,选B.17.【答题】若一个数的绝对值和相反数都等于它本身,另一个数是最大的负整数,则这两个数的和为()A. –2B. –1C. 0D. 1【答案】B【分析】本题考查绝对值和相反数的定义以及有理数的加法运算.【解答】∵一个数的绝对值和相反数都等于它本身,∴这个数为0,而最大的负整数为−1,∴这两个数的和为−1.选B.18.【答题】一个数是10,另一个数比10的相反数大2,则这两个数的和是()A. 18B. –2C. –18D. 2【答案】D【分析】本题考查相反数的定义以及有理数的加法运算.根据题意表示出另一个数,相加即可得到结果.【解答】根据题意得:10+(﹣10+2)=10﹣10+2=2.选D.19.【答题】–13与+25的和的相反数可以列式为()A. –13+25B. –(13–25)C. –(–13+25)D. 13+25【分析】本题考查相反数的定义以及有理数的加法运算.【解答】根据题意,得−(−13+25).选C.20.【答题】已知|m|=5,|n|=2,且n<0,则m+n的值是()A. –7B. +3C. –7或–3D. –7或3 【答案】D【分析】本题考查绝对值的定义以及有理数的加法运算.【解答】∵|m|=5,|n|=2,∴又∵n<0,∴当m=5,n=-2时,m+n=3;当m=-5,n=-2时,m+n=-7.∴D选项是正确的.。
2.5有理数的加减法一、选择题(本大题共6小题,共18.0分)1.计算(-20)+16的结果是()A. B. 4 C. D. 20162.一天早晨的气温是-7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A. B. C. D.3.下列说法错误的是()A. 的相反数是2B. 3的倒数是C.D. ,0,4这三个数中最小的数是04.数a,b在数轴上的位置如图所示,则a+b是()A. 正数B. 零C. 负数D. 都有可能5.若a2=4,|b|=3,且a,b异号,则a-b的值为()A. B. C. 5 D.6.在进行异号的两个有理数加法运算时,用到下面的一些操作:①将绝对值较大的有理数的符号作为结果的符号并记住②将记住的符号和绝对值的差一起作为最终的计算结果③用较大的绝对值减去较小的绝对值④求两个有理数的绝对值⑤比较两个绝对值的大小其中操作顺序正确的步骤是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)7.绝对值大于1而不大于4的整数有______,它们的和是______.8.计算:|-1|= ______ .9.若|m-6|+|n+5|=0,则m-n的值为______.10.规定图形表示运算a-b-c,图形表示运算.则+=________________(直接写出答案).11.计算:1+(-2)+3+(-4)+…+2015+(-2016)=________.12.已知,符号表示大于或等于的最小正整数,如:=3,=6,=7.若=4,则a的取值范围_______________.三、计算题(本大题共1小题,共6.0分)13.①(-5)-(-2.25)-(-2)-(+5);14.②(5-12)-(13-5).③0-(-2)+(-7)-(+1)+(-10);④-0.5-5-1+3-4+2.四、解答题(本大题共3小题,共24.0分)15.某自行车厂一周计划生产1400辆,自行车平均每天生产自行车200辆。
章节测试题1.【答题】三原县去年夏天的最高气温是39℃,冬天的最低气温是-5℃,那么三原县去年的最大温差是()A. 44B. 34C. -44D. -34【答案】A【分析】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.用最高温度减去最低温度,即可得到温差.【解答】解:39-(-5)=39+5=44(℃).选A.2.【答题】下列算式正确的是()A. (﹣14)﹣5=﹣9B. 0﹣(﹣3)=3C. (﹣3)﹣(﹣3)=﹣6D. |5﹣3|=﹣(5﹣3)【答案】B【分析】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.【解答】解:根据有理数的减法运算法则,可知(﹣14)﹣5=﹣19,故本选项错误;根据有理数的减法运算法则,可得0﹣(﹣3)=0+3=3,故本选项正确;根据有理数的减法运算法则,可得(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;根据绝对值的性质,可得|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选 B.3.【答题】若|x|=7,|y|=5,且x+y>0,那么x-y的值是()A. 2或12B. -2或12C. 2或-12D. -2或-12 【答案】A【分析】本题考查了有理数的减法,绝对值的性质,难点在于判断出x、y的值,熟记运算法则是解题的关键.【解答】∴x=±7,y=±5.又x+y>0,则x,y同号或x,y异号,但正数的绝对值较大,∴x=7,y=5或x=7,y=−5.∴x−y=2或12.选A.4.【答题】如图,两支温度计读数分别为我国某地2016年2月14日的最低气温和最高气温,那么这一天最高气温比最低气温高()A. 5℃B. 7℃C. 12℃D. -12℃【答案】C【分析】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.【解答】解:根据有理数的加减法法则,可知7-(-5)=12℃.选C.5.【答题】计算3-(-3)的结果是()A. 6B. 3C. 0D. -6【答案】A【分析】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.【解答】解:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6选A.6.【答题】若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是()A. 3B. 3或-13C. -3或-13D. -13【答案】A【分析】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.【解答】∵-5的相反数是5,∴x=-5∵|y|=8,∴y=±8∵x+y<0,∴x=-5,y=-8∴x-y=-5-(-8)=-5+8=3选A.7.【答题】已知整数满足下列条件:依次类推,则的值为()A. B. C. D.【答案】C【分析】关键是找出数字的变化规律:根据所求出的数,观察出n为奇数与偶数时的结果的变化规律.【解答】a1=0,a2=-|a1+1|=-|0+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,…,所以n是奇数时,结果等于-,n是偶数时,结果等于-a2012=-1006选C.8.【答题】大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20,20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A. 1990B. 2068C. 2134D. 3024【答案】B【分析】根据新的加减计数法,可得数字上一杠表示减去它,据此分别求出53﹣31的值各是多少;然后把它们求差,求出算式53﹣31的值是多少即可.【解答】解:53﹣31=(5000-200+30-1)-(3000-240+1)=4829-2761=2068选B.9.【答题】下列变形,运用运算律正确的是()A.2+(−1)=1+2B.3+(−2)+5=(−2)+3+5C.[6+(−3)]+5=[6+(−5)]+3D.+(−2)+(+)="(" +)+(+2)【答案】B【分析】根据有理数加法的运算律解答即可。
第二章复习 有理数的加减法测试题(A 卷)
一、填空题(每小题3分,共30分)
1.(-4)+(-6)=________;(-4)+|-6|=________;
2.(-21)-(+31)=________;(-21)-(-3
1)=________; 3.(+3)+________=0;(-5)-________=0;
4.(-8)+________=-6;(+15)+________=2;
5.|-2.1|+|-1.5|=________;1
32-143=________. 6.把(+21)+(-3
1)-(+5)-(-4)写成省略括号的和的形式是__________;读作______________或读作______________.
7.比0小3的数是________,比16大-9的数是________.
8.按要求交换加数的位置:
(1)-5+6-5=-________-________+________.
(2)-6-5+8-9=________9________6________8________5.
9.绝对值小于6的所有整数的和为______________.
10.已知a 的相反数是最大的非正整数,b 的绝对值为1,则a+b=________.
二、判断题(每小题2分,共10分)
11.两数的和必大于其中任一加数( )
12.零减去一个数,仍得这个数( )
13.两数的差必小于被减数( )
14.-1.2的相反数与15
1的绝对值的和为零( ) 15.若a+b=0,则a 与b 互为相反数( )
三、选择题(每小题3分,共15分)
16.运用加法的运算律计算(+6
31)+(-18)+43
2+(-6.8)+18+(-3.2)最适当的是 A .[(+6
31)+43
2+18]+[(-18)+(-6.8)+(-3.2)] B .[(+631)+(-18)]+[43
2+(-6.8)]+[18+(-3.2)] C .[(+632)+43
2]+[(-18)+18]+[(-3.2)+(-6.8)] D .[(+632)+(-6.8)+432]+[(-18)+18+(-3.2)] 17.室内温度是16℃,室外温度是-7℃,室内温度比室外温度高
A .9℃
B .23℃
C .-9℃
D .以上都不对
18.下列说法中,正确的是
A .两数相加,符号不变,并把绝对值相加
B .异号两数相加,取较大数的符号
C .异号两数相加,取绝对值较大的加数的符号,并用绝对值较大的数减去绝对值较小的数
D .同号两数相加,取原来的符号,并把绝对值相加
19.若两数的和为负数,则这两个数
A .都是负数
B .一个为负数,一个为零
C .一个为正数,一个为负数,且负数的绝对值大
D .以上三种情况都有可能
20.较小的数减去较大的数,所得的差一定是
A .正数
B .负数
C .零
D .不能确定
四、计算题(共30分)
21.(6分)(-18)+12+(-7)+(-21)+6+35
22.(6分)(-5.4)-(+2)+(-1.4)-(-0.5)
23.(6分)8-3+5-9-6
24.(6分)-131+21+41-221+4
3
25.(6分)(+1)+(-2)+(+3)+(-4)+……+(-10)+(+11)-(-12)
五、解答题(共15分)
26.(7分)某架飞机的飞行高度为8000米,下表是这架飞机5次升降的情况(上升记为正),求经过5次升降后的飞机飞行高度.
计算:(1)101
1001431321211⨯++⨯+⨯+⨯ (2)
)
1(1431321211-++⨯+⨯+⨯n n
参考答案
一、1.-10 2 2.-65 -61 3.-3 -5 4.2 -13 5.3.6 -12
1
6.21-31-5+4 21减31减5加4 正21,负3
1,负5,正4的和 7.-3 7 8.(1)5 5 6 (2)- - + - 9.0 10.±1
二、11.× 12.× 13.× 14.× 15.√
三、16.C 17.B 18.D 19.D 20.B
四、21.7 22.-8.3 23.-5 24.-23
1 25.-6 五、26.8000+540-750-320+600+380=8450
27.(1)
101
110013131212111011001321211-+++-+-=⨯++⨯+⨯ 101
10010111=-= (2)原式=1-21+21-31+31+……+12111111--=--=--n n n n n。