爆破应力波和地震波
- 格式:ppt
- 大小:204.50 KB
- 文档页数:29
名词解释1. 岩石坚固性及坚固性系数岩石坚固性:岩石抵抗任何外力造成其破坏的能力,或岩石破碎的难易程度。
坚固性系数:岩石坚固性在量的方面用坚固性系数f(无量纲量)表示,其值计算方法f=Rc/10,Rc 为岩石的单轴抗压强度(MPa)。
2. 装药最小抵抗线和临界抵抗线装药最小抵抗线:装药中心到自由面的垂直距离。
装药临界抵抗线:当装药处在此抵抗线时,自由面上刚好显现爆破迹象,大于此值,则看不到,小于此值,爆破现象显现。
3. 炸药的爆力和猛度炸药爆力:炸药爆炸后爆生气体膨胀做功的能力,体现了炸药的静作用。
炸药猛度:炸药爆炸后冲击波和应力波作用强度,体现了炸药的动作用。
4. 毫秒延期电雷管毫秒延期电雷管:通电后以毫秒量级间隔时间延迟爆炸的电雷管。
5. 爆轰波和爆速爆轰波:炸药体内传播的伴随有化学反应的冲击波。
爆速:爆轰波在炸药体内传播的速度。
6. 爆破作用指数爆破作用指数:爆破漏斗半径与装药最小抵抗线的比值。
7. 不耦合装药系数不耦合装药系数:炮孔直径与装药直径的比值,此系数值大于等于1,等于1 时为耦合装药。
8. 水压爆破水压爆破:在容器状构筑物中注满水,将药包悬挂于水中适当位置,起爆后,利用水的不可压缩性将炸药爆炸时产生的压力传递给构筑物壁面,使之均匀受压而破碎。
9. 定向倒塌爆破定向倒塌爆破:使爆破的建筑物按设计方向倒塌和堆积的爆破方法。
10. 煤矿许用炸药煤矿许用炸药:允许使用在有沼气的工作面或矿井的炸药,这种炸药中加有消焰剂(食盐),用以吸收炸药爆炸释放的热量,降低爆温和抑制沼气的爆炸反应。
11. 预裂爆破预裂爆破:在主爆区爆破之前,沿开挖边界钻一排密集炮孔,少量装药,不耦合装药结构,齐发起爆,爆破后形成一条贯穿裂缝。
在此预裂缝的屏蔽和保护下(预裂缝能反射应力波和地震波,减少对保护区岩体的破坏)进行主爆区爆破。
使之获得较为平整的开挖面。
12. 聚能爆破效应聚能爆破效应:利用爆轰产物运动方向与装药表面垂直或大体垂直的规律,做成特殊形状的装药,就能使爆轰产物聚集起来朝着一定方向运动,提高能流密度,增强爆破效应,此种现象称为聚能爆破效应。
全国特种作业人员安全技术培训考核统编教材(2003年6月气象出版社发行)第六章爆破有害效应爆破有害效应包括爆破地震波、冲击波(地面或地下;空气或水中)、个别飞石、毒气或噪音等。
这些效应都随距爆源距离的增加而有规律地减弱,但由于各种效应所占炸药爆炸能量的比重不同,能量的衰减规律也不相同,同时不同的效应对保护对象的破坏作用不同,所以在规定安全距离时,应根据各种效应分别核定最小安全距离,然后取它们的最大值作为爆破的警戒范围。
第一节爆破地震波当炸药包在岩石中爆炸时,邻近药包周围的岩石遭受到冲击波和爆炸生成的高压气体的猛烈冲击而产生压碎圈和破坏圈的非弹性变化过程。
当应力波通过破碎圈后,由于应力波的强度迅速衰减,它再也不能引起岩石破裂,而只能引起岩石质点产生扰动,这种扰动以地震波的形式往外传播,形成地动波。
引起岩石震动的部分能量,占炸药爆炸时释放总能量的小部分,在岩石中约占2%~6%,在土中约占2%~3%,湿土中约占5%~6%。
爆破产生的震动作用有可能引起土岩和建筑(构)物的破坏。
为了衡量爆破震动的强度,目前国内外用震速作为判别标准。
当被保护对象受到爆破震动作用而不产生任何破坏(抹灰掉落开裂等)的峰值震动速度称为安全震动速度。
通常安全震动速度以被保护物临界破坏速度除以一定的安全系数来求得。
爆破引起的地震波速度通常采用下述的经验公式计算:式中:Q——炸药量,kg;齐发爆破取总药量,秒差爆破取最大一段的药量;R——从爆源中心到被保护物的距离,m;K、a——系数,通过试验确定,也可以参照类似的条件下爆破的实测数据来选取或参照爆破安全规程(表6—1)选取。
目前,我国对各种建、构筑物所允许的安全震动速度规定如下:(1)土窑洞、土坯房、毛石房屋为1.0cm/s;(2)一般砖房、大型砌块及预制构件房屋为2~3cm/s;(3)钢筋混凝土框架房屋和修健良好的木房为5.0cm/s;(4)水工隧洞为10cm/s;(5)地下巷道:岩石不稳定但有良好的支护为10cm/s;岩石中等稳定有良好的支护为20cm/s;岩石坚硬稳定,无支护为30cm/s。
概述爆破时通过炸药能量的释放,使炮孔周围介质破碎,同时由于爆破应力波作用又使远处介质产生剪应力和拉应力,使介质产生裂隙;剩余的一部分能量以波的形式传播到地面,引起地面质点的振动,形成爆破地震。
地面与地下工程结构均受爆破地震的影响,在爆破工程设计时需根据实际情况进行爆破地震强度的检算。
近年来,爆破拆除工程日益增多,为了不致损伤破坏爆体周围的建筑与设备,严格控制爆破振动是极为重要的。
因此,在控制爆破设计中,同样需要进行爆破强度的检算。
爆破地震与自然地震爆破地震与自然地震有相似之处,即二者都是急剧释放能量,并以波动的形式向外传播,从而引起介质的质点振动,产生地震效应。
但爆破地震还有以下特点:一、爆破地震的震源能量小,影响范围小;二、持续时间短,爆破地震一般在0.1~0.2 S左右,而自然地震持续时间长,一般在10~40 S左右;三、爆破地震振动频率高,而自然地震一般是低频振动;四、可以控制爆破震源大小及作用方向;五、通过改变爆破技术可以调节振动强度。
虽然在同一地点的两种地震波参数相同,但爆破地震对该处建筑的影响和破坏程度要比自然地震轻。
因此,对于爆破地震问题不应按自然地震的计算方法来处理。
爆破振动速度爆破所引起的地面振动与天然地震一样,是一个非常复杂的随机变量。
它是以波的形式传播的,其振幅、周期和频率都随时间而变化。
振动的物理量一般用质点的振速、加速度、位移和振动频率等表示。
用振动的哪些物理量作为衡量爆破地震效应强度的判据,在不同的工程实践中,各有侧重。
目前,国内外多采用地面质点的振动速度作为衡量爆破地震效应强度的判据。
这是因为:一、它可以使爆破振动的烈度与自然地震烈度相互参照;二、目前采用的速度传感器及二次仪表比较普遍,标定与信号检测较容易。
三、便于换算与结构破坏判据相关的参数。
爆破振动速度的计算岩石介质的振动矢量是由相互垂直的三个方向的矢量和求得的。
一般用垂直振动速度作为判据。
在理论的推导上,由于爆破振速的大小与炸药量、距离、地形、爆破方法等有关,推导出的公式(经验公式)较多,目前使用较多的是由相似理论量纲分析的结果,给出按药量立方根比例推算的方法决定函数关系(萨道夫斯基提出的经验公式)v=k(Q^(1/3)/R)^α式(1)式中:V为爆破产生的振动速度(cm/s);K为介质系数;α为衰减系数;Q为最大一段装药量(kg);R为测点与爆心的距离(m)。
爆破地震地震学用震级和烈度来衡量地震的大小。
(1)震级震级也称地震强度,用以说明某次地震本身的大小。
它是直接根据地震释放出来的能量大小确定的。
用一种特定类型的、放大率为2800倍的地震仪,在距震中100km处,记录图上量得最大振幅值(以1/1000mm计)的普通对数值,称为震级。
例如,最大振幅为0.001mm时,震级为“0”级;最大振幅值为1mm时,震级为“3”级;最大振幅值为1m时,震级为“6”级。
地震震级的能量可用爆炸能量来说明。
在坚硬岩石(如花岗岩)中,用2~3×106kg炸药爆炸,相当于一个4级地震。
一个8级地震的功率大约相当于100万人口城市的发电厂在20~30年内所发出电力的总和。
由此可见,虽然地震仅仅发生于瞬时的变化,但地震释放出来的能量却是巨大的。
(2)烈度烈度是指某一地震在具体地点引起振动的强度标准,它标志着地震对当地的实际影响,作为工程建筑抗震设计的依据。
烈度不是根据地震仪器测定的。
判断烈度大小是根据人们的感觉、家具及物品振动情况、房屋及建筑物受破坏的情况,以及地面出现的崩陷、地裂等现象综合考虑后确定的。
因此,地震烈度只能是一种定性的相对数量概念,且有一定的空间分布关系。
必须指出:地震震级与地震烈度是两个不同的概念,不可混淆。
如把地震比作装药爆炸,那么,装药量就相当于地震震级,而装药在爆炸时的破坏作用则是地震烈度。
一个地震只有一个震级,但在不同地区可以有不同的烈度,因为在一个地震区域内,不同部位的破坏程度是不同的。
在地底下发生地震的地方,叫震源。
地面上与震源相对处,叫震中。
显然,震中区的烈度(叫震中烈度)就比其他地方的大。
所以震中烈度就是最大烈度,用以表示该次地震的破坏程度。
天然地震烈度表2、爆破地震波(1)爆破地震波的产生当装药在固体介质中爆炸时,爆炸冲击波和应力波将其附近的介质粉碎、破裂(分别形成压碎圈和破裂圈),当应力波通过破裂圈后,由于它的强度迅速衰减,再也不能引起岩石的破裂而只能引起岩石质点产生弹性振动,这种弹性振动是以弹性波的形式向外传播,与天然地震一样,也会造成地面的震动,这种弹性波就叫爆破地震波。
岩石爆破破岩机理论文导读:岩体在冲击荷载的作用下产生应力波或冲击波,它在岩体中传播,引起岩石变形乃至破坏。
炸药爆炸首先形成应力脉冲,使岩石表面产生变形和运动。
爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。
破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。
岩体中爆炸应力波在自由面反射后形成反射拉伸波引起岩石破碎,岩石的破坏形式是拉应力大于岩石的抗拉强度而产生的,岩石是被拉断的。
同样,反射拉伸波也加强了径向裂隙的扩展。
关键词:爆炸,气体膨胀,应力波,爆破,自由面,径向裂隙岩体在冲击荷载的作用下产生应力波或冲击波,它在岩体中传播,引起岩石变形乃至破坏。
炸药爆炸首先形成应力脉冲,使岩石表面产生变形和运动。
由于爆轰压力瞬间高达数千乃至数万兆帕,从而在岩石表面形成冲击波,并在岩石中传播。
1、爆生气体膨胀作用炸药爆炸生成高温高压气体,膨胀做功引起岩石破坏。
爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。
正是由于相邻岩石质点移动速度不同,造成了岩石中的剪切应力,一旦剪切应力大于岩石的抗剪强度,岩石即发生剪切破坏。
破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。
2、爆炸应力波反射拉伸作用岩体中爆炸应力波在自由面反射后形成反射拉伸波引起岩石破碎,岩石的破坏形式是拉应力大于岩石的抗拉强度而产生的,岩石是被拉断的。
岩石爆破破碎正是爆生气体和爆炸应力波综合作用的结果。
因为冲击波对岩石的破碎作用时间短,而爆生气体的作用时间长,爆生气体的膨胀促进了裂隙的发展;同样,反射拉伸波也加强了径向裂隙的扩展。
岩体内最初裂隙的形成是由冲击波或应力波造成的,随后爆生气体渗入裂隙并在准静态压力作用下,使应力波形成的裂隙进一步扩展。
编辑炸药在土岩介质中爆炸时,其冲击压力以波动形式向四外传播,这种波统称为应力波。
当应力与应变呈线性关系时,介质中传播的是弹性波;呈非线性关系时,为塑性波和冲击波。
目录1基本介绍2描述分类▪速率无关材料中的应力波▪卸载波▪速率相关材料中的应力波3反射透射▪反射和透射▪反射断裂4研究简史5发展趋势1基本介绍编辑应力和应变扰动的传播形式。
在可变形固体介质中机械扰动表现为质点速度的变化和相应的应力、应变状态的变化。
应力、应变状态的变化以波的方式传播,称为应力波。
通常将扰动区域与未扰动区域的界面称为波阵面,波阵面的传播速度称为波速。
地震波、固体中应力波相关图书的声波和超声波等都是常见的应力波。
应力波的研究同地震、爆炸和高速碰撞等动载荷条件下的各种实际问题密切相关。
在运动参量不随时间变化的静载荷条件下,可以忽略介质微元体的惯性力,但在运动参量随时间发生显著变化的动载荷条件下,介质中各个微元体处于随时间变化着的动态过程中,特别是在爆炸或高速碰撞条件下,载荷可在极短历时(毫秒、微秒甚至纳秒量级)内达到很高数值(1010、1011甚至1012帕量级),应变率高达102~107秒-1量级,因此常需计及介质微元体的惯性力,由此导致对应力波传播的研究。
对于一切具有惯性的可变形介质,当在应力波传过物体所需的时间内外载荷发生显著变化的情况下,介质的运动过程就总是一个应力波传播、反射和相互作用的过程,这个过程的特点主要取决于材料的特性。
应力波研究主要集中在介质的非定常运动、动载荷对介质产生的局部效应和早期效应以及载荷同介质的相互影响(见冲击载荷下材料的力学性能),研究时需要考虑材料在高应变率下的动态力学性能和静态力学性能的差别。
问题的复杂性在于,应力波分析是以已知材料动态力学性能为前提的,而材料动态力学性能的实验研究又往往依赖于应力波的2描述分类编辑应力波波速的描述与参考坐标系的选择有关,若以X表示在物质坐标中波阵面沿其传播方向的位置,t表示时间,则C=dX/dt称为物质波速或内禀波速。
爆破地震波特性研究3张义平,吴桂义(贵州大学矿业学院, 贵州贵阳 550003)摘 要:结合现场爆破震动信号,从爆破地震波的传播形式、传播方式、波的特征、波的衰减吸收及传播介质的力学模型等方面分析了爆破地震波特性。
结果表明:爆破地震波是一种与自然地震波相似但又相区别的非常复杂的随机过程,它是不同幅值、不同频率与不同相位的各种波型叠加而成的复合波。
爆破地震波在传播过程中会发生多次反射、折射、绕射、衍射、波型转换甚至波导、层间波等复杂现象,传播过程中波的有关参数和时频特征常与爆源条件、传播介质的物理性质、场地特征及地形等因素紧密相关。
地震波在发生几何衰减的同时,还因粘弹性介质的内摩擦和热传导导致能量耗散,使得波能不断衰减。
关键词:爆破地震波;波特性;衰减与吸收中图分类号:T D235.1 文献标识码:A文章编号:1005-2763(2007)06-0068-05Study on Character isti cs of Bl a sti n g-Caused Se is m i c W aveZhang Y iping,W u Guiyi(College ofM ining,Guizhou University,Guiyang,Guizhou550003,China)Abstract:Combined with the data collected fr om the in-site monit oring of blasting vibrati on,the characteristics of blasting-caused seis m ic wave are analyzed comp rehensively fr om its p r op2 agati on for m,p r opagati on mode,p r operties,attenuati on,ab2 s or p ti on and the mechanics model of p r opagati on mediu m s.The results show that blasting-caused seis m ic wave,which is a very comp lex random p r ocess rese mbling t o be diffence fr om seis m ic wave,is a composite wave composed of kinds of waves with dif2 ferent ranges,frequencies and phases.I n the p r opagati on p r ocesses of blasting-caused seis m ic wave,comp lex phenome2 na such as many ti m es of wave reflecti on,refracti on,diffracti on and wave type diversi on even wave-guide and layer wave will happen,and relati onal para meters and ti m e-frequency charac2 teristics of waves are cl osely related t o the conditi ons of exp l osi on s ource,physical p r operties of p r opagati on mediu m,field charac2teristics and terrain.The dissi pati on of wave energy caused by the inner fricti on and heat exchange of viscous-elastic mediu m s accompanied with its geometry attenuati on induces the gradual attenuati on of wave energy.Key W ords:B lasting-caused seis m ic wave,Characteristics of wave,A ttenuati on and abs or p ti on爆破是矿山开采中的一个重要环节。
爆炸应力波与爆破作用原理简介一、岩体内的爆炸应力波装药在岩体或其他固体介质中爆炸所激起的应力扰动的传播称为爆炸应力波。
爆炸应力波在距爆源点不同距离的区域内可出现塑性波、冲击波、弹塑性波、弹性应力波和地震波等。
大多数岩石在爆炸冲击荷载作用下所激起的爆炸应力波主要是冲击波、弹性应力波和爆炸地震波。
冲击波具有陡峭波头,以超声速传播,传播过程中能量损失较大,应力衰减很快,作用范围很小,衰减后变为压缩应力波。
压缩应力波以声速传播,传播过程中能量损失比冲击波小,衰减较慢,作用范围则较大,衰减后变为地震波。
冲击波和应力波都是脉冲波,不具有周期性,能对岩石造成不同程度的破坏作用,而地震波为周期振动的弹性波,应力上升时间与应力下降时间大体相等,以声速传播,衰减很慢,作用范围最大,但不再能对岩石造成直接的破坏作用,只能扩大岩体内原有的裂隙,和威胁爆破地点附近建筑物的安全。
炸药爆炸的基本理论对于应力波,当应力应变呈线性关系时,介质中传播的是弹性波;呈非线性关系时,为塑性波和冲击波。
二、装药的内部作用与外部作用装药中心距自由面的垂直距离称为最小抵抗线,对于一定量的装药来说,若其最小抵抗超过某一临界值(临界抵抗),当装药爆炸后,在自由面上不会看到爆破的迹象。
也就是爆破作用只发生在岩体的内部,未能达到自由面。
这种作用称为装药的内部作用。
发生这种作用的装药称为药壶装药。
临界抵抗决定于炸药的类型、岩石性质和装药量。
当装药发生内部作用时,除在装药处形成扩大的空腔外,还形成压碎圈、裂隙圈和震动圈。
在压碎圈内变形向方向成45°角的滑移面。
在裂隙圈内,但形成辐射状的径向裂隙,有时在径向裂隙之间还形成有环状的切向裂隙。
震动圈内的岩石没有任何破坏,只发生震动,其强度随距爆炸中心的距离增大而逐渐减弱,以致完全消失。
当装药的最小抵抗小于其临界抵抗时,在装药爆炸后,除在装药下方岩体内形成压碎圈、裂隙圈和振动圈外,装药上方一部分岩石将被破碎,脱离岩体,形成爆破漏斗。
1.影响凿岩爆破的岩石物理性质有:1)岩石的矿物成分和组织特征;2)岩石的孔隙度、密度、容重3)岩石的碎胀性4)岩石的波阻抗。
岩石的力学性质;1,岩石的变形特性 2,岩石的强度特性3,岩石的硬度2.在不同受力状态下,岩石的各种强度极限不同,从载荷性质看,单向抗压强度>单向抗剪强度>单向抗弯强度>单向抗拉强度;从应力状态看,三向抗压强度>双向抗压强度>单向抗压强度。
3.比能:破碎单位体积岩石所消耗的能量称为比能。
4.岩石的硬度:岩石表面抵抗工具侵入的能力。
5.岩石的磨蚀性:岩石对工具的磨蚀能力。
6.岩石的普氏坚固系数直接用岩石的单向抗压强度来确定。
7.统一岩石分级法,用每凿1m炮眼磨钝的钢钎或硬质合金钎头个数和纯凿岩速度作凿岩性指标。
8.冲击式凿岩机有冲击、转钎、排粉、推进、操纵、配气等结构;主要用于坚硬性脆和磨蚀性强的岩石中。
9.钎子的结构:钎头、钎身、钎肩、钎尾、中心水孔;活动钎子还有钎梢。
10.凿岩工作对钎头的要求:形状、结构合理,凿岩速度高,耐磨性强,有足够的机械强度,排粉性能好,使用寿命长,制造和修磨方便,以及成本低廉。
冲击式凿岩原理;依靠凿岩机的冲击机构使活塞往复运动冲击钎杆,并通过钎头在炮眼底部的岩石面上形成一条凿痕A-a,随后在回转机构的扭矩作用下使钎杆转动一个角度。
再次冲击时,钎头在岩石上形成一条新的凿痕B-b,并破碎AOB,aob俩快扇形岩体,破坏的岩屑由排粉机够从孔底排至空外。
扎样,冲击,转钎,排粉等动作不断循环下去,即可凿出所需深度的炮眼。
冲击式凿岩机理(应力波理论);认为凿岩机的活塞冲击钎杆尾后,在钎杆内便产生应力,这种应力以波的形式由钎尾向钎头传递。
应力波传到钎刃时,一部分进入岩石,另一部分反射回来。
当入射和反射的应力波合成后形成的合力超过了岩石的抗破坏强度时,岩石便会碎。
风动冲击式凿岩机有冲击,转钎,排粉,操纵,润滑等机构凿岩机主要组成部分;配气,转钎,排粉,推进,操纵等机构11.钎头构造的主要参数:刃角、隙角、曲率半径、体形结构、排粉槽和吹洗孔。
爆破应力波的传播研究现状述评爆破应力波的传播研究现状述评摘要:从研究爆破应力波的远区传播机理和确定其破岩效应出发,介绍了爆炸应力波的传播及其破岩效应研究从简单到复杂、从理想化材料到尽可能与现实实际相吻合的材料、从近到远的研究历程, 及其各阶段取得成果与不足。
认为目前的研究已由过去尽量简化岩性 ( 弹性均质体 )和爆源 (球状药包 ), 向尽量反应炸药爆炸与装药结构特征、反应岩体现状与本性的方向发展;由以破岩为目的, 向爆破后续的安全问题发展。
并为研究爆破对保留岩体的影响及其稳定性, 提出了今后应加强工作的具体意见。
关键词: 爆破应力波;传播机理;岩体稳定Abstract: From the far region of the blasting stress wave propagation mechanism and determine the effect of rock fragmentation, this paper introduces the explosion stress wave propagation and its effect of rock fragmentation should study from simple to complex, from the ideal material to as much as possible, in conformity with the actual reality, from near to far, studying process, and its various stages. The results and shortage believe that the current study has been developed from the past try to simplify the litho logy (elastic isotropic body) (spherical cartridge), an explosive source and to try to reflect the features of blast explosion and charge structure, the present situation in the reaction of rock mass and the nature of the direction of development; By for the purpose of broken rock, subsequent to the blasting safety development.keywords:blasting stress wave; mechanism of propagation; stability of mass rock 1 引言炸药在岩体中爆炸,引起周围介质扰动,并以波的形式向外传播。