船舶定位与航行方法66923
- 格式:ppt
- 大小:4.18 MB
- 文档页数:53
船舶航行定位与导航技术确保船舶准确航行的重要工具船舶航行是海洋运输的重要环节,而船舶航行定位与导航技术成为确保船舶准确航行的重要工具。
本文将介绍船舶航行定位与导航技术的重要性、技术原理以及其在航行中的应用。
一、船舶航行定位与导航技术的重要性船舶航行定位与导航技术是船舶航行中必不可少的工具,它可以为船舶提供准确的位置信息和航行导引,确保船舶能够安全、高效地进行航行。
这项技术对于海洋运输行业的发展以及保障人员和货物的安全具有重要意义。
二、船舶航行定位与导航技术的技术原理船舶航行定位与导航技术主要依靠船舶搭载的定位设备和导航设备实现。
定位设备通常采用全球卫星定位系统(GNSS)、陆基雷达等技术,通过将船舶信息与卫星定位系统的信息进行比对,可以准确地确定船舶的位置。
导航设备则通过收集海图、航标等航行相关信息,并结合船舶实时定位信息,提供航线规划、航行导引等功能,帮助船舶进行准确的航行。
三、船舶航行定位与导航技术在航行中的应用1. 船舶定位与导航技术在航行中起到了重要的引导作用。
船舶通过定位设备获取自身的位置信息,再结合导航设备提供的航线规划和导引,可以避开危险区域、优化航行路线,保证船舶安全到达目的地。
2. 船舶定位与导航技术在港口进出口岑重要。
港口进出口岑是船舶航行中相对复杂的环节,船舶需要准确控制进出港的时间和航线。
船舶航行定位与导航技术可以为船舶提供实时的位置信息和导引,使船舶能够顺利、精确地进行港口进出口岑。
3. 船舶航行定位与导航技术在船舶救助中起到了关键的作用。
在船舶遇到意外情况或者紧急情况时,船舶航行定位与导航技术能够及时帮助救援人员确定船舶的位置,并提供最佳的救援航线,有效地提高救助的效率和准确性。
综上所述,船舶航行定位与导航技术作为确保船舶准确航行的重要工具,在海洋运输中发挥着重要的作用。
通过准确的定位和导航,船舶能够更加安全、高效地进行航行,保障货物和人员的安全,促进海洋运输行业的发展。
海运船舶的导航与定位技术导言:海运船舶作为重要的货物运输工具,其导航与定位技术显得尤为重要。
本文将就海运船舶的导航与定位技术进行探讨,介绍其相关原理、应用和发展现状,以及对海运船舶运输的影响和前景展望。
一、导航技术的原理与应用1. 全球卫星导航系统全球卫星导航系统(GNSS)是现代海运船舶导航的主要手段之一。
该系统基于卫星发射的导航信号,通过接收和解算卫星信号来实现船舶的导航与定位。
主要的全球卫星导航系统有GPS(美国)、GLONASS(俄罗斯)、BeiDou(中国)和Galileo(欧洲)等。
2. 惯性导航系统惯性导航系统(INS)是一种基于惯性传感器的航行导航方式。
它通过测量船舶的加速度和角速度,以及采用数学模型来推算船舶的位置、速度和姿态等参数。
惯性导航系统具有独立性强、精度高的特点,在海洋环境中具有广泛的应用。
3. 电子海图与自动引导系统电子海图是基于卫星定位和地理信息系统技术,将传统纸制航海图数字化而成。
配合自动引导系统,可以实现航线规划、船舶位置动态显示、预警和碰撞避让等功能。
这一技术的应用大大提高了船舶的导航安全性和效率。
二、定位技术的原理与应用1. 水文测量与声纳定位水文测量技术可以通过测量水深和水下地貌,辅助船舶的定位和导航。
声纳定位则利用声波在水中的传播速度和回波反射信号,通过接收和处理声纳信号来确定船舶的位置和方位。
2. 雷达定位雷达定位技术是利用雷达发射出的电磁波与物体相互作用的原理,通过接收物体反射回来的波束来确定物体的位置和运动情况。
雷达定位技术在海运船舶的目标识别和位置确认方面具有重要作用。
3. 卫星通信与无线电定位卫星通信技术可以实现船舶与岸上通信基站的远距离通信,为船舶导航和定位提供重要信息。
无线电定位技术则基于无线电波的传播特性,通过地面测量站对船舶的无线电信号进行测量和分析,来确定船舶的位置。
三、海运船舶导航与定位技术的发展现状随着科技的不断进步,海运船舶导航与定位技术也在不断发展。
【科普】船舶在海上航行的航向与方位(一)方向确定航行在茫茫大海上的船舶是怎样来确定方向的呢?为确定方向,首先要确定方向的基准线,航海上常用南北线作为方向的基准线。
1方向基准线——南北线过测者作一个与测者铅垂线相垂直的地平平面(测者地面真地平平面),该平面与测者的子午圈平面的交线就是测者的南北线。
其中近北极的一方是正北方向,近南极的一方是正南方向。
2东西线通过测者铅垂线与测者子午圈平面相垂直的平面叫做测者的卯酋圈平面,它与测者地平平面相交的直线为测者的东西线。
当测者面北背南时,测者东西线的右方是正东方向,左方是正西方向。
(二)方向划分仅在测者地平平面上确定北东南西四个基点的方向还是不够的。
航海上进一步划分方向的方法有:圆周法、半圆法、罗经点法。
(三)航向、方位和舷角1真航向当船舶横倾时,过船舶中铅垂线的船首尾面与测者真地平平面相交的直线称为船首尾线。
船首尾线向船首方向的延长线称为船首线;当船舶航行时该线即为航向线。
以真北线为基准,顺时针方向计量到船舶的航向线的角度称为真航向,缩写为TC。
真航向的度量方法是:以真北线为基准,顺时针方向由0000到3600计量,计算到船舶航向线。
凡航向均用三位数表示。
2真方位测者与物标的连线称为物标方位线。
以真北线为基准,顺时针方向计量到物标方位线的角度称为真方位,缩写为TB。
真方位的度量方法是:以真北线为0000,顺时针方向由0000到3600计量,计算到物标方位线。
凡方位均用三位数表示。
3舷角船首线与物标方位线之间的夹角称为舷角或相对方位(Q)。
4真方位与舷角的换算物标的真方位是以测者真北线为基准度量的,因此它与航向的变化无关,只要测者位置不变,航向的变化不会引起真方位的变化;而物标的舷角是以船首线为基准度量的,因此航向改变后,舷角也就随着改变。
航向、方位与舷角之间的关系是:TB=TC+ Q(四)方向的测定船舶在海上航行时是通过罗经来指示航向和观测物标方位,目前,船舶上配备的罗经有陀螺罗经和磁罗经两种。
【科普】船舶定位与航行方法船舶启航前,船舶驾驶员根据航次命令,研究和分析了航行往目的地的航区的情况后,在海图上设计并画出拟航行的航线,称计划航线。
计划航线由许多段航线组成,各段之间联接的点称为航路点;每段计划航线的方向称为该段的计划航向。
如果没有其他的影响,船舶航行就是按照每段的计划航向沿着计划航线航行直至目的地时,船舶的航迹线就落在计划航线上。
但是,实际上船舶在海上航行要受到外界的各种影响,例如,风、流、浪、涌等都使船舶随时偏离计划航线;另外,计划航线上可能还有其他船舶航行、渔船捕鱼作业等,这时,船舶就必须改变航向,按有关规则避让,当驶过让清后,又要回到计划航线上继续航行。
本小结介绍的船舶定位与航行方法,就是通过船舶定位的手段来掌握船舶偏离计划航线的情况,并考虑外界的航行条件和影响,采取适合的航行方法使船舶航行在计划航线上。
1船舶定位为了保证船舶安全、经济地航行,很重要的一点是在任何时候及任何情况下,航海人员必须知道自己的船位所在,这样才能在海图上,根据船位了解船舶周围的航行条件,及时采用适合的航行方法和必要的航行措施,确保航行安全。
船舶在航行中确定船位的方法,一般可分为两类,即推算船位和观测定位,推算船位有航迹绘算和航迹计算;观测船位方法有陆标定位、天文定位和无线电定位。
2航次计划与航线设计船舶营运生产通常是以航次(voyage)为生产周期,航次开始前要制定计划、安排生产,航次结束后必须统计数据资料、总结汇报等等。
航次开始时间是上一航次的结束时间;航次结束时间是最后一票货离船(如吊卸货则货吊过船舷时)或最后一位旅客离船(出船舷时)时间。
船舶的航次是连续计算,航次编号(voyage N0.)和起止时间在航海日志中都必须详细记载。
在航次结束前,船公司或租家一般都将提前下达下一航次的运输任务——航次命令(voyage Order)。
航次命令是船公司或租家对船长关于下一航次船舶运输任务的指示,收到航次命令后, 船长必须尽快地将航次命令的落实情况报告船公司或租家,以便船公司或租家安排计划,掌握船舶准确情况。
船舶航行与导航技术的定位与测量技术船舶作为重要的交通工具之一,对定位与测量技术的要求非常高。
在海洋环境中,强大的风浪和复杂的水下岩石地形对船舶课程和位置的控制提出了严格的挑战。
因此,船舶导航和定位技术的发展一直受到人们的密切关注。
导航技术的历史船舶的导航技术已经有数千年的历史。
早期的导航技术基于观察自然标志,如太阳、月亮、星星等。
随着时间的推移,复杂的精度仪器和电子仪器被引入导航领域。
这其中最基础的导航仪器就是罗盘,因为它能为导航发挥非常重要的作用。
同时,还有其他的导航仪器,如木星仪、星盘、海图等。
随着时间的推进,GPS(全球定位系统)技术在船舶导航领域得到广泛应用。
GPS定位技术具有非常高的精度和可靠性,同时具有很强的良好性。
航行的挑战性随着船舶的巨大增长,航行的挑战也逐渐增加。
现在的船舶尺寸日益增大,需要更高的精度来导航。
同时,飞沫、雾和波浪等不确定因素影响着航行操作。
这要求导航技术要越来越精确和可行。
船舶定位和辅助导航技术船舶定位技术是航行和导航的重要部分,这项技术基于计算GPS信号的方位角度,用于测量船舶位置。
定位技术主要用于跟踪船舶,包括沿岸、海岸和海洋区域。
为了补充GPS技术的不足,船舶还采用了其他辅助导航技术,如惯性导航、电子海图和声学测量技术等。
这些技术确保了船舶导航和定位的准确性和可行性。
船舶导航和定位的未来随着科技的不断进步和技术的创新,船舶导航和定位技术将发生重大变革。
未来船舶可能会采用机器人技术,这不仅将提高航行的精度和速度,也将极大地减少人为操作错误的风险。
同时,人工智能和物联网技术将在船舶导航和定位中发挥更加重要的作用。
这些技术将会提高船舶的自主性、安全性和效率性。
船舶也可能被漂洋自在的潜艇所代替,这会更好地满足现代海上贸易的需求。
结论船舶定位和导航技术的历史有数千年。
从人类长久的航海历史,我们可以看出,不断的技术革新和创新是获得更高精度和更可行的船舶定位和导航所必须的。
第⼆节船舶定位⽅法.第⼆节船舶定位⽅法⼀、航迹推算(⼀)概述1.航海上确定船位的⽅法 1)航迹推算航迹推算是航⾏中求取船位的最基本⽅法。
它是根据船舶最基本的航海仪器(罗经和计程仪)指⽰的航向和航程,以及风流资料,在不借助于外界导航物标的条件下,从已知推算起点开始,推算出具有⼀定精度的航迹和船位。
2)定位定位是利⽤航海仪器,观测外界已确知其位置的物标,然后根据测量结果,求出观测时刻的船位。
陆标定位定位⽆线电航海仪器定位天⽂定位2.航迹推算的种类 1)航迹绘算法即海图作业法,是根据船舶航⾏时的真航向、航程和风流要素,在海图上绘画出推算航迹和推算船位;或者根据计划航线,预配风流压差,作图求出应驶的真航向和推算船位。
2)航迹计算法航迹计算法是根据推算起点的经纬度、航向和航程,利⽤查表或利⽤数学计算公式,求到达点推算船位经纬度的⽅法。
3.航迹推算的作⽤ 1)可随时确定船位;2)可预先推算出到达点的时间;3)估计船舶航⾏前⽅是否存在航⾏危险; 4)推算船位是天⽂定位和⽆线电定位的基础。
4.航迹推算的起、迄时间 1)起点:应在驶离引航⽔域或港界,定速航⾏后⽴即开始。
推算起点必须是准确的船位。
2)迄点抵达⽬的港领航⽔域或接近港界有物标或航标可供⽬测校验船位和导航时。
3)中断推算开始后不得⽆故中断。
但是,如果航经渔区或狭⽔道,由于转向频繁,可以暂时中⽌推算,但应将中断的起、迄点船位记⼊航海⽇志。
5.航迹推算中常⽤的名词术语1)计划航迹线简称计划航线,是根据安全、经济的原则在海图上拟定的航线,即船舶航⾏时计划要⾛的航线。
2)计划航迹向CA简称计划航向,是计划航迹前进的⽅向,由真北按顺时针⽅向计量到计划航迹线的⾓度。
3)推算航迹线通过航迹推算,预配风流压差后得到的航迹线,⼀般应与计划航线⼀致。
4)航迹线即实际航迹线,是船舶航⾏时所留下的航迹。
5)航迹向即实际航迹向,是由真北瞬时⽅向计量到航迹线的⾓度。
(⼆)航迹绘算1.⽆风流情况下的航迹绘算1)推算原则计划航向=真航向,即CG=TC推算航程=计程仪航程,即S G=S L(L2-L1)(1+?L)2)作图⽅法由推算起点画出计划航线,在其上截取计程仪航程S L得⼀点,即为积算船位,⽤DR表⽰。
常规船舶测绘中的船舶定位方法与技巧导语船舶定位在常规船舶测绘中起着至关重要的作用。
准确的船舶定位可以帮助航海员确保船只航行的安全性和准确性,同时也对地图制图和测绘工作具有重要意义。
本文将介绍一些在常规船舶测绘中使用的船舶定位方法和技巧,并探讨其应用和优缺点。
一、全球卫星导航系统(GNSS)全球卫星导航系统(GNSS)是目前最常用的船舶定位技术之一。
通过接收卫星信号,船舶可以确定其精确的经纬度位置。
GNSS系统提供了高度的精确性,并且可以在全球范围内使用,它是现代测绘和导航的重要工具。
然而,GNSS系统也存在一些局限性。
例如,天气条件和扰动可以影响接收卫星信号的质量。
在恶劣天气条件下,接收器可能会遇到信号丢失或干扰,从而影响到船舶的定位准确性。
此外,由于GNSS系统依赖于卫星信号,因此在高层建筑或密集的树林等地形复杂的区域,信号接收可能会受到阻碍。
二、无线电定位系统无线电定位系统是另一种常用的船舶定位技术。
该系统使用无线电信号作为定位手段,通过测量信号的到达时间差或信号强度来确定船舶的位置。
无线电定位系统具有较高的精确性和可靠性,并且可以适用于各种天气和地形条件。
然而,与GNSS系统相比,无线电定位系统的覆盖范围通常较小。
该系统通常需要安装在岸上或近岸的测量站点,并且船舶必须在一定范围内才能获得定位信号。
因此,无线电定位系统在远离岸边的航行中可能不太适用。
三、激光测距仪激光测距仪是一种在船舶测绘中常用的船舶定位工具。
该仪器使用激光束发送和接收反射信号,通过测量信号的行进时间和速度来计算船舶与目标之间的距离。
激光测距仪具有高度的精确性和准确性,并且可以在远距离下进行测量。
然而,激光测距仪在使用中也存在一些限制。
由于激光束是直线传播的,而不会弯曲,因此需要避免障碍物的干扰。
同样,激光测距仪也对天气条件敏感,在恶劣的天气情况下,如雨雪等,激光束的传播可能会受到影响。
四、声纳定位系统声纳定位系统是一种在水下测绘中广泛使用的船舶定位技术。
航行情报服务的船舶定位和追踪技术航行情报服务的船舶定位和追踪技术在现代海上运输和航行安全中扮演着重要的角色。
随着科技的不断发展,船舶定位和追踪技术已经成为航行情报服务的核心组成部分。
本文将介绍航行情报服务的船舶定位和追踪技术,并探讨其在实际应用中的重要性和优势。
船舶定位和追踪技术可以通过多种方式实现,包括全球卫星导航系统(GNSS)、雷达、自动识别系统(AIS)和近海无线雷达系统等。
这些技术可以实时获取船舶的位置、速度、航向等关键信息,并将其传输到航行情报服务中心,以便为船舶提供航行安全性评估和有效的航线建议。
首先,全球卫星导航系统(GNSS)是船舶定位和追踪的主要技术之一。
通过使用卫星信号,GNSS可以准确地确定船舶的位置和时间。
目前,全球定位系统(GPS)是最常用和广泛接受的GNSS技术,可以在全球范围内提供准确的导航和定位服务。
此外,伽利略、格洛纳斯和北斗等其他全球卫星导航系统也在不断发展和应用中,使船舶定位和追踪技术更加全面和可靠。
其次,雷达技术在船舶定位和追踪中起着重要作用。
雷达系统通过发送和接收电磁波来探测船舶和其他物体,然后分析返回的信号以确定其位置和距离。
雷达技术可以提供更加详细和准确的目标信息,尤其是在恶劣天气条件下。
通过将雷达系统与航行情报服务相结合,船舶可以及时获得周围海域的目标信息,从而避免潜在的碰撞和安全隐患。
另外,自动识别系统(AIS)是一种广泛应用于船舶定位和追踪的技术。
AIS 系统通过VHF无线电信号实时传输船舶的位置、速度、航向以及其他相关信息。
这些信息可以通过岸基接收站或其他船舶的接收器接收和分析,提供实时的航行情报。
AIS系统为海上交通管理、船舶安全和救援行动提供了重要的辅助信息,也可以帮助船舶进行迅速而准确的目标识别和跟踪。
近海无线雷达系统是一种新兴的船舶定位和追踪技术。
该系统利用无线信号进行船舶目标的定位、跟踪和监控。
与传统雷达系统不同的是,近海无线雷达系统不需要设置射线,使用天线阵列和信号处理算法来实现目标定位和追踪。