地质导向技术
- 格式:ppt
- 大小:7.01 MB
- 文档页数:32
浅谈地质导向技术通过近几年的产能建设,大牛地区块水平井开发已经进入中后期阶段,一些储层厚度大,物性好的储层已经开发殆尽,为了能更好的完成产能任务及新建产能,就必须对许多复杂气藏,难动用储量进行开发,复杂的地质因素给现场的综合录井工作带来了较大的困难,具体体现在水平井A靶点着陆和水平段施工时储层厚度变薄或缺失导致的着陆失败或者回填,造成了大量无效进尺,延长施工周期,增加投资成本,导致现在采用的技术已无法满足目前的综合录井需要,急需通过新方法和新技术来指导工作,地质导向的作用就越来越突出和重要。
标签:地质导向水平井地层对比油气层分析地质导向的水平井钻取需要诸多的技术支持,其中录井和定向技术是必不可少的。
以往的水平井在钻进过程中往往运用地质等方面的资料进行推测钻取,具有一定的盲目性。
录井和定向技术具有实时性、具体性,可以更精确为钻井提供技术支持。
目前,录井公司大胆的将录井和定向结合在一起,成立定录一体录井队,能够更有效的发挥出地质导向的作用。
水平井可以大大增加井眼在产层中的长度和产层的泄油气面积,其成本略高于直井,但单井产量却是直井的数倍,在薄层、低渗透、稠油、页岩气等油气藏及底水和气顶活跃的油气藏中得到广泛使用。
当前,致密砂岩油气藏、页岩油气藏正成为中国油气勘探开发的主流和热点,这些非常规油气资源只有通过水平井开采才能获得更好的经济效益。
在水平井钻井过程中,随钻地质导向具有非常重要的作用。
在国外,随钻地质导向技术已得到广泛使用,如贝克休斯公司的Trak 随钻测井系列,包括深探测方位电阻率测井(AziTrak)、高精度地层密度和中子孔隙度测井(LithoTrak)、随钻核磁共振测井(MagTrak)、实时声波阵列测井(SoundTrak)、高分辨率随钻电成像测井(StarTrak)、实时地层压力测试(TesTrak)等,国内LWD(Logging While Drilling)技术刚刚兴起,主要还是采用录井(包含综合录井)、MWD(Measurement While Drilling)等技术进行随钻地质导向。
地质导向方法地质导向方法是勘探工作中常用的一种技术手段。
它通过对地质特征的观察、研究和分析,结合物探数据进行综合判断,以达到找矿的目的。
本文将介绍10种关于地质导向方法的技术手段,并对其进行详细描述。
1. 地质调查地质调查是一种了解地球表层结构和矿产资源分布的方法。
通过对地质地貌、矿床地质、矿床储量和分布等方面的调查,确定矿产资源的类型和分布规律,为后续的工作提供依据。
2. 地球物理勘探地球物理勘探是通过地球物理方法获取地下和地表的物理信息,来推测地下结构、矿床存在和分布的方法。
如重力法、电磁法、地震法、磁法等。
3. 钻探技术钻探技术是通过钻取地下岩层,获取岩石样品来分析地下构造特征、岩石类型、矿物成分等信息。
常用的钻探方法有钻孔、工程钻井、岩心钻取等方法。
4. 地球化学勘探地球化学勘探通过对地球表层和地下矿体周边物质的化学分析,寻找有矿质点的分布规律和矿体性质。
常用的地球化学方法有土壤丈量、水样分析、岩石分析、矿物测定等。
5. 矿物学分析矿物学分析是通过对地质样品中的成分和结构进行分析,寻找矿物和矿床的特征和规律。
矿物学分析方法可以包括矿物形态分析、EBSD(电子背散射衍射)分析等。
6. 地质雷达勘探地质雷达勘探是通过测定地下介质内的物理对象的电磁波反射、折射等现象,获取地下岩石结构等信息。
常用的地质雷达勘探有单频雷达、多频带雷达等。
7. 计算机辅助矿产普查计算机辅助矿产普查是基于计算机技术和地理信息系统的手段,在数字化数据收集、管理和分析方面比传统普查方法更有效。
技术包括数据收集、数据分析与可视化、智能模型等。
8. 地形地貌分析地形地貌分析是通过对地形地貌特征的研究,确定矿床的分布规律和形成条件,从而推测矿源所在地。
分析方法包括地形测量、数字高程模型分析、三维可视化等。
9. 遥感技术遥感技术是通过对卫星图像等无人机获取的地表信息的处理,来推测地表相应的岩层构造信息以及影响加成等因素。
遥感技术包括光学遥感、雷达遥感等。
水平井地质导向技术认识第一部分前言水平井地质导向技术的关键是把以前的几何钻井方式向地质导向钻井的转变。
以前打井,只要钻遇事先确定的几何目标,即使没有发现油层,钻井工作也算大功告成。
地质导向钻井让目标不再固定不变,而是根据储层的位置随时调整,实现了“钻头跟着设计走”到“钻头跟着储层走”的转变。
首先通过对区域地质、地震、测井和油藏资料的综合研究,结合工程施工的要求设计出井眼轨迹,然后交由现场施工人员去实施。
但是钻前研究所使用的资料具有很大的不确定性,往往会导致实钻过程中沿着设计轨迹钻进的水平井不在油藏预期最佳的位置,从而影响了目的层的钻遇效果,以及影响到后期投产后采油或注水效果,进而影响到生产单位的投资回报。
地质导向的过程是互动的钻井方式,地质导向师利用随钻测井,随钻测量,定向工具及导向模型软件,在水平井的钻进过程中不断的调整最初的设计,指挥钻进的方向,将井眼轨迹调整到油藏最佳的位置,以达到最佳的产油(气)或注水效果。
精确的地质导向可帮助油田提高钻井投资的回报。
在水平井钻进的过程中,地质导向人员需要与钻井研究所、录井公司、钻井公司及相关技术人员及时沟通协调。
根据现场掌握的第一手资料及时调整井眼轨迹。
达到施工设计的地质、工程要求。
从事地质导向的地质导向师,需要具有丰富的地质,油藏,测井,地震,及定向井施工知识。
第二部分:地质导向工作流程一、准备阶段1、资料的收集准备阶段包括:设计目的,设计原则,设计风险评估,甲方地质认识,区域构造资料,(油气藏的性质,断层在本井区的分布及认识情况等)地震资料和认识,沉积相的认识,物源的来源方向及特征,砂体的三维二维空间展布情况,区域及本井区油气水分布特征及性质,邻井的测井资料,地质小层数据,邻井的试油数据2、建模阶段:包括:井区的三维模型,所施工井的设计轨迹与地层关系的二维模型3、制定施工实际方案阶段首先由地质导向师制定施工预案,其次把预案与甲方及设计方进行沟通,征求意见,修改施工预案,使预案更完善,从而能有效指导现场施工。
浅述录井工作中的岩性识别技术与地质导向技术摘要:随着油田油气勘探开发程度不断提高,油气勘探目标的日趋复杂,钻井新技术、新工艺快速发展,录井工作面临严峻挑战。
录井适时开展研磨式钻井条件下的岩性识别技术、小井眼加深条件下的油气显示识别评价技术和水平井地质导向技术等现场录井方法研究和探索,综合运用各项资料破解录井难题,在现场实际录井过程中取得了较好效果。
关键词:录井岩性识别地质导向一、研磨式钻井条件下的岩性识别技术识别岩性是录井工作的基础和关键,只有在准确识别岩性、客观恢复地层剖面的基础上,才能搞好地层对比,卡准取心层位及潜山界面,准确描述油气显示,进而客观地评价储层流体。
传统的岩性识别方法主要是通过观察岩屑实物,参考钻时进行岩性定名,目前由于钻井条件的变化,仅依靠上述方法已难以准确识别岩性,因而在岩性定名中就要充分考虑各种影响因素,针对不同的情况采取不同的识别方法进行综合判断。
无论是哪种岩性组合或是使用何种钻井条件,岩性不同,可钻性就有差异,反映在钻时上总是有所区别。
在PDC钻头条件下,不同岩性的钻时差别极小,常用的钻时曲线比例难以发现不同岩性钻时的区别,因此对钻时曲线进行相应地处理,凸现钻时的细微差别,强化钻时指相意义,就可以将不同岩性的细微钻时差别显现出来。
钻时处理法主要有横向比例放大法、对数显示法、微钻时处理法以及钻时校正法,每种方法均有其使用的优势和局限性,在实际使用过程中,应根据实际情况进行选择。
其中,钻时校正法是通过校正的钻时,消除了部分钻井参数的影响,因此它更能反映地层的可钻性,识别岩性更有效,尤其是在小井眼加深等特殊工况井中作用突出。
钻时校正法是通过消除钻压、转盘转速、动力钻具等影响因素,从而建立起标准钻时曲线的方法。
鉴于常用的dc指数法所得到的曲线起伏小,变化不明显,且公式复杂,因此,依据钻速与钻头转速、钻压、地层可钻性成正比,与钻头直径成反比的原理,获得地层可钻性指数K,地层可钻性越好,K指数越小,地层可钻性差,则K指数变大。
162当前,最常用的技术方法是最小二乘法。
LWD技术是一种基于钻探过程中的地质条件(井眼轨迹、钻头位置、井眼角度等)与地层电阻率之间的相互影响,实现对油气层进行有效的定位和定向的一种新兴的测井技术,可实现对油气层位置和岩性的动态监测。
在此基础上,提出了一种基于 LWD技术的新型测井方法。
水平井是一口高产量、低廉的油田,其钻探成功率与油气藏的钻探工艺密切相关。
随钻测井技术具有指导地质导向和实时评价储层物性等优点,对改善储层钻进速度、缩短完井周期和降低水平井测井风险具有重要意义。
在大斜度井和水平井的勘查和开发中,采用了随钻测井技术。
1 发展概况当前,在水平井中使用的随钻测井技术有:一是识别岩性,测定地层倾角,测定水平段长度;二是利用已有的地层岩性和构造信息,对水平剖面进行轨道控制;三是利用地层的岩性和结构信息,对水平线的航迹进行了动态修正。
从国内外的研究进展来看,随着随钻测井技术的不断发展,随着随钻测井技术的不断深入,人们对该技术的认识也越来越深入。
在水平井技术、随钻测井技术等方面取得长足进步的同时,也使随钻测井技术在今后的研究中占有越来越重要的地位。
基于岩性、断裂、沉积相、气顶等特征,对岩性及岩性进行识别,而上述特征均受外部环境的制约,其识别效果会有很大的改变。
另外,常规的地质方向法在实际运用中也面临着诸多问题,如:因勘探设备与岩层间的间距较小,不能对岩层的变形情况进行准确的判定;但在实际应用中,因检波器与地层相距太近,不能准确判别出含油层;但在实际应用中,因检测仪与岩层相距很近,不能对岩层的地质变形做出精确的判定。
随着我国石油资源的日益丰富,石油资源的日益丰富,采用常规的地质导引方式已难以适应石油资源的需求。
为此,必须对现有的地质导引技术进行改进与创新。
随着随钻录井技术的不断发展,随钻录井的地导技术也在不断发展。
地质导向技术在水平井钻井中的应用将形成一套完整的水平井测量工艺、轨迹控制与安全钻井的技术体系,可有效保障钻井轨迹在油层中的最优穿越,提升油层的钻井效率,推动水平井钻井技术的发展与提升。
地质导向技术在⽔平井钻探中的应⽤研究⼀、⽔平井概述和冀东油⽥地质导向技术应⽤概况(⼀)⽔平井概述⽔平井是指钻⼊储集层部分的井眼轨迹呈近⽔平状态的井。
与常规⽣产井相⽐,它的优势在于有效地增加油⽓层的泄露⾯积,提⾼油⽓采收率,提⾼单井产量;并且可以解决以下难题:1、解决⾼稠油、超稠油的开发问题;2、解决地层致密和低渗透层采油产量低的问题;3、有效的开发断层遮挡剩余油藏及构造⾼点油⽓富集区。
(⼆)国内外各油⽥⽔平井技术发展及现状⽔平井最早出现于美国⼆⼗世纪20~30年代,40~70年代美国、前苏联等国实施了⼀批⽔平试验井,因受当时技术⽔平的限制,各项技术不配套,虽能钻成⽔平井,但难以⽤于⽣产,加之钻井费⽤⾼,限制了⽔平井的发展。
80年代,随着新技术发展,加上⼀些特殊油藏⽤直井的⽅法已⽆法开发,或者效益很低,因⽽,⽔平井技术⼜得到了发展,美国、加拿⼤、法国等国开展了⽤⽔平井开发油⽓藏的研究,在⽔平井油藏⼯程、钻井、完井、测井、射孔、增产措施、井下⼯具以及井下作业等⽅⾯均有重⼤突破,尤其是80年代中期因油价较低⽔平井技术得到迅速发展,⽔平井开采技术已逐步配套。
90年代开始⼤规模推⼴应⽤,已作为成熟的常规技术应⽤于⼏乎所有类型的油藏。
到⼆⼗世纪末,全世界已完钻⽔平井23385⼝,主要分布于美国、加拿⼤、前苏联等69个国家,其中以美国和加拿⼤为主(分别为10066⼝和9665⼝),每年完钻1000⼝左右。
应⽤⽔平井技术的油藏主要是裂缝性油藏,约占53%;其次是底⽔和⽓顶油藏,约占33%。
据不完全统计,⽔平井钻井成本已降⾄直井的1.5~2倍,甚⾄有的⽔平井成本只是直井的1.2倍,产量是直井的4~8倍。
我国在⼆⼗世纪60年代开始初步应⽤⼤斜度井和⽔平井,1965年在四川磨溪钻成第⼀⼝⽔平井—磨3井,但限于当时的技术⽔平,未取得应有的效益。
“⼋五”期间,我国将⽔平井技术列为重点攻关技术,相继在胜利、新疆、辽河等油⽥开展攻关,率先进⾏了⽔平井的研究和实践,⼆⼗世纪90年代中后期,该项技术开始得到了快速发展和⼴泛应⽤。
三维地质导向技术及应用实例随着经济发展对能源需求的不断增加以及油气勘探形势的日趋严峻,老油区面临剩余储量难动用,采收率低;新探区面对勘探开发难度越来越大,成本越来越高的现实,水平井成为开发特殊类型油气藏及老区挖潜,提高采收率的重要手段。
随钻地质导向技术是20世纪90年代国际钻井界发展起来的前沿钻井技术之一[1],其在开发薄油层、致密油气层、复杂断块油藏、油水关系复杂油藏方面发挥了重要的作用,但是目前的地质导向技术严格来讲是二维地质导向。
1 二维地质导向简述二维地质导向一般使用一口邻井资料作为导向建模的参考依据,主要考虑地层属性的垂向分布,导向过程相对简单。
其主要使用的数据局限在地质、测井数据,在一定程度上能够满足水平井地质导向的要求;地震数据包含了更多潜在的地层及油气信息,能够反映地层形态、岩层性质及油气储层位置等,在目前的二维地质导向过程中几乎没有或很少应用。
目前,国内油气田一般采用MWD(带GR或GR+RT)或LWD(带GR、RT)结合综合录井进行水平井地质导向工作。
二维地质导向不能准确反映井眼轨迹三维空间展布形态,以及井眼轨迹周围地层构造变化与储层各向非均质性变化,无法准确描述断层、裂缝形态的,无法利用地震数据的储层反演结果,因此给地质导向工作带来了一定的不确定性。
2 三维地质导向2.1 基本思路三维地质导向是将地质导向的理念与三维地质建模结合起来,即在三维地质模型里实现水平井、大斜度井的地质导向功能。
具体过程如下:在钻前应用已有的地质、物探数据建立地质模型精细刻画地下构造及油藏特性;在钻井过程中通过井场各种数据的补充不断修正地质模型,模拟井轨迹在三维地质模型中的穿越,参考模型数据为地质导向提供井眼轨迹调整建议,通过可视化显示邻井,辅助解决多井眼防碰问题。
2.2 关键技术2.2.1 地质建模与模型调整构建定量储层地质模型是三维地质导向的核心和基础,对地下油藏特性进行准确、精细的刻画是导向成功的前提。
(二)地质导向地质导向是在拥有几何导向能力的同时,又能根据随钻测井(LWD)得出的地层岩性、地层层面、油层特点等地质特征参数,随时控制井下轨迹,使钻头沿地层最优位置钻进。
在预先并不掌握地层性质特点、层面特征的情况下,实现精确控制。
美国Anadrill公司的地质导向钻井系统已取得商业性成功,并在一些油田得到较好应用。
值得一提的是,目前导向技术大多是以几何导向为特征,而且由于控制机构在地面,还没有实现井下自动导向控制。
在实际钻井中究竟使用哪一种导向方式,应视其具体工作环境而定。
对于一些油层变化不大、油层较厚、对地层性质特点了解较清楚的场合,使用几何导向较适宜,既能满足精度要求,又能降低成本。
而对于一些地层性质特点了解较少、油层厚度很薄的场合,使用地质导向更为合适。
根据导向工具特点及导向方式,井下自动导向钻井系统可采用如下四种组合方式:1、几何导向十滑动式井下自动导向钻井系统;2、地质导向十滑动式井下自动导向钻井系统;3、几何导向十旋转式井下自动导向钻井系统;4、地质导向十旋转式井下自动导向钻井系统。
井下自动导向钻井系统采用上述哪种方式更为合适,应从发展的观点加以论证。
目前国外的几何导向系统与地质导向系统还是分离的,尚无一家公司的样机兼备这两项功能。
今后的发展方向是把二者结合在一个系统中,实现真正的“几何--地质”导向控制。
四、地质导向技术(一)地质导向技术的概况地质导向技术是水平井钻井的一项重大发展,它标志着水平井钻井技术上升到一个更高的层次。
地质导向技术是根据钻头处的实时地质数据和储层数据作出调整井眼轨迹的决定,引导钻头前进。
其中的技术关键是要求能实时测量钻头处有关地层、井眼和钻头作业参数等方面的数据,并及时将这些数据传送至地面,便于作业人员迅速作出决策。
应用地质导向技术可以确保水平井眼准确进入和保持在目标层内(即使储层很薄),保证在产层内井眼与油水或油气界面之间保持一定距离,并可连通数个断裂储层。