调幅信号的解调
- 格式:docx
- 大小:18.44 KB
- 文档页数:11
调幅波信号的解调实验报告一、实验目的本实验旨在通过解调调幅波信号,了解调幅波的特点、解调原理和应用。
二、实验原理1. 调幅波的特点调幅波是一种将模拟信号转换为载波信号的方法,其特点包括:能够传输音频、视频等模拟信号;易于产生和检测;但容易受到噪声和多径效应的影响。
2. 解调原理解调是指将调制后的信号还原为原始模拟信号的过程。
常见的解调方法包括:包络检波法、相干检波法和同步检波法。
其中,包络检波法是通过检测AM信号的包络来获得原始信号;相干检波法是通过将接收到的AM信号与本地振荡器产生同频率振荡,然后进行相减来获得原始信号;同步检波法则是在接收端使用一个与发送端同步的时钟来还原出原始信息。
3. 实验装置本次实验所需装置如下:(1)函数发生器:用于产生载频及模拟信息。
(2)功率放大器:用于放大载频及模拟信息。
(3)带通滤波器:用于滤除载波及其它高频干扰信号。
(4)检波器:用于解调信号。
(5)示波器:用于观察信号波形。
三、实验步骤1. 按照实验原理所述,连接实验装置。
2. 将函数发生器的输出接到功率放大器的输入端,将功率放大器的输出接到带通滤波器的输入端,将带通滤波器的输出接到检波器的输入端,将检波器的输出接到示波器上。
3. 设置函数发生器产生频率为1kHz、幅度为500mVp-p的正弦信号;设置载频频率为10kHz、幅度为100mVp-p;设置功率放大器增益为20dB;设置带通滤波器截止频率为11kHz~9kHz之间;设置示波器时基和电压增益适当。
4. 观察并记录示波器上解调后的信号,并比较其与原始模拟信号的差异。
四、实验结果与分析在完成实验步骤后,我们观察到了以下结果:1. 示波器上显示出了经过解调后的模拟信号,其幅度和频率与原始模拟信号相同。
2. 通过比较解调前后的信号,我们发现解调后的信号更加平滑,波形更加接近原始信号。
这说明我们成功地将调幅波信号解调出了原始模拟信号,并且解调后的信号比解调前的信号更加接近原始信息。
移动通信原理课程设计报告
(MATLAB/SIMULINK仿真实训)
项目名称:普通调幅信号的产生和调制解调方法姓名:
学号:11015435
班级:通信11301
指导教师:朱里奇
电信学院
一.概述
1 普通调幅信号的产生
将调制信号与直流相加,再与载波信号相乘,即可实现普通调幅。
相应的原理框图如图所示。
由于乘法器输出电平不太高,所以这种方法称为低电平调幅方法。
图低电平调幅原理图
利用丙类谐振功率放大器的调制特性也可以产生不同调幅信号。
由于功率大器(功放i的喻出电压很高,故这种方法称为高电平调幅方法
2 普通调幅信号的解调方法
⑴包络检波
利用普通调幅信号的包络反映调制信号波形变化这一特点,如能将包络提取出来,就可以恢复原来的调制信号。
这就是包络检波的原理。
包络检波的原理图如图所示。
⑵同步检波
同步检波必须采用一个与发射端载波同频同相(或固定相位差)的信号,这个信号称为同步信号。
同步检波可由乘法器和低通滤波器来实现,其原理如图所示。
二.实训内容
根据实训资料可画出实图,如下所示:
得到如下波形图:
三. 总结
这次仿真加深了我们对私simulink软件的了解,了解了调制解调的仿真过程,加深了对调制解调的认识。
这次仿真可以很好地锻炼我们的实际动手能力,可以很好的把理论知识结合实际,有利于我们的学习和发展。
一、实验目的1. 理解调幅信号的基本原理和特点。
2. 掌握调幅信号的解调方法。
3. 通过实验加深对调幅信号处理技术的理解。
二、实验原理调幅(AM)信号是指载波的幅度随信息信号的变化而变化的一种调制方式。
调幅信号可以表示为:\[ s(t) = (A + m(t)) \cos(2\pi f_c t) \]其中,\( A \) 为载波幅度,\( m(t) \) 为信息信号,\( f_c \) 为载波频率。
解调是指从调幅信号中恢复出原始信息信号的过程。
常见的解调方法有包络检波、相干解调和鉴频器等。
三、实验设备与软件1. 实验设备:信号发生器、示波器、函数信号发生器、频率计等。
2. 实验软件:MATLAB、Simulink等。
四、实验内容与步骤1. 调幅信号的产生(1)使用信号发生器产生一个频率为 \( f_c \) 的正弦波作为载波信号。
(2)使用函数信号发生器产生一个频率为 \( f_m \) 的正弦波作为信息信号。
(3)将载波信号与信息信号相乘,得到调幅信号。
(4)使用示波器观察调幅信号的波形。
2. 调幅信号的解调(1)使用包络检波器对调幅信号进行解调。
(2)使用相干解调器对调幅信号进行解调。
(3)使用鉴频器对调幅信号进行解调。
(4)使用示波器观察解调后的信号波形。
3. 实验数据分析(1)分析调幅信号的波形特点,包括幅度、频率和相位等。
(2)分析解调后的信号波形,比较不同解调方法的效果。
(3)计算解调后的信号与原始信息信号的相似度。
五、实验结果与分析1. 调幅信号的波形通过实验观察,调幅信号的波形为载波信号与信息信号的乘积。
在时域上,调幅信号的波形具有以下特点:(1)幅度随信息信号的变化而变化。
(2)频率与载波频率相同。
(3)相位在载波信号的基础上发生变化。
2. 解调信号的波形通过实验观察,不同解调方法的解调信号波形如下:(1)包络检波:解调后的信号波形与信息信号相似,但存在相位失真。
(2)相干解调:解调后的信号波形与信息信号相似,相位失真较小。
am调幅信号解调原理一、调幅信号概述调幅(Amplitude Modulation)是一种广泛应用于无线通信的调制技术。
在调幅信号中,载波的振幅被调制,使得载波的振幅随着被传输的信号的变化而变化。
调幅信号解调是将调幅信号还原为原始信号的过程。
二、调幅信号解调方法对于调幅信号的解调,有多种方法可供选择。
根据不同的应用场景和解调要求,可以选择合适的解调方法。
1. 直接检波直接检波是最简单且常用的调幅信号解调方法之一。
其原理是利用一个非线性元件(如二极管)将调幅信号的振幅变化转换为信号的幅度变化。
直接检波的优点在于实现简单,但其缺点是对噪声的耐受性较差,并且易受到非线性元件的非线性特性影响。
2.同步解调同步解调通过与调幅信号的载波进行同步,将调幅信号移频到基带频率上进行解调。
其原理是先提取调幅信号的载波频率,然后与之进行比较,最后得到在基带上的调幅信号。
同步解调的优点是准确性高,对于噪声的抑制能力较强,但其实现复杂度较大。
3. 相干解调相干解调是利用相干检波技术对调幅信号进行解调。
其原理是将载波信号与调幅信号进行乘法运算,得到一个包含原始信号信息的中频信号。
通过滤波去除高频成分,最终得到解调后的原始信号。
相干解调的优点是抗噪声能力较强,解调效果好,但其复杂度较高。
三、调幅信号解调实现调幅信号的解调可以通过软件或硬件实现。
根据具体的应用需求和条件,可以选择合适的实现方法。
1. 软件解调软件解调是通过计算机程序对调幅信号进行解调。
一般需要借助信号处理软件或编程语言实现。
对于简单的调幅信号解调,可以使用数学运算和滤波算法来实现。
软件解调的优点是灵活性高,易于实现和调试,但对于实时性要求较高的应用可能不够满足。
2. 硬件解调硬件解调通常是采用专用的解调器或电路芯片对调幅信号进行解调。
硬件解调的优点在于实时性好,适用于对时间要求较高的应用场景,如广播电视接收。
硬件解调的缺点是成本较高,且不够灵活。
四、调幅信号解调应用调幅信号解调在无线通信、广播电视等领域有着广泛的应用。
调幅波信号的解调实验报告引言调幅(Amplitude Modulation,AM)是一种广泛应用在无线通信领域的调制技术。
调幅波信号的解调是将调幅信号转换为原始信息信号的过程。
本实验旨在了解调幅波信号的解调过程,并通过实验验证解调的有效性。
实验步骤材料准备1.函数信号发生器2.调幅信号源3.幅度稳定控制器4.高频放大器5.示波器6.混频器与解调器实验步骤1.连接信号发生器输出端与调幅信号源的调制输入端。
2.将调幅信号源的输出端通过幅度稳定控制器连接到高频放大器的输入端。
3.连接高频放大器的输出端与示波器的输入端。
4.利用示波器观察调幅波信号并记录其波形特征。
5.将高频放大器的输出端连接到混频器和解调器的输入端。
6.连接混频器和解调器的输出端到示波器的输入端。
7.利用示波器观察解调器输出的波形,并记录其与原始信号的差异。
结果与分析经过上述步骤进行实验后,我们观察到以下结果。
原始信号的调幅1.在观察调幅波信号的波形特征时,我们发现调幅波信号具有一定的频率和幅度。
2.调幅波的波形是由一个载频信号加上一个调制信号形成的,可以通过调解调制信号的幅度和频率来改变调幅波的波形特征。
解调器输出的波形1.解调器经过处理后,输出的波形与原始信号存在差异。
2.解调器的输出波形会消除调幅信号中的载频信号,还原出原始信号。
3.解调器对调幅信号进行了解调,恢复了原始信号的幅度变化。
结论通过本实验,我们了解了调幅波信号的解调过程。
解调器能够有效地将调幅信号转换为原始信息信号。
实验结果验证了解调器对调幅信号的有效解调能力。
总结在现代通信领域中,调幅技术在广播和无线电通信中得到广泛应用。
掌握调幅波信号的解调过程对于有效传输信息至关重要。
本实验通过实际操作和观察,深入研究了调幅波信号的解调过程,并验证了解调器对调幅信号的解调有效性。
通过这次实验,我们对调幅波信号的解调有了更加深刻的理解。
致谢感谢指导老师对实验过程的指导和帮助。
参考文献[1] 《通信原理与实践》. 北京: 电子工业出版社, 2010. [2] 张扬. 《调幅信号解调原理与方法探讨》. 电子技术与软件工程, 2018(10).。
调幅与解调实验报告一、引言调幅(Amplitude Modulation,简称AM)是一种将信息信号调制到载波信号上的调制方式,而解调则是将调制信号中的信息信号分离出来的过程。
调幅与解调是通信领域中基础而重要的技术,本实验旨在通过搭建调幅与解调电路,实现调幅与解调的过程,并验证调幅电路和解调电路的正常工作。
二、实验设备与原理2.1 实验设备本实验所用设备如下:- 信号发生器- 三角波生成器- 振荡器- 信号变换电路- 甄别电路- 示波器- 电阻、电容等元件2.2 实验原理2.2.1 调幅原理调幅原理是将一个较低频率的信息信号通过乘法运算调制到一个高频的载波信号上。
设载波信号为c(t) = A_c\cdot \cos(2\pi f_c t),调制信号为m(t) =A_m\cdot \cos(2\pi f_m t),调幅信号为s(t) = (A_c + A_m\cdot m(t))\cdot \cos(2\pi f_c t)。
2.2.2 解调原理解调过程即提取调制信号中携带的信息信号,常用的解调方法是相干解调。
相干解调的基本原理是将收到的调幅信号再与一个同频率同相位的载波进行乘法运算,然后通过低通滤波器滤除高频成分,得到信息信号。
三、实验步骤3.1 调幅实验1. 搭建调幅电路,将信号发生器输出的正弦波作为调制信号,通过信号变换电路将其调制到振荡器产生的载波信号上。
2. 将调幅信号连接至示波器,调整信号发生器的频率和振荡器的幅度,观察调幅信号的波形特点。
3.2 解调实验1. 将调幅信号连接至甄别电路,通过相干解调原理进行解调。
2. 将甄别电路的输出信号通过低通滤波器滤除高频成分,并连接至示波器。
3. 调整振荡器的幅度和频率,观察解调后波形的恢复情况。
四、实验结果与分析4.1 调幅实验结果通过调幅电路实验,观察示波器上的调幅信号波形特点。
可以发现调幅信号的幅度在载波频率下发生变化,且幅度变化的幅度与调制信号的幅度成正比关系。
am信号的解调方法一、AM信号解调的基本概念。
1.1 AM信号啊,就是调幅信号。
这在通信里可是个老熟人啦。
简单来说呢,它是把要传输的信息加载到载波的幅度上。
就好比是给一个正常走路的人(载波)身上加了不同重量的包袱(信息),让他的步伐大小(幅度)跟着变。
1.2 那解调呢,就是把这个加了包袱的人的正常状态(原始载波)和包袱(信息)分离开来的过程。
这就像是把他身上的包袱卸下来,看看里面到底装了啥。
二、AM信号的解调方法。
2.1 包络检波法。
2.1.1 这个包络检波法啊,算是比较简单粗暴的一种方法。
它的原理呢,就像是顺着那个加了包袱的人的轮廓(信号的包络),把包袱给取下来。
在AM信号里,因为信息是加载在幅度上的,所以信号的包络就包含了我们想要的信息。
这就好比是沿着一个包裹的外形,就能把里面的东西拿出来一样,“顺藤摸瓜”嘛。
2.1.2 具体怎么做呢?通常是用一个二极管和一个电容、电阻组成一个电路。
二极管就像一个单向的门,只允许电流朝着一个方向走。
电容呢,就像是一个小仓库,把通过二极管的电流存起来,电阻就像是一个限流的小卫士。
这样,就能把AM信号的包络提取出来,从而得到我们想要的信息。
这就像是一群小伙伴合作,各司其职,把宝藏(信息)给挖出来。
2.2 同步检波法。
2.2.1 同步检波法就稍微复杂一点了,有点像那种需要精确配合的团队合作。
它需要一个和发送端载波同频同相的本地载波。
这就好比是要找到一个和原来那个人(发送端载波)步伐完全一致(同频同相)的替身。
2.2.2 然后把这个本地载波和接收到的AM信号相乘。
这一乘啊,就像是把两个东西放在一起搅拌搅拌,把隐藏在里面的信息给搅出来。
然后再通过低通滤波器,把不需要的高频成分给过滤掉,就像把搅拌后的杂质给筛掉一样,最后就得到了我们想要的信息。
这整个过程就像是一场精心策划的魔术表演,每个步骤都不能出错,不然就变不出我们想要的结果了。
三、两种方法的比较。
3.1 包络检波法的优点就是简单、成本低。
实验报告课程名称 EDA实验实验名称 VGA接口驱动实验实验类型综合(验证、综合、设计、创新)学院名称电子与信息工程学院专业电子信息工程(现代通信)年级班级 2012级电信2班开出学期 2014-2015上期学生姓名学号指导教师陈强成绩2014年12月13日实验五调幅波信号的解调一、实验原理及目的调幅波的解调过程实质上就是调制过程的反过程,称检波,其作用是从调幅波中不失真地检出调制信号。
调幅波解调方法有二极管包络检波器和同步检波器,二极管包络检波器适合于解调含有较大载波分量的信号电平较大(通常要求峰峰值在 1.5V 以上)的普通调幅波检波。
它具有电路简单、易于实现、其检波线性度最好;同步检波又称相干检波,主要利用一个和调幅信号的载波同步(同频同相)的恢复载波信号(又称基准信号)与调幅波相乘,再通过低通滤波器滤除高频分量实现。
在信号的调幅实验中,通过以下两点来理解调幅波信号的解调的特点:1、用示波器观察包络检波器解调 AM 波、DSB 波时的性能,熟悉包络检波电路结构,理解包络检波器只能解调 AM 波而不能解调 DSB 波的概念,并了解包络检波电路的主要指标及检波失真的影响因素。
2、掌握用 F1496 实现 AM 波和 DSB 波的同步检波方法,通过示波器观察同步检波器解调AM波、DSB波时的性能,并比较通过低通滤波器后的波形,理解低通滤波器对AM 波和 DSB 波解调的影响。
二、实验步骤(一)二极管包络检波器1、按实验电路5-1连接电路观察AM 信号的解调。
(1)、ma<30%的 AM 波的解调,要求 VAB=0.1V(或 0.2V),并用示波器观察,比较加滤波电路后的输出波形与调制信号(输出减小,且有失真)。
(2)、改变ma,观察ma=100%和 ma>100%的 AM 波的解调。
(3)、改变载波信号频率使 fC=500kHz,其余条件不变,观察并记录检波器输出端波形(此时输出减小,且有失真)。
调幅信号的解调4.4调幅信号的解调解调是调制的逆过程,是从高频已调波中恢复出原低频调制信号的过程。
从频谱上看,解调也是一种信号频谱的线性搬移过程,是将高频端的信号频谱搬移到低频端,解调过程是和调制过程相对应的,不同的调制方式对应于不同的解调。
峰值包络检波AM调制包络检波:平均包络检波振幅调制过程:DSB调制解调过程SSB调制同步检波:叠加型同步检波乘积型同步检波4.4.1调幅解调的方法1包络检波调幅波包络检波输出t非线形电路低通滤波器输出信号频谱t调幅波频谱ωc-Ωωcωc+ΩωΩω休息1休息12同步检波由于DSB和SSB信号的包络不同于调制信号,不能用包络检波器,只能用同步检波器,但需注意同步检波过程中,为了正常解调,必须恢复载波信号,而所恢复的载波必须与原调制载波同步(即同频同相)。
uDSB乘法器低通滤波器u'Ωu'o uDSB解调载波uAM包络检波器u'Ω加法器u'o休息1休息1仿真3.检波电路的主要技术指标(1)电压传输系数Kd是指检波电路的输出电压和输入高频电压振幅之比。
当检波电路的输入信号为高频等幅波,即ui(t)=Uimcosωct时,Kd定义为输出直流电压Uo与输入高频电压振幅Uim的比U值,即K= odU im当输入高频调幅波ui(t)=Uim(1+macosΩt)cosωct时,Kd定义为输出低频信号Ω分量的振幅UΩm与输入高频调幅波包络变化的振幅maUim的比值,即Kd= UΩm m a U im(2)等效输入电阻Rid因为检波器是非线性电路,Rid的定义与线性放大器是不相同的。
Rid定义为输入高频等幅电压的振幅Uim,与输入端高频脉冲电流基波分量的振幅之比,即R= U imidI 1m(3)非线性失真系数Kf非线性失真的大小,一般用非线性失真系数Kf表示。
当输入信号为单频调制的调幅波时,Kf定义为Kf =2 2+ U2 UΩ 3Ω+ UΩ式中,UΩ、U2Ω、U3Ω…分别为输出电压中调制信号的基波和各次谐波分量的有效值。
(4)高频滤波系数F检波器输出电压中的高频分量应该尽可能的被滤除,以免产生高频寄生反馈,导致接收机工作不稳定。
高频滤波系数的定义为,输入高频电压的振幅Uim与输出高频电压的振幅Uoωm的比值,即在输入高频电压一定的情况下,滤波系数F越大,则检波器输出端的高频电压越小,滤波效果越好。
通常要求F≥(50~100)。
U im F= U oω m5.4.2二极管大信号包络检波器 1.大信号包络检波的工作原理(1)电路组成它是由输入回路、二极管VD和RC低通滤波器组成。
RC 低通滤波电路有两个作用:++ ui VDZL R Cui-rd①对低频调制信号uΩ来说,电容C的1 C+ ui R,电容C相当于开路,电阻容抗RΩC R就作为检波器的负载,其两端产生输出低频解调电压1②对高频载波信号uc来说,电容C的容抗ω C R,电容C相当于c短路,起到对高频电流的旁路作用,即滤除高频信号。
理想情况下,RC低通滤波网络所呈现的阻抗为: Z (ωc )= 0 Z L (ω)= Z (Ω )= R休息1休息11.大信号包络检波的工作原理(2)工作原理分析+ uD++ ui uD= ui- uo rd i充C+ i放+ R uo ui(t) uo(t)当输入信号ui(t)为调幅波时,那么载波ui正半周时二极管正向导通,输入高频电压通过二极管对电容C充电,充电时间常数为rdC。
因为rdC较小,充电很快,电容上电压建立的很快,输出电压uo(t)很快增长。
作用在二极管VD两端上的电压为+ u i ui(t)与uo(t)之差,即uD= ui- uo。
所以二极管的导通与否取决于uD当uD= ui- uo0,二极管导通;u i(t)与uo(t)当uD= ui- uo0,二极管截止。
ui(t)达到峰值开始下降以后,随着ui(t)的下降,当ui(t)= uo(t),即uD= uiuo=0时,二极管VD截止。
C把导通期uo(t)间储存的电荷通过R放电。
因放电时常数RC较大,放电较缓慢。
检波器的有用输出电压:uo(t)=uΩ(t)+UDCVD id++ C Ruo-tuΩ(t)Δuc UDC t仿真休息1休息1检波器的实际输出电压为:uo(t)+Δuc= uΩ(t)+UDC+Δuc当电路元件选择正确时,高频纹波电压Δuc很小,可以忽略,输出电压为:uo(t)=uΩ(t)+UD C包含了直流及低频调制分量。
VD+ (a)+ ui C uo R Cd+UDC -ui(t)与uo(t)ui(t)uo(t)tuo(t)uΩ(t)Δuc UDC t峰值包络检波器的应用型输出电路VD+ uΩ (b) u+ i C+ uo R Cφ Rφ+ UDC -RL图(a):电容Cd的隔直作用,直流分量UDC被隔离,输出信号为解调恢复后的原调制信号uΩ,一般常作为接收机的检波电路。
图(b):电容Cφ的旁路作用,交流分量uΩ(t)被电容Cφ旁路,输出信号为直流分量UDC,一般可作为自动增益控制信号(AGC信号)的检测电路。
2.电路主要性能指标(1)电压传输系数Kd (检波效率)VD+ ui+ uDC R+ uo -UΩm输出低频交流电压振幅K==定义:d输入已调波包络振幅m aU im若设输入信号u i= u AM= U im (1+ m a cosΩ t ) cosω c t输出信号为uo(t),则加在二极管两端的电压iD uoθUimuD= ui uo= uAM uo如果以右图所示的折线表示二极管的伏安特征曲线(注意在大信号输入情况下是允许的),则有:i d ( t )= g d[u AM u o ( t )]= g d[U im ( 1+ m a cosΩ t ) cosω c t u o ( t )]uD休息1休息2休息3当ω c t=θ时id (t)= 0 uo ( t )= U im (1+ m a cosΩ t ) cosθ= U im cosθ+ m a U im cosθ cosΩ t有:= U DC+ UΩ m cosΩ t直流分量:U DC= U im cosθ可见uo (t )有两部分:UΩm= maUim cosθ uΩ ( t )= UΩm cosΩt其中:低频调制分量:UΩm m a U im cosθ= cosθ∴有K d= m U= m U a im a im其中θ为电流导通角。
另外,还可以证明导通角的表达式:π tgθ θ= gd R 而当gd R很大时,(如gd R50)1 2 1 tgθ=θ+θ 3+θ 5+ L=θ+θ 3 3 15 3代入上式可得:θ≈33π= gd R33π rd Rθ≈33π= gd R33π rD R讨论:①当VD和R确定后,θ即为恒定值,与输入信号大小无关,亦即检波效率恒定,与输入信号的值无关。
表明输入已调波的包络与输出信号之间为线性关系,故称为线性检波一般计算方法为:当输入信号为:ui= U im (1+ m a cosΩ t ) cosω c t则输出信号为:u o ( t )= K d U im (1+ m a cosΩ t )②当R↑→θ↓→ K d= cosθ↑ K d 0.9但Kd 1理想值Kd= 1一般当gR 50,(2)检波的等效输入电阻R id峰值检波器常作为超外差接收机中放末级的负载,故其输入阻抗对前级的有载Q值及回路阻抗有直接影响,这也是峰值检波器的主要缺点。
VD中放末级检波器的输入电阻Rid是为研究检波器++对其输入谐振回路影响的大小而定义uo Rs ui is Ls Cs C R的,因而,Rid是对载波频率信号呈现的参量。
若设输入信号为等幅载波信号-ui= Uim cosωc tRidui(t) KdUim忽略二极管导通电阻rd上的损耗功率,由能量守恒的原则,检波器输入端口2 U im的高频功率2 Ridt全部转换为输出端负载电阻R上消耗2 2 Kd Uim的功率R即有2 2 2 U im Kd U im= 2 R id R又因Kd=cosθ≈ 1所以Rid≈1 R 2所以:R越大,对前级影响就越小。
3.检波器的失真在二极管峰值型检波器中,存在着两种特有失真:底部切割失真(1)惰性失真一般为了提高检波效率和滤波效果,(C越大,高频波纹越小),总希望选取较大的R,C值,但如果R,C取值过大,使R,C的放电时间常数τ= RC所对应的放电速度小于输入信号(AM)包络下降速度时,会造成输出波形不随输入信号包络而变化,从而产生失真,这种失真是由于电容放电惰性引起的,故称为惰性失真。
惰性失真(2)产生惰性失真的原输入AM信号包络的变化率因:RC放电的速率ui(t)与uc(t)uc(t)(3)避免产生惰性失真的条件:在任何时刻,电容C上电压的变化率应大于或等于包络信号的变化率,即uC U AM ( t )≥ t tui(t) t若设输入信号AM信号:u i= U im (1+ m a cosΩ t ) cosω 0 t U AM ( t )= U im (1+ m a cosΩ t )包络信号为:在t1时刻包络的变化率: U AM ( t ) t= m aΩ U im sinΩ t1(4)分析:另外,在二极管截止瞬间,电容两端所保持的电压近似等于输入信号的峰值。
即uC≈ U im (1+ m a cosΩt ) t t 1那么电容C通过R 放电的电压关系为:uC ( t )= U im (1+ ma cosΩt1 )e RCuC t=t= t11 U im ( 1+ m a cosΩ t 1 ) RC所以要求在t 1时刻不产生惰性失真的条件为:RCΩ m a sinΩ t 1 1 A=≤1 U im (1+ m a cosΩ t 1 )≥Ω U im m a sinΩ t 1则有:1+ m a cosΩ t 1 RCUAM(t)和u C下降速度不同。
实际上不同的t 1,为在任何时刻都避免产生惰性失真,必须保证A值取最大时仍有dA Amax 1故令:= 0dtdA RCΩ 2 m a (1+ m a cosΩ t ) cosΩ t+ RCm aΩ 2 sin 2Ω t=0即:= 2 dt (1+ m a cosΩ t )2cosΩt= m a可解得:; sinΩ t= 1 cos 2Ω t= 1 m a 2∴有RC≤1 maΩma2可见,ma,Ω越大,信号包络变化越快,要求RC的值就应该越小。
实际应用中,由于调制信号总占有一定的频带(Ωmin~Ωmax),并且各频率分量所对应的调制系数ma也不相同,设计检波器时,应该用最大调制度mmax和最高调制频率Ωmax来检验有无惰性失真,其检验公式为2 1 m max RC≤Ω max m max(2)底部切割失真1)原因:一般为了取出低频调制信号,检波器与后级低频放大器的连接如图所示,为能有效地传输检波后的低频调制信号,要求:RL 1 C dΩ min 1VD Cd或RL C d后级放大器Ω min++ ui C+UDC RL通常Cd取值较大(一般为5~10μF),在Cd两端的直流电压UDC,大小近似等于载波电压振幅UDC=KdUim u=U UDC经R和RL分压后在R上产生iUR R -+ uΩ(t) -im(1+ m a cosΩ t ) cosω c t U im ( 1+ m a cosΩ t )的直流电压为:UR= U DC R R+ RLUi mUR Uim(1-ma) UR由于UR对检波二极管VD来说相当于一个反向偏置电压,会影响二极管的工作状态。