2019-2020学年七年级数学下册 4.2 图形的全等同步练习1 (新版)北师大版.doc
- 格式:doc
- 大小:98.05 KB
- 文档页数:8
七年级数学下《4.2图形的全等》课后作业(北师大有答案)2图形的全等课后作业对于图形的全等,下列叙述不正确的是A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等c.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等观察如下图所示的各个图形,其中全等图形正确的是.A.②≌④B.⑤≌⑧c.①≌⑥D.③≌⑦如图,△ABc≌△AED,∠c=400,∠EAc=300,∠B=300,则∠EAD=;A.300B.700c.400D.1100公路Bc所在的直线恰为AD的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远.正确的是A.①③B.②③c.②④D.③④如图,AD是三角形ABc的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是_______..如图,ΔABc≌ΔDEF,∠A=25°,∠B=65°,BF=3㎝,求∠DFE的度数和Ec的长.参考答案ccDB解析:∵公路Bc所在的直线恰为AD的垂直平分线,∴ΔABc≌ΔDBc,∴cA=cB,BA=BD,故可判断出②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;而无法判断出①小明从家到书店与小颖从家到书店一样远;④小明从家到学校与小颖从家到学校一样远,故选B.3解析:∵轴对称的两个图形全等,∴阴影部分的面积是整个三角形面积的一半,即阴影部分的面积等于ΔABD的面积,而ΔABD的面积=0.5×2×3=3,故答案为:3.∠DFE=65°;Ec=3c.解析:根据已知条件,△ABc≌△DEF,可知∠E=∠B=65°,BF=Bc,可证Ec=BF=3c,做题时要正确找出对应边,对应角.△ABc中∠A=25°,∠B=65°,∴∠BcA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABc≌△DEF,∴∠BcA=∠DFE,Bc=EF,∴Ec=BF=3c,∴∠DFE=90°,Ec=3c.。
4.2图形的全等同步训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,△EFG△NMH,△EFG的周长为15cm,HM=6cm,EF=4cm,EH=1cm,则HG等于()A.4 cm B.5cm C.6cm D.8cm2.下列命题中是真命题的是( )A.对顶角互余B.等腰三角形两腰上的高相等C.互为补角的两个角是锐角D.周长相等的两个三角形全等3.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积4.如图,△ABC△△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A.5B.8C.10D.155.下列说法正确的是()A.两个面积相等的图形一定是全等形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形6.如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.7.下列说法:△能够完全重合的图形叫做全等形;△全等三角形的对应边相等、对应角相等;△全等三角形的周长相等、面积相等;△所有的等边三角形都全等;△面积相等的三角形全等.其中正确的说法有()A.5个B.4个C.3个D.2个8.下列说法正确的个数()△三角形的三条高所在直线交于一点;△一个角的补角比这个角的余角大90°;△垂直于同一条直线的两条直线互相垂直;△两直线相交,同位角相等;△面积相等的两个正方形是全等图形;△已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个二、填空题9.已知△ABC△△DEF,在△ABC中,△A△△B△△C=4△3△2,,则△E=__________.10.如图△~△中全等的图形是_____和______;_____和______;_____和______;_____和______;_____和______;_____和______;(填图形的序号)11.已知△ABC△△DEF,△A=42°,△B=58°,则△F=_____.12.下列图形中全等图形是_____(填标号).13.图中的全等图形共有________对.△ABF ,△BCE ,△ACD 。
《图形的全等》习题一、选择题1.下列说法正确的是( )A.周长相等的矩形是全等形B.所有的五角星都是全等形C.面积相等的三角形是全等形D.周长相等的正方形是全等形2.下列判断正确的是( )A.形状相同的图形叫全等形B.图形的面积相等的图形叫全等形C.部分重合的两个图形全等D.两个能完全重合的图形是全等形3.下列各组图形中,一定是全等图形的是( )A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个斜边相等的直角三角形D.两个周长相等的圆4.如果△ABC与△DEF是全等形,则有( )(1)它们的周长相等;(2)它们的面积相等;(3)它们的每个对应角都相等;(4)它们的每条对应边都相等.A.(1)(2)(3)(4)B.(1)(2)(3)C.(1)(2)D.(1)5.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( )A.AC=CEB.∠BAC=∠ECDC.∠ACB=∠ECDD.∠B=∠D6.如图,△ABC≌△CDA,AB=4,BC=6,则AD等于( )A.4B.5C.6D.不确定二、填空题7.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=_____度.8.由同一张底片冲洗出来的五寸照片和七寸照片_____全等图形(填“是”或“不是”).9.下列图形中全等图形是_____(填标号).10.如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=_____度.三、解答题11.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.12.找出图中全等的图形.13.周长相等的两圆相同,周长相等的两个正方形相同,那么,周长相等的两个三角形全等吗?14.如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?15.判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.参考答案一、选择题1.答案:D解析:【解答】A周长相等的矩形不一定重合,错;B所有的五角星不一定重合,错;C面积相等的三角形也不一定重合,错;D周长相等的正方形边长一定相等,则周长相等的正方形一定是形状大小都相同的图形,一定重合,正确.故选D.【分析】全等的图形是指形状,大小都相同的图形,即能够完全重合的两个图形,两个条件要同时具备,按定义逐个验证可得答案.2.答案:D解析:【解答】A、如果形状相同而面积不同,则不是全等形,错误;B、如果面积相等,而形状不同,则不是全等形,错误;C、根据全等形概念,强调是完全重合,错误.D、正确.故选D.【分析】要判断选项的正误,要以全等形的概念为依据,结合各选项认真验证,与之相符和是正确的,反之,是错误的.3.答案:D解析:【解答】A、两个周长相等的等腰三角形,不一定全等,故此选项错误;B、两个面积相等的长方形,不一定全等,故此选项错误;C、两个斜边相等的直角三角形,不一定全等,故此选项错误;D、两个周长相等的圆,半径一定相等,故两圆一定全等,故此选项正确.故选:D.【分析】根据全等图形的性质分别判断得出即可.4.答案:A解析:【解答】根据全等形的概念可以判定:(1)(2)(3)(4)都成立.故选A.【分析】全等的图形是指形状,大小都相同的图形,即能够完全重合的两个图形.则它们的周长、面积、对应角、对应边一定都对应相等.5.答案:C解析:【解答】∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选C.【分析】两三角形全等,根据全等三角形的性质判断.6.答案:C解析:【解答】∵△ABC≌△CDA,∴AD=BC=6.故选C.【分析】根据全等三角形的性质,全等三角形的对应边相等,找到对应边即可解答.二、填空题7.答案:90°解析:【解答】在△ACM和△BAN中,AN=CM,∠AMC=∠BNA,CM=AN∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.【分析】根据图形可判断出△ACM≌△BAN,从而可得出∠1和∠2互余,继而可得出答案.8.答案:不是解析:【解答】由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.【分析】能够完全重合的两个图形叫做全等形,图形重合的是全等形,不重合的不是全等形.9.答案:⑤和⑦解析:【解答】由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.10.答案:135°解析:【解答】如图所示:∠2=45°,在△ACB和△DCE中,AB=DE,∠A=∠D,AC=DC∴△ACB≌Rt△DCE(SAS),∴∠ABE=∠3,∴∠1+∠2+∠3=(∠1+∠3)+45°=90°+45°=135°【分析】首先利用全等三角形的判定和性质得出∠1+∠3的值,即可得出答案.三、解答题11.答案:见解答过程.解析:【解答】设计方案如下:【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.12.答案:见解答过程.解析:【解答】如图所示:1和2全等,3和4全等.【分析】利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.13.答案:不一定全等.解析:【解答】不一定全等,例如,两个三角形的周长均为10,一个三角形的三边长为4,3,3,而另一个三角形的三边长为4,4,2,这两个三角形显然不全等,但当两个三角形为正三角形时,这两个三角形全等.【分析】能够完全重合的两个三角形叫做全等三角形,周长相等的两个三角形,构成三角形的三条边不一定全部相等,可得周长相等的两个三角形不一定全等.14.答案:见解答过程.解析:【解答】如图所示:【分析】一共有20棵果树把它们平均分给四个小组去种植,每一个小组平均5棵,再根据条件“分得的果树组成的图形、形状大小要相同”进行分割即可.15.答案:(1)全等(2)不一定全等(3)不一定全等(4)不一定全等.解析:【解答】(1)全等.理由:等边三角形各角都是60°,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【分析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.。
《图形的全等》练习一、选择——基础知识运用1.下列说法正确的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是等边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等2.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.下列命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为()A.1个B.2个C.3个D.4个5.已知:如图△ABC≌△DCB,其中点A与点D,点B与点C分别是对应顶点,如果AB=2,AC=3,CB=4,那么DC的长为()A.2 B.3 C.4 D.不确定6.下列四个图形中,全等的图形是()A.①和②B.①和③C.②和③D.③和④二、解答——知识提高运用7.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3= 度。
8.找出七巧板中(如图)全等的图形。
9.请看下图,并回答下面的问题:(1)在图(1)中,两个足球的形状相同吗?它们的大小呢?(2)在图(2)中,两个正方形物体的形状相同吗?10.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF的长度为多少?11.如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为多少。
参考答案一、选择——基础知识运用1.【答案】BD【解析】全等三角形的三条对应边相等,三个对应角也相等,A不正确;判定两个三角形全等的条件中至少有一个是等边,B正确;面积相等的两个图形不一定是全等形,C不正确;全等三角形的面积和周长都相等,D正确,故选:B、D。
4.2 图形的全等基础训练1.如图,有6个条形方格图,图中由实线围成的图形中,全等图形有:①与___________;②与___________.2.下列四组图形中,是全等图形的一组是( )3.下列说法中正确的有( )①用一张底片冲洗出来的10张1寸相片是全等图形;②我国国旗上的4颗小五角星是全等图形;③所有的正方形是全等图形;④全等图形的面积一定相等.A.1个B.2个C.3个D.4个4.下列说法正确的有( )①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.A.1个B.2个C.3个D.4个5.如图,沿直线AC对折,△ABC与△ADC重合,则△ABC≌___________,AB的对应边是___________,∠BCA的对应角是___________.6.如图,将△ABC沿BC所在的直线平移到△A'B'C'的位置,则△ABC_______△A'B'C',图中∠A与,∠B与,∠ACB与是对应角.7.若△ABC与△DEF全等,点A和点E,点B和点D分别是对应点,则下列结论错误的是( )A.BC=EFB.∠B=∠DC.∠C=∠FD.AC=EF8.如图,△ABC≌△CDA,AC=7 cm,AB=5 cm,BC=8 cm,则AD的长是( )A.7 cmB.5 cmC.8 cmD.无法确定9.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是( )A.1个B.2个C.3个D.4个10.如图,D,E分别是△ABC的边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )A.15°B.20°C.25°D.30°11.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF.若AB=1,BC=2,则△ABE和△BC'F的周长之和为( )A.3B.4C.6D.812.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.提升训练13.如图,已知△ABC≌△EDC,指出其对应边和对应角.14.如图,已知△ABD≌△CDB,∠ABD=∠CDB,写出其余的对应边和对应角.15.如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.16.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6.G为AB延长线上一点.求:(1)∠EBG的度数;(2)CE的长.17.如图,已知△ABE≌△ACD,且AB=AC.(1)说明△ABE经过怎样的变换后可与△ACD重合.(2)∠BAD与∠CAE有何关系?请说明理由.(3)BD与CE相等吗?为什么?18.如图,△ADF≌△CBE,且点E,B,D,F在一条直线上.试判断:(1)AD与BC的位置关系(并加以说明);(2)BF与DE的数量关系,并说明理由.19.如图,A,D,E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?参考答案1.【答案】⑥;③⑤2.【答案】D3.【答案】C4.【答案】B5.【答案】△ADC;AD;∠DCA6.【答案】≌;∠A';∠A'B'C';∠C'7.【答案】A8.【答案】C9.【答案】C10.【答案】D11.【答案】C12.错解:AB与AD,AE与AC,BE与CD是对应边;∠BAC与∠DAE是对应角.诊断:一般情况下,对于图形的全等来说,能够完全重合的部分是相互对应的.实际应用中,应结合图形将对应点写在对应位置上,以免出现错误. 正解:AB与AC,AE与AD,BE与CD是对应边;∠E与∠D是对应角.13.解:AB与ED,AC与EC,BC与DC分别是对应边;∠A与∠E,∠B与∠D,∠ACB与∠ECD分别是对应角.14.解:BD与DB,AD与CB,AB与CD分别是对应边;∠A与∠C,∠ADB 与∠CBD分别是其余的对应角.15.解:其余的对应边是AB与BA;对应角是∠CBA与∠DAB,∠CAB与∠DBA,∠C与∠D.分析:利用图形特征确定对应边和对应角时,要抓住对应边所对的角是对应角,对应角所对的边是对应边,两对应边的夹角是对应角,两对应角的夹边是对应边.当全等三角形的两组对应边(角)已确定时,剩下的一组边(角)就是对应边(角).16.解:(1)因为△ABE≌△ACD,所以∠EBA=∠C=42°.所以∠EBG=180°-42°=138°.(2)因为△ABE≌△ACD,所以AB=AC=9,AE=AD=6.所以CE=AC-AE=3.17.解:(1)将△ABE沿∠BAC的平分线所在直线翻折180°后可与△ACD 重合.(2)∠BAD=∠CAE.理由:因为△ABE≌△ACD,所以∠BAE=∠CAD.所以∠BAE-∠DAE=∠CAD-∠DAE.所以∠BAD=∠CAE.(3)BD=CE.因为△ABE≌△ACD,所以BE=CD.所以BD=CE.18.解:(1)AD∥BC.理由:因为△ADF≌△CBE,所以∠FDA=∠EBC.所以∠ADB=∠DBC.所以AD∥BC.(2)BF=DE.理由:因为△ADF≌△CBE,所以DF=BE.所以DF+BD=BE+BD.所以BF=DE.19.解:(1)因为△BAD≌△ACE,所以AD=CE,BD=AE.因为AE=AD+DE,所以BD=DE+CE.(2)当∠ADB=90°,即△ABD是直角三角形时,BD∥CE. 理由如下:因为△BAD≌△ACE,所以∠ADB=∠CEA=90°.易知∠ADB=∠BDE=90°,所以∠CEA=∠BDE=90°. 所以BD∥CE.。
七下数学第四章4.2-图形全等及三角形全等必做题做基础●图形的全等1. 对于两个图形,给出下列说法①两个图形的周长相等②两个图形面积相等③两个图形的周长和面积都相等④两个图形的形状相同,大小也相等其中能得到这两个图形全等的说法共有()A. 1个B. 2个C. 3个D. 4个2. 如图所示的两个三角形能完全重合,则下列说法正确的是()A. ΔABE≅ΔAFBB. ΔABE≅ΔABFC. ΔABE≅ΔFBAD. ΔABE≅ΔFAB2题3题4题=________3. 已知图中的两个三角形全等,则∠14. 如图,已知ΔABC≅ΔADC, ∠B=30º, ∠BAD=46º, 则∠ACD=________5. 已知ΔABC≅ΔDEF, BC=6cm, ΔABC的面积是18cm2, 则EF边上的高是______cm6. 如图,已知ΔABE≅ΔACD, 点D在AB上,点E在AC上,∠C=20º, AB=12, AD=4, G为AB延长线上一点,则∠EBG=_______º, CE=_____6题7题8题7. 如图,ΔABC≅ΔAEF, AB=AE, ∠B=∠E,则对于结论①AC=AF ②∠FAB=∠EAB ③EF=BC ④∠EAB=∠FAC,其中正确结论的个数是()A. 1B. 2C. 3D. 48. 如图,已知ΔABC≅ΔDEF, 点B, E, C, F在同一条直线上,若BC=5, BE=2, 则BF=______=30º,则∠B的度数是______9. 如图,已知RtΔABC≅RtΔDEC, 连AD, 若∠19题10题10. 如图,ΔABC≅ΔADE, ∠DAC=60º, ∠BAE=100º, BC, DE相交于点F, BC, AD相交于点G, 则∠DFB=_____●三角形全等条件—SSS11. 下列说法正确的是()A. 有一边对应相等的两个等边三角形全等B. 有两边对应相等的两个等腰三角形全等C. 有一边对应相等的两个等腰三角形全等D. 有两边对应相等的两个锐角三角形全等12. 如图,AB=AD, BE=DE, 应用SSS可判断Δ_________≅Δ_________13. 如果ΔABC的三边长分别是3,5,7,ΔDEF的三边长分别为3,3x-2, 2x-1,若这两个三角形全等,则x=___14. 如图,在四边形ABCD中,已知AB=CD, AD=CB, 判断∠A与∠C关系,并说明理由15. 如图,已知AB=DC, AC=DB, 试说明∠A=∠D三角形全等的条件—ASA, AAS16. 如图,某同学把一块三角形玻璃打碎成了三块,现要到玻璃店配一块完全一致的玻璃,那么最省事的办法是()A. 带①去B. 带②去C. 带③去D. 带①和②去16题17. 根据图中所给的条件,能够判定三角形全等的是()A. (1)和(2)B. (2)和(4)C. (1)和(3)D. (3)和(4)18. 如图,已知∠ABC=∠DCB, 下列所给条件不能证明ΔABC≅ΔDCB的是()A. ∠A=∠DB. AB=DC, AC=BDC. ∠ACB=∠DBCD. AC=BD18题19题20题19. 如图,∠ACB=90º, AC=BC, BE⊥CE于点E, AD⊥CE于点D, AD=2cm, BE=0.5cm, 则DC=20. 如图,AB=AD, ∠1=∠2, ∠B=∠ADE, 则利用∠1=∠2,可得∠_______=∠_______,依据__________定理,得到ΔABC≅ΔADE21. 如图,在ΔABC中,∠ACB=90º, CD⊥AB于点D, 点E在AC上,CE=BC, 过点E作AC垂线交CD的延长线于点F, 试说明AB=FC三角形全等的条件—SAS22. 如图,∠1=∠2,下列条件中不能使ΔABD≅ΔACD的是()A. AB=ACB. ∠B=∠CC. ∠ADB=∠ADCD. DB=DC23. 如图,AB, CD相交于点O, CO=BO, 观察图形,图中已具备的另一个相等的条件是___________,联想到"SAS",只需补充条件____________,则有ΔAOC≅Δ________24. 如图,已知AD=AE, 请你添加一个条件,使得ΔADC≅ΔAEB, 你添加的具体条件是_________(不添加任何字母和辅助线)24题25题25. 如图,在ΔABC中,∠A=50º, ∠B=∠C, BP=CE, BD=CP, 则∠DPE=_______26. 如图,已知AD是ΔABC中线,在AD及其延长线上截取DE=DF, 连接CE, BF, 试说明:BF∥CE27. 如图,E, F是BD上两点,AB=CD, BF=DE, AE=CF, 试说明:AC与BD互相平分做易错1. 已知ΔABC和ΔDEF全等,AB与DE是对应边,AB=2, BC=4.若ΔDEF的周长为奇数,则DF=______2. 已知一个等腰三角形的腰长为5,底边长为4,底角为β,满足下列条件的三角形不一定与已知三角形全等的是A. 两条边长分别为4,5,它们的夹角为βB. 两个角是β,它们的夹边为4C. 三条边长分别是4,5, 5D. 两条边长是5,一个角是β3. 如图,已知ΔABC中,AB=AC, D, E分别是边AB, AC中点,且CD=BE,则ΔADC与ΔAEB全等吗?小明是这样分析的:因为AC=AB, CD=BE, ∠CAD=∠BAE, 所以ΔADC≅ΔAEB(SSA),他的思路正确吗?如不正确,请写出正确的解答过程4. 如图,AB=AC, AE=AD, 要使ΔACD≅ΔABE, 需要补充的一个条件是()A. ∠B=∠CB. ∠D=∠EC. ∠BAC=∠EADD. ∠B=∠E 做能力1. 如图,已知方格纸是由4个相同的正方形组成,则∠1+∠2=________2. 已知ΔABC≅ΔA,B,C,, ∠C=∠C,=90º, AB=5, BC=4, AC=3, 则ΔA,B,C,的周长为______,面积为______,斜边上的高为_______3. 已知ΔABC≅ΔEFG, 且∠B=68º, ∠G-∠E=56º, 求∠A度数4. 如图,A, D, E三点在同一直线上,且ΔBAD≅ΔACE(1)试说明:BD=DE+CE(2) ΔABD满足什么条件时,BD∥CE5. 如图,ΔABE和ΔADC是ΔABC分别沿着AB, AC边翻折形成的,若∠1:∠2:∠3=28:5:3, 求∠α度数5题6题7题6. 如图,B, C, E三点在同一直线上,且AB=AD, AC=AE, BC=DE, 若∠1+∠2+∠3=94º,则∠3的度数为_____7. 如图,点D, E分别在AB, AC上,BE与CD相交于点o, 已知∠B=∠C, 现添加下面哪一个条件后,仍不能判定ΔABE≅ΔACDA. AD=AEB. AB=ACC. BE=CDD. ∠AEB=∠ADC8. 如图,在面积为16的四边形ABCD中,∠ADC=∠ABC=90º, AD=CD, DP⊥AB于点P, 则DP的长是______9. 如图,四边形ABCD中,AD∥BC, CE⊥AB, ΔBDC为等腰直角三角形,∠BDC=90º, BD=CD, CE与BD交于点F, 连接AF, M为BC中点,连DM交CE于点N, 试说明:ΔABD≅ΔNCD10. 已知如图,在ΔMPN中,H是高MQ和NR的交点,且MQ=NQ, 求证:HN=PM11. 如图,∠ACB=90º, AC=BC, BE⊥CE于E, AD⊥CE于D, AD=5, DE=3, 求BE的长12. 如图,有一张三角形纸片ABC, 已知∠B=∠C=xº, 按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()12题13题13. 在如图所示的边长均为1的小正方形网格中,点A, B, C, D均落在格点(小正方形的顶点)上,则∠BAC+∠ACD=_____14. 如图,在ΔABC中,AD, CE分别是边BC, AB上的高,AD与CE交于点F, 连接BF, 延长AD到G, 使AG=BC, 连BG, 若CF=AB(1)试判断BG与FB间数量关系,说明理由(2)求∠FBG的度数15. 如图,在ΔABC中,D是BC中点,过点D的直线GF交AC于点F, 交AC的平行线BG于点G, DE⊥DF, 交AB 于点E, 连EG, EF(1)试说明:BG=CF(2)判断BE+CF与EF的大小关系,并说明理由16. 如图,在等边ΔABC中,BD=CE, AD与BE相交于点F, 则∠AFE=______17. 如图所示,在ΔABC中,∠B=∠C=50º, BD=CF, BE=CD, 则∠EDF的度数是______思考题1. 如图,在长方形ABCD中,AB=4, AD=6, 延长BC到点E, 使CE=2, 连接DE, 动点P从点B出发,以每秒2个单位长度的速度沿BC→CD→DA运动,设点P的运动时间为t秒,则当t=__________时,ΔABP和ΔDCE全等2.ΔABC中,AB=5, AC=3, AD是ΔABC的中线,设AD长为m, 则m的取值范围是_____________3. 如图,在ΔABC中,∠A=60º, BD, CE分别平分∠ABC和∠ACB, BD, CE交于点O, 试判断BE, CD, BC之间的数量关系,说明理由4. 小明家有一个由八条钢管连接而成的钢架,ABCDEFGH(如图),为了使这一钢架稳固,他计划在钢架内部用五根钢管连接使它不变形,请你帮小明画出三种不同的连接方法。
北师大版七年级数学下册 4.2 图形的全等同步练习(无答案)一.选择题1.在下列每组图形中,是全等图形的是( )图4-2-12.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等4.下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形全等;④全等三角形的周长相等;其中正确的说法为()A.①②③④ B.①②③ C.②③④ D.①②④5.下列图形与如图所示的图形全等的是()A.B.C.D.6.全等形是指()A.形状相同的两个图形 B.面积相同的两个图形C.两张中国地形图,两个等腰三角形都是全等形 D.能够完全重合的两个平面图形7.全等形是指A. 形状相同的两个图形B. 面积相同的两个图形C. 两张中国地形图,两个等腰三角形都是全等形D. 能够完全重合的两个平面图形8若△ABC≌△DEF,则下列说法不正确的是()A. 和是对应角B. AB和DE是对应边C. 点C和点F是对应顶点D. 和是对应角9如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,若测得∠A=∠D=90°,AB=3,DG=1,AG=2,则梯形CFDG的面积是()A. 5B. 6C. 7D. 810.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B. 120°C. 135°D. 150°二.填空题11两个能够完全重合的图形称为 .12全等图形的和完全相同.13由同一张底片冲洗出来的两张五寸照片的图案全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).14如图,△EFG≌△NMH,△EFG的周长为15cm,HN=6cm,EF=4cm,FH=1cm,则HG= ______ .15如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x-2,2x-1,3,若这两个三角形全等,则x= ______ .16.各边长度都是整数.最大边长为8的三角形共有________个.三、解答题17. 如图,已知△ABC≌△DCB.(1)分别写出对应角和对应边;(2)请说明∠1=∠2的理由.18. 如图所示,已知△ABC≌△FED,试说明AB∥EF.19. 如图,若点A、D、E、B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°,则CD⊥AB,为什么?你能求出∠B的度数吗?20.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.。
北师大新版七年级下学期《4.2 图形的全等》同步练习卷一.选择题(共6小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个2.下列判断正确的个数是()①两个正方形一定是全等图形;②三角形的一个外角一定大于与它不相邻的一个内角;③三角形的三条高交于同一点;④两边和一角对应相等的两个三角形全等.A.1个B.2个C.3个D.4个3.下列说法:①全等图形的形状相同、大小相等;②三边对应相等的两个三角形全等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②④B.①③④C.②③④D.①②③④4.若△ABC与△DEF全等,A和E,B和D分别是对应点,则下列结论错误的是()A.BC=EF B.∠B=∠D C.∠C=∠F D.AC=EF5.如图所示,下列图形中能够重合的图形有()A.1对B.2对C.3对D.4对6.用两个全等的直角三角形拼成凸四边形,拼法共有()A.3种B.4种C.5种D.6种二.填空题(共6小题)7.在如图所示的3×3的正方形网格中,∠1+∠2+∠3的度数为.8.在如图所示的3×3正方形网格中,∠1+∠2+∠3=°.9.在如图所示的4×4正方形网格中,∠1+∠2+∠3=°.10.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=°.11.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于.12.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.三.解答题(共6小题)13.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.14.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形15.如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.16.试在下列图中,沿正方形的网格线(虚线)把这两个图形分别割成两个全等的图形17.沿着图中的虚线,请把如图的图形划分为4个全等图形,把你的方案画在图中.18.把下列各图分成若干个全等图形,请在原图上用虚线标出来.北师大新版七年级下学期《4.2 图形的全等》2019年同步练习卷参考答案与试题解析一.选择题(共6小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个【分析】根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断即可.【解答】解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确;③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选:D.【点评】此题考查全等图形、三角形的高以及平行线的性质等知识,关键是根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断.2.下列判断正确的个数是()①两个正方形一定是全等图形;②三角形的一个外角一定大于与它不相邻的一个内角;③三角形的三条高交于同一点;④两边和一角对应相等的两个三角形全等.A.1个B.2个C.3个D.4个【分析】依据全等图形,三角形外角性质,三角形的高以及全等三角形的判定,即可得到正确结论.【解答】解:①两个正方形不一定是全等图形,故错误;②三角形的一个外角一定大于与它不相邻的一个内角,正确;③三角形的三条高所在直线交于同一点,故错误;④两边和一角对应相等的两个三角形不一定全等,故错误.故选:A.【点评】本题主要考查了全等图形,三角形外角性质,三角形的高以及全等三角形的判定,解题时注意:三角形的一个外角大于和它不相邻的任何一个内角.3.下列说法:①全等图形的形状相同、大小相等;②三边对应相等的两个三角形全等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②④B.①③④C.②③④D.①②③④【分析】根据全等形和全等三角形的概念知进行做题,对选项逐一进行验证,符合性质的是正确的,与性质、定义相矛盾的是错误的.【解答】解:由全等三角形的概念可知:全等的图形是完全重合的,所以①全等图形的形状相同、大小相等是正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,所以①②③④都正确的.故选:D.【点评】本题考查了全等形的概念和三角形全等的性质:1、能够完全重合的两个图形叫做全等形,2、全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长、面积分别相等,做题时要细心体会.4.若△ABC与△DEF全等,A和E,B和D分别是对应点,则下列结论错误的是()A.BC=EF B.∠B=∠D C.∠C=∠F D.AC=EF【分析】要判断个选项的正误,要从已知开始思考,结合全等三角形的性质与找对应关系的方法对选项逐个验证.【解答】解:∵△ABC与△DEF全等,A和E,B和D分别是对应点∴BC=DF∠B=∠D∠C=∠FAC=EF.B、C、D是正确的,A是错误的.故选:A.【点评】本题考查了全等三角形的队员关系的找法;在全等三角形中,应注意各对应顶点应处于对应位置.根据已知找准对应边是正确做题的前提.5.如图所示,下列图形中能够重合的图形有()A.1对B.2对C.3对D.4对【分析】要找出能够重合的图形,要注意顺序,把第一个与后边的每一个对比,然后第二个与后边的每一个对比,如此寻找可得答案.【解答】解:仔细观察图形可得只有一对全等形(最右边的一对直角三角形).故选:A.【点评】本题考查全等形的知识,关键在于知道能够重合的图形即为全等形,还要认真观察图形,不要被表面现象迷惑.6.用两个全等的直角三角形拼成凸四边形,拼法共有()A.3种B.4种C.5种D.6种【分析】拿两个“90°、60°、30°”的三角板试一试即可得.【解答】解:可拼成如上图所示的四种凸四边形.故选:B.【点评】要注意不同边的组合方式,不要遗漏任何一种可能性.本题是一个操作题,动手做一做即可.二.填空题(共6小题)7.在如图所示的3×3的正方形网格中,∠1+∠2+∠3的度数为135°.【分析】首先证明△ABC≌△AEF,然后证明∠1+∠2=90°,再根据等腰直角三角形的性质可得∠3=45°,进而可得答案.【解答】解:∵在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠4=∠2,∵∠1+∠4=90°,∴∠1+∠2=90°,∵AE=DE,∠AED=90°,∴∠3=45°,∴∠1+∠2+∠3=135°,故答案为:135°【点评】此题主要考查了全等三角形的判定和性质,以及等腰直角三角形的性质,关键是掌握全等三角形对应角相等.8.在如图所示的3×3正方形网格中,∠1+∠2+∠3=135°.【分析】根据图形判断出∠1、∠3是全等直角三角形的两个互余的锐角,∠2为等腰直角三角形的锐角,然后求解即可.【解答】解:如图,在△ABC和△EGA中,,∴△ABC≌△EGA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABD是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.【点评】本题考查了全等图形,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.9.在如图所示的4×4正方形网格中,∠1+∠2+∠3=135°.【分析】标注字母,根据图形判断出∠1、∠3是全等直角三角形的两个互余的锐角,∠2为等腰直角三角形的锐角,然后求解即可.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.【点评】本题考查了全等图形,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.10.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据网格结构以∠1的顶点为顶点作出与∠2所在的直角三角形全等的三角形,再连接另两个顶点得到等腰直角三角形,然后根据等腰直角三角形的性质解答.【解答】解:如图,∠2、∠3为两个全等三角形的对应角,所以,∠2=∠3,△ABC是等腰直角三角形,所以,∠1+∠3=45°,所以,∠1+∠2=45°.故答案为:45.【点评】本题考查了全等三角形,熟练掌握网格结构,作出与∠2所在的直角三角形全等的三角形是解题的关键.11.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于585°.【分析】仔细观察图形,我们可以发现△ABC≌△AZV,根据全等三角形的性质可得∠1=∠AVZ,进而可得∠1+∠7=180°,同理可得:∠2+∠6=180°,∠3+∠5=180°,∠4=45°,然后可得答案.【解答】解:仔细观察图形,我们可以发现:∵AB=AZ,BC=ZV,∠B=∠Z,∴△ABC≌△AZV,∴∠1+∠7=180°,同理可得:∠2+∠6=180°,∠3+∠5=180°,∠4=45°,所以说图示的7个角的度数和为∠1+∠7+∠2+∠6+∠3+∠5+∠4=180°+180°+180°+45°=585°,故答案为:585°.【点评】本题考查了全等三角形对应角相等的性质,求证全等三角形,找出对应角是解决本题的关键.12.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=90度.【分析】根据图形可判断出△ACM≌△BAN,从而可得出∠1和∠2互余,继而可得出答案.【解答】解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.【点评】此题考查了全等图形的知识,解答本题的关键是判断出△ACM≌△BAN,可得出∠1和∠2互余,难度一般.三.解答题(共6小题)13.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.【解答】解:设计方案如下:【点评】本题主要考查了全等图形的意义,要利用正方形及全等形的性质解答,方案多种多样,只要是满足要求就可以.14.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形【分析】直接利用图形形状分成全等的两部分即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.15.如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.【分析】直接利用全等图形的定义进而分析得出答案.【解答】解:如图所示:.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.16.试在下列图中,沿正方形的网格线(虚线)把这两个图形分别割成两个全等的图形【分析】根据全等形的定义,利用图形的对称性和互补性来分隔成两个全等的图形.【解答】解:如图所示:【点评】本题主要考查了学生的动手操作能力和学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.17.沿着图中的虚线,请把如图的图形划分为4个全等图形,把你的方案画在图中.【分析】根据整个图形的面积和图形形状化成图形即可.【解答】解:如图所示:【点评】本题考查了全等图形的性质;熟练掌握全等图形的面积相等是解决问题的关键.18.把下列各图分成若干个全等图形,请在原图上用虚线标出来.【分析】根据能够完全重合的图形叫做全等形,将第一个图分割成5个正方形,将第二个图分割成3个直角三角形即可.【解答】解:如图所示:【点评】本题主要考查了全等图形,注意:能够完全重合的图形叫做全等形,全等图形的形状大小都相同.。
图形的全等一、填空题1.如图,BC平分∠ABD,AB=DB,P为BC上一点,要证∠CAP=∠CDP,应先证_________≌___________;得__________=____________,___________=___________;继而有△PAC ≌__________,理由是___________.2.如图,△ABD≌△ACE,AE=3cm,AC=5cm,则CD=___________cm.3.若两个图形全等,则其中一个图形可通过平移、__________或__________与另一个三角形完全重合。
4.如图,在△ABC和△DEF,若AB=DE,BE=CF,要使△ABC≌△DEF,还需添加一个条件(只要写出一个就可以)是_________.5.已知:如图,AB//CD,点O为AC的中点,则图中相等的线段(除OA=OC外)有___________.6.已知:如图AB//CD,AD//BC,点E,F分别为BD上两点,要使△BCF≌△DAE,还需添加一个条件(只需一个条件)是__________.7.已知:如图,在△ABC中,AB=AC,∠BAC=∠DAE,D为BE上一点,且∠ADE+∠AEC=180°,则AD=_______.8.在△ABC与△MNP中,①AB=MN,②BC=NP,③AC=MP,④∠A=∠M,⑤∠B=∠N,⑥∠C=∠P,从这六个条件中任选三个条件,能判定△ABC与△MNP全等的方法共有__________种.9.铁路上A,B两站(视为直线上两点)相距26km,C,D为两村庄(视为两点),DA⊥AB于点A,CB⊥AB于点B(如图),已知DA=15km,CB=10km,现在要在铁路AB上建设一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站________km处.二、选择题:10.已知:在△ABC中,AB=AC,∠A=56°,则高BD于BC的夹角为()A、28°B、34°C、68°D、62°11.在ΔABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的取值范围是()A.1<AD<7B.2<AD<14C.2.5<AD<5.5D.5<AD<1112.如图,在ΔABC中,∠C=90°,CA=CB,AD平分∠CAB交BC于D,DE⊥AB与点E,且AB=6,则ΔDEB的周长为( )A.4B.6C.8D.1013.点P为ΔABC的外角平分线上一点(与C点不重合),则PA+PB与AC+BC的大小关系为()A. PA+PB>AC+BCB. PA+PB=AC+BCC. PA+PB<AC+BCD. 无法比较大小14.已知如图,D是ΔABC边AB上一点,DF交AC与点E,DE=EF,FC//AB,若BD=2,CF=5,则AB=( )A.1B.3C.5D.715.如图,ΔABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与ΔABC全等,则这样的三角形最多可以画出()A.2个B.4个C.6个D.8个16.如图,在ΔABC中,AB=AC,高BD,CE交与点O,AO交BC于点F,则图中共有全等三角形( )A.7对B.6对C.5对D.4对17.如图,在ΔABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB与点E,若ΔDEB的周长为10cm,则斜边AB的长为( )A.8cmB.10cmC.12cmD.20cm18.如图,ΔABC与ΔBDE均为等边三角形,AB<BD.若ΔABC不动,将ΔBDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CDB.AE>CDC.AE<CDD.无法确定19.已知∠P=80°,过不在∠P上一点Q作QM,QN分别垂直与∠P的两边,垂足为M,N 则∠Q的度数等于( )A.10°B.80°C.100°D.80°或100°三、解答题20.已知如图,在ΔABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,过点C作CF ⊥AE,垂足为F,在直线CD上截取CD=AE.求证:(1)BD⊥BC;(2)若AC=12cm,求BD的长。
2019-2020学年七年级数学下册 4.2 图形的全等同步练习1 (新版)
北师大版
一、填空题
1.如图,BC平分∠ABD,AB=DB,P为BC上一点,要证∠CAP=∠CDP,应先证_________≌___________;得__________=____________,___________=___________;继而有△PAC
≌__________,理由是___________.
2.如图,△ABD≌△ACE,AE=3cm,AC=5cm,则CD=___________cm.
3.若两个图形全等,则其中一个图形可通过平移、__________或__________与另一个三角形完全重合。
4.如图,在△ABC和△DEF,若AB=DE,BE=CF,要使△ABC≌△DEF,还需添加一个条件(只要写出一个就可以)是_________.
5.已知:如图,AB//CD,点O为AC的中点,则图中相等的线段(除OA=OC外)有
___________.
6.已知:如图AB//CD,AD//BC,点E,F分别为BD上两点,要使△BCF≌△DAE,还需添加一个条件(只需一个条件)是__________.
7.已知:如图,在△ABC中,AB=AC,∠BAC=∠DAE,D为BE上一点,且∠ADE+∠AEC=180°,则AD=_______.
8.在△ABC与△MNP中,①AB=MN,②BC=NP,③AC=MP,④∠A=∠M,⑤∠B=∠N,⑥∠C=∠P,从这六个条件中任选三个条件,能判定△ABC与△MNP全等的方法共有__________种.
9.铁路上A,B两站(视为直线上两点)相距26km,C,D为两村庄(视为两点),DA
⊥AB于点A,CB⊥AB于点B(如图),已知DA=15km,CB=10km,现在要在铁路AB上建设一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站________km处.
二、选择题:
10.已知:在△ABC中,AB=AC,∠A=56°,则高BD于BC的夹角为()
A、28°
B、34°
C、68°
D、62°
11.在ΔABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的取值范围是()
A.1<AD<7
B.2<AD<14
C.2.5<AD<5.5
D.5<AD<11
12.如图,在ΔABC中,∠C=90°,CA=CB,AD平分∠CAB交BC于D,DE⊥AB与点E,
且AB=6,则ΔDEB的周长为( )
A.4
B.6
C.8
D.10
13.点P为ΔABC的外角平分线上一点(与C点不重合),则PA+PB与AC+BC的大小关系为()
A. PA+PB>AC+BC
B. PA+PB=AC+BC
C. PA+PB<AC+BC
D. 无法比较大小
14.已知如图,D是ΔABC边AB上一点,DF交AC与点E,DE=EF,FC//AB,若BD=2,CF=5,则AB=( )
A.1
B.3
C.5
D.7
15.如图,ΔABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与ΔABC全等,则这样的三角形最多可以画出()
A.2个
B.4个
C.6个
D.8个
16.如图,在ΔABC中,AB=AC,高BD,CE交与点O,AO交BC于点F,则图中共有全等三角形( )
A.7对
B.6对
C.5对
D.4对
17.如图,在ΔABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB与点E,若ΔDEB的周长为10cm,则斜边AB的长为( )
A.8cm
B.10cm
C.12cm
D.20cm
18.如图,ΔABC与ΔBDE均为等边三角形,AB<BD.若ΔABC不动,将ΔBDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()
A.AE=CD
B.AE>CD
C.AE<CD
D.无法确定
19.已知∠P=80°,过不在∠P上一点Q作QM,QN分别垂直与∠P的两边,垂足为M,N 则∠Q的度数等于( )
A.10°
B.80°
C.100°
D.80°或100°
三、解答题
20.已知如图,在ΔABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,过点C作CF ⊥AE,垂足为F,在直线CD上截取CD=AE.
求证:
(1)BD⊥BC;
(2)若AC=12cm,求BD的长。
21.探究题:“有两边及第三边上的高对应相等的两个三角形全等”这一命题是否成立?若成立,请证之;若不成立,请试举一反例,并将命题作适当改正,使之成为一真命题。
22.能够互相重合的多边形叫做全等形,即如果两个多边形对应角相等,那么两个多边形一定全等。
但判定两个三角形全等只需三组对应量相等即可,如SAS,SSS等,但如果要判定两个四边形全等仅有四组对应量相等是不够的,必须具备至少五组对应量相等。
(1)请写出两个四边形全等的一种判定方法(五组量对应相等)____________。
(2)如图,简要证明你的判定方法是正确的。
(3)举例说明仅有四边相等的两个四边形不一定全等(画出图形并简要证明)。
参考答案
1.ΔABC ΔDBC AC DC ∠ACP ∠DCP ΔPDC SAS
2.2 3.翻转旋转4.AC=DF 5.BO=DO,AB=DC 6.BF=DE
7.AE 8.10 9.km
10.A 11.D 12.B 13.A 14.D 15.B
16.A 17.B 18.A 19.D
20.(1)由∠DCB+∠AEC=90°,∠AEC+∠E AC=90°,得∠EAC=∠DCB,在
ΔDBC和ΔECA中,
可知ΔDBC≌ΔECA.有∠ACE=∠DB C=90°,故BD⊥BC.
(2)AC=BC,E是BC的中点,
故,
又ΔDBC≌ΔECA,EC=DB.
由AC=12cm,故EC=6cm,DB=6cm.
21.这个命题是假命题,举一反例即可。
22.(1)∠D=∠D′,AD=A′D′,DC=D′C′,BC=B′C′,AB=A′B′.
(2)连AC
在ΔADC和ΔA′D′C′中,
,
可得ΔADC≌ΔA′D′C′,
故AC=A′C′,
易证:ΔACB≌ΔA′C′B′,
从而获得四边形ABCD和四边形A′B′C′D′对应角,对应边均相等。
即四边形ABCD≌四边形A′B′C′D′。
(3)举一凸四边形和一凹四边形。