如何减小金属热处理变形
- 格式:doc
- 大小:49.00 KB
- 文档页数:7
金属材料热处理变形的影响因素和控制策略
金属材料热处理变形是指在金属材料进行热处理过程中,由于温度、压力和力学应力的作用,导致材料发生形变。
热处理变形是金属加工中不可忽视的问题,对材料的性能和工艺性能有着重要影响。
本文将从影响因素和控制策略两个方面进行讨论。
影响金属材料热处理变形的因素有以下几个方面:
1. 温度:温度是影响金属材料热处理变形的重要因素。
在高温下,金属材料的塑性增强,易于发生变形。
但是温度过高会导致材料的晶粒长大,使材料的性能下降。
在热处理过程中需要控制好温度的选择,避免过高或过低的温度对材料的不良影响。
2. 压力:压力是热处理过程中的控制参数之一,对材料的变形起到重要作用。
适宜的压力可以加快变形过程,改善材料的性能。
但是过大的压力可能会导致材料的破裂和损坏,因此需要根据材料的性质和工艺要求确定合适的压力。
3. 力学应力:在热处理过程中,材料在受到外力作用下容易发生塑性变形。
力学应力的大小和方向对材料的变形有决定性影响。
不同形状和尺寸的材料在受力时会产生不同的应力分布,因此需要合理设计热处理装置和选择适当的应力状态,以控制材料的变形。
4. 热处理时间:热处理时间是影响金属材料热处理变形的另一个重要因素。
时间过长可能会导致材料的晶粒长大和析出相的生成,使材料的性能下降。
在热处理过程中需要精确控制热处理时间,避免时间过长对材料的不良影响。
金属材料热处理变形的影响因素和控制策略是一个复杂的问题。
需要综合考虑材料的性质、工艺要求和设备情况等因素,通过合理的策略和控制手段,实现对金属材料热处理变形的控制和优化。
浅析金属材料热处理过程变形及开裂问题金属材料热处理是一种重要的工艺方法,能够改善材料的性能和使用性能。
热处理过程中常常会出现变形和开裂等问题,影响材料的质量和效果。
本文将就金属材料热处理过程中的变形和开裂问题进行浅析。
热处理过程中的变形问题是非常常见的。
变形主要分为弹性变形和塑性变形两种情况。
弹性变形是指在材料加热和冷却过程中,由于热应力的作用,材料发生的可逆性变形。
而塑性变形是指材料在加热过程中,由于高温下晶格的运动和变形,发生不可逆性的塑性变形。
这些变形可能会导致材料尺寸和形状的改变,甚至破坏材料的整体结构。
造成变形问题的主要原因有以下几个方面:1.温度梯度引起的热应力。
加热和冷却过程中,由于材料的热膨胀系数不同,温度梯度会在材料内部产生热应力,导致材料发生变形。
2.相变引起的体积变化。
在淬火过程中,材料内部可能发生相变,由于相变引起的体积变化,导致材料发生变形。
3.晶格结构变化引起的塑性变形。
在高温下,晶格结构可能发生变化,导致材料发生塑性变形,从而造成变形问题。
针对变形问题,可以采取以下措施进行控制和解决:1.合理设计热处理过程。
包括控制加热和冷却速率、控制温度梯度等,以减小热应力和塑性变形。
2.使用适当的热处理工艺。
针对不同的金属材料和要求,选择合适的热处理方法,以避免或降低变形问题的发生。
3.机械加工补偿。
对于存在变形问题的材料,可以通过机械加工等方式进行补偿和修正。
金属材料热处理过程中还容易发生开裂问题。
开裂主要包括热裂纹和冷裂纹两种情况。
热裂纹是指在材料加热和冷却过程中,由于温度梯度和应力的作用,材料发生的裂纹。
而冷裂纹是指在材料冷却过程中,由于内部残余应力的作用,材料发生的裂纹。
这些裂纹会严重影响材料的使用性能和寿命。
金属材料热处理变形的影响因素及对策摘要:在实际情况中,通过热处理使得金属材料性能得到改变,也正是利用这一点,金属材料性能的改变也可以通过热处理技术来进行。
温度变形、机械加工二者之间既是共存关系,同时在很多情况下也需要避免的。
由此看来,掌控好其中的尺度和范围,在金属材料热处理过程中也非常关键。
时下,在工业制造领域的生产能力和产品质量不断提高的同时,对金属部件进行热处理的过程中,金属部件的制造和生产技术方面也有了更高的要求和标准,在生产技术管理方面也有了进一步向前发展的趋势。
我国工业不断飞速发展和进步,制造业也取得了持续的推进和发展。
金属材料的应用范围也涉及深入到了各个领域,根据不同种类的金属材料构件,通过某种合理的方式进行加工处理,促使其形态发生改变,已经成为了整体发展变化中的一个较为火热的势头。
关键词:金属材料;热处理变形;影响因素;控制一、金属材料热处理变形的影响因素1.1受应力状态的影响一般情况下,在金属材料热处理的过程中,受金属材料自身的密度影响,会使金属材料本身由于受热不均而出现变形。
金属材料热处理需要经过加热、保温和处理三个环节,通常情况下,在加热和保温的过程中,金属材料表面的温度会导致其呈现不同的状态,温度越高金属越软。
1.2受淬火介质的影响据调查指出,在对金属材料实行热处理的过程中,淬火介质对于金属变形的影响是较大的,所以说,操作人员就需要依照不同的金属材料和施工场地合理科学的选择淬火介质。
优质的淬火介质质量不光能够控制金属材料的变形,其在搅拌的过程中还能够提升金属材料的稳定性,强化金属材料热处理效果。
1.3受预处理的影响在金属材料的热处理过程中,施工人员最常用的方式就是预处理方法,此种方法能够快速的消除应力,但是会受到场地的约束,在正火时,导致金属材料出现堆冷情况,这样就会导致金属材料的表面受热不均而出现变形的情况,假如施工技术人员使用的方法不当,也会在一定程度上增加金属材料的变形效果,影响热处理效果。
浅析金属材料热处理过程变形及开裂问题【摘要】热处理是金属材料加工过程中不可或缺的环节,但在实际操作中常常会出现变形及开裂等问题。
本文从金属材料在热处理过程中的变形问题和开裂问题入手,探讨了热处理工艺对这些问题的影响以及常见的解决方法。
也提出了改善金属材料热处理过程的方法和提高热处理工艺质量的建议,强调了在热处理过程中注意事项的重要性。
通过深入分析,可以更好地了解金属材料热处理过程中的变形及开裂问题,为提高金属材料的性能和质量提供参考。
【关键词】金属材料,热处理,变形,开裂,影响,工艺,解决方法,注意事项,改善,质量,重要性。
1. 引言1.1 热处理对金属材料性能的影响热处理是一种通过控制金属材料的加热、保温和冷却过程来改变其微观结构和性能的工艺。
热处理对金属材料的性能影响深远,可以显著提高金属的强度、硬度、韧性、耐磨性和耐蚀性等性能。
通过适当的热处理工艺,可以使金属材料达到预期的性能要求,满足不同工程应用的需要。
在热处理过程中,通过控制加热温度、保温时间和冷却速度等参数,可以改变金属的晶粒大小和分布,消除或调整金属内部的残余应力,提高材料的强度和硬度。
热处理还可以消除金属材料中的氧化物、碳化物和其他夹杂物,提高金属的纯度和均匀性。
热处理对金属材料的性能有着显著的影响,可以使材料在各方面性能得到优化和改善。
正确地进行热处理工艺,可以确保金属材料在使用过程中表现出最佳的性能和稳定性。
在实际工程中,热处理是一项非常重要的工艺,需要认真对待和控制。
对于金属材料的性能提升和工程应用具有重要意义。
1.2 变形及开裂问题的定义在金属材料的热处理过程中,变形及开裂问题是不可避免的挑战。
变形是指金属在受热后发生形状或尺寸的改变,造成不同程度的失真。
开裂则是指金属在受热或冷却过程中,出现裂纹或断裂现象。
这些问题可能影响金属材料的性能和使用寿命,甚至会导致制品的废品率增加。
在热处理中,金属材料受到温度、冷却速率、应力等多种因素的影响,容易引起变形及开裂问题。
预防热处理变形的八项措施
为了提高金属工件或模具的使用性能,可以对金属件进行热处理工艺,但是在热处理过程中,如果没有按照合理的要求,很容易导致金属工件或模具经过热处理后而变形,那导致工件热处理后变形的原因是什么,采取哪些措施进行预防。
八大措施预防热处理变形:
1、合理选材。
对精密复杂模具应选择材质好的微变形模具钢(如空淬钢),对碳化物偏析严重的模具钢应进行合理锻造并进行调质热处理,对较大和无法锻造模具钢可进行固溶双细化热处理。
2、模具结构设计要合理,厚薄不要太悬殊,形状要对称,对于变形较大模具要掌握变形规律,预留加工余量,对于大型、精密复杂模具可采用组合结构。
3、精密复杂模具要进行预先热处理,消除机械加工过程中产生的残余应力。
4、合理选择加热温度,控制加热速度,对于精密复杂模具可采取缓慢加热、预热和其他均衡加热的方法来减少模具热处理变形。
5、在保证模具硬度的前提下,尽量采用预冷、分级冷却淬火或温淬火工艺。
6、对精密复杂模具,在条件许可的情况下,尽量采用真空加热淬火和淬火后的深冷处理。
7、对一些精密复杂的模具可采用预先热处理、时效热处理、调质氮化热处理来控制模具的精度。
8、在修补模具砂眼、气孔、磨损等缺陷时,选用冷焊机等热影响小的修复设备以避免修补过程中变形的产生。
(钢铁英才网)。
浅析金属材料热处理过程变形及开裂问题金属材料热处理是一种常见的工艺,通过热处理可以改善金属的组织结构和力学性能,提高其硬度、强度、耐磨性等。
在热处理过程中,金属材料可能会发生变形和开裂等问题,影响热处理效果和制品质量。
本文将就金属材料热处理过程中的变形及开裂问题进行浅析。
1.1 变形的原因金属在加热和冷却过程中,会发生体积膨胀和收缩,由于材料的弹性变形和塑性变形,会导致材料发生变形。
在加热过程中,金属材料的晶粒会发生重新组织,晶粒的尺寸和形状发生变化,从而引起材料产生变形。
在冷却过程中,由于温度梯度和残余应力的存在,也会使得金属材料产生变形。
1.2 变形的表现金属材料热处理过程中的变形主要表现为尺寸变化和形状变化。
尺寸变化包括线膨胀、面膨胀和体积膨胀,形状变化包括挠曲、弯曲、翘曲等。
这些变形会影响工件的精度和质量,甚至导致工件无法使用。
1.3 变形的影响金属材料热处理过程中的变形会影响工件的尺寸精度和形状精度,降低工件的加工精度和装配精度,甚至影响工件的功能和使用寿命。
研究金属材料热处理过程中的变形问题,并寻求有效的控制措施,对于提高金属材料热处理质量具有重要意义。
2.1 开裂的原因金属材料在热处理过程中容易发生开裂,其主要原因包括内应力和组织缺陷。
在热处理过程中,由于金属材料的非均匀加热和冷却,会导致材料产生内应力,当内应力超过材料的承受能力时,就会引起裂纹的产生。
金属材料在制备过程中可能存在组织缺陷,如夹杂物、气孔等,这些缺陷也会成为裂纹的萌生点,易引发开裂。
2.2 开裂的表现金属材料热处理过程中裂纹的表现有很多种,主要包括表面开裂、内部裂纹、轧制裂纹等。
这些裂纹会降低金属材料的强度和韧性,影响其使用性能,甚至导致工件的失效。
3.1 完善工艺流程在金属材料热处理过程中,应根据材料的属性和工件的结构特点,合理设计和优化热处理工艺流程。
包括加热温度、保温时间、冷却速度等参数的选择,以及预热、均热、保温、淬火等工艺控制的改进,以减小工件的内应力和组织缺陷,降低变形和开裂的风险。
浅谈如何减小金属热处理变形摘要:金属热处理工艺是改善各种金属材料性能的重要手段,能使材料在性能改善后符合不同使用范围的需求标准,但在金属热处理的环节中却存在着许多影响其发生形变的因素,对于工件的精度、强度及使用寿命等方面都造成直接性影响。
所以,在金属热处理工艺中应尽量将其变形量减小,以便使工件在使用过程中发挥出最佳性能。
本文就温度是控制金属发生变形的关键性因素进行较为详细的分析,同时对其它影响金属发生变形的因素也进行了列举,并提出了控制金属产生变形的有效措施,供大家参考。
关键词:金属热处理变形温度金属材料热处理是将金属工件或者合金,在一定的温度控制范围内经过加热、保温和冷却等一系列过程,使金属工件或者合金内部组织结构发生改变,从而使金属材料达到最佳性能的工艺。
目前,热处理工艺是工业中比较常用的一种加工工艺,有效地解决了工件使用过程中因性能局限性的问题,但是在金属工件热处理过程中会因受温度的影响发生不同程度的变形,使其性能与理想值发生了偏差,尤其是对于精度要求比较高的工件,变形可能导致工件直接报废。
所以,基于热处理工艺中金属发生变形的不可避免性,只能采取相关办法将其变形量控制在最小范围内。
1 温度是影响金属变形的关键因素目前,工业中所用到的热处理工艺形式多样,但整个处理过程都是热作用过程,工艺流程都是由加热、保温和冷却三个阶段组成,其每个阶断是由加热速度、加热温度、保温时间、冷却速度以及热处理周期等参数来进行描述。
加热炉是金属热处理工艺中的必要设备,所有的工艺过程都是在加热炉内完成,因此,做好加热炉内的温度测量工作在整个金属热处理工艺过程中显得尤为重要。
在金属热处理工艺中,做好温度测量工作是热处理工艺取得成功的关键,如果在金属热处理过程中没有按照温度测量的具体标准和相应手法,那么可能因温度过高或者温度过低温导致热处理后的金属产品达不到预期的性能标准要求,甚至可能导致金属产品直接报废。
因此,在金属热处理工艺中做好温度测量,使温度始终保持在热处理工艺所要求的范围内,是热处理后工件达到良好性能的关键。
如何减小金属热处理变形
摘要:金属热处理在改善材料各种性能的同时,热处理变形是不可避免的,并且会直接影响到工件的精度、强度、噪声和寿命,因此对于精度要求较高的零件要尽可能减小其变形量,着重分析温度是控制变形的关键因素的同时罗列几点次要因素。
关键词:金属热处理变形温度
如何减小金属热处理变形
一、引言
金属材料的热处理是将固态金属或合金,采用适当的方式进行加热、保温和冷却,有时并兼之以化学作用和机械作用,使金属合金内部的组织和结构发生改变,从而获得改善材料性能的工艺。
热处理工艺是使各种金属材料获得优良性能的重要手段。
很多实际应用中合理选用材料和各种成形工艺并不能满足金属工件所需要的力学性能、物理性能和化学性能,这时热处理工艺是必不可少的。
但是热处理工艺除了具有积极的作用之外,在处理过程中也不可避免地会产生或多或少的变形,而这又是机械加工中必须避免的,两者之间是共存而又需要避免的关系,只能采用相应的方法尽量把变形量控制在尽量小的范围内。
二、温度是变形的关键因素
工业上实际应用的热处理工艺形式非常多,但是它们的基本过程都是热作用过程,都是由加热、保温和冷却三个阶段组成的。
整个工艺过程都可以用加热速度、加热温度、保温时间、冷却速度以及热处理周期等几个参数来描述。
在热处理工艺中,要用到各种加热炉,金属热处理便在这些加热炉中进行(如基本热处理中的退火、淬火、回火、化学热处
理的渗碳、渗氨、渗铝、渗铬或去氢、去氧等等)。
因此,加热炉内的温度测量就成为热处理的重要工艺参数测量。
每一种热处理工艺规范中,温度是很重要的内容。
如果温度测量不准确,热处理工艺规范就得不到正确的执行,以至造成产品质量下降甚至报废。
温度的测量与控制是热处理工艺的关键,也是影响变形的关键因素。
(1)工艺温度降低后工件的高温强度损失相对减少,塑性抗力增强。
这样工件的抗应力变形、抗淬火变形、抗高温蠕变的综合能力增强,变形就会减少;
(2)工艺温度降低后工件加热、冷却的温度区间减少,由此而引起的各部位温度不一致性也会降低,由此而导致的热应力和组织应力也相对减少,这样变形就会减少;
(3)如果工艺温降低、且热处理工艺时间缩短,则工件的高温蠕变时间减少,变形也会减少。
减小热处理变形需要合理的热处理工艺。
例如经热处理后的20CrNi2MoA钢齿圈齿表面、齿心部硬度及有效硬化层深度均达到要求。
图1为模数mn=12mm的齿圈经不同温度球化退火后的硬度梯度曲线。
由图1可以看出,在650℃球化退火后的硬度梯度和740℃球化+680℃等温处理的硬度梯度结果相近,未经球化退火的齿轮的硬度较前两个低。
这是因为球化退火可使淬火后渗层表面残留奥氏体量减少,从而提高了齿表面硬度,因此20CrNi2MoA钢齿圈渗碳后应采用球化退火工艺,同时为减小热处理变形,在650℃球化退火效果更好。
三、变形的其它影响因素及减小措施
(一)预备热处理
正火硬度过高、混晶、大量索氏体或魏氏组织都会使内孔变形增大,所以要用控温正火或等温退火来处理锻件。
金属的正火、退火以及在进行淬火之前的调质,都会对金属最终的变形量产生一定的影响,直接影响到的是金属组织结构上的变化。
实践证明,在正火时采用等温淬火可有效地使金属组织结构趋于均匀,从而使其变形量减小。
(二)运用合理的冷却方法
金属淬火后冷却过程对变形的影响也是很重要的一个变形原因。
热油淬火比冷油淬火变形小,一般控制在
100±20℃。
油的冷却能力对变形也是至关重要的。
淬火的搅拌方式和速度均影响变形。
金属热处理冷却速度越快,冷却越不均匀,产生的应力越大,模具的变形也越大。
可以在保证模具硬度要求的前提下,尽量采用预冷;采用分级冷却淬火能显著减少金属淬火时产生的热应力和组织应力,是减少一些形状较复杂工件变形的有效方法;对一些特别复杂或精度要求较高的工件,利用等温淬火能显著减少变形。
(三)零件结构要合理
金属热处理后在冷却过程中,总是薄的部分冷得快,厚的部分冷得慢。
在满足实际生产需要的情况下,应尽量减少工件厚薄悬殊,零件截面力求均匀,以减少过渡区因应力集中产生畸变和开裂倾向;工件应尽量保持结构与材料成分和组织的对称性,以减少由于冷却不均引起的畸变;工件应尽量避免尖锐棱角、沟槽等,在工件的厚薄交界处、台阶处要有圆角过渡;尽量减少工件上的孔、槽筋结构不对称;厚度不均匀零件采用预留加工量的方法。
(四)采用合理的装夹方式及夹具
目的使工件加热冷却均匀,以减少热应力不均,组织应力不均,来减小变形,可改变装夹方式,盘类零件与油面垂直,轴类零件立装,使用补偿垫圈,支承垫圈,叠加垫圈等,花键孔零件可用渗碳心轴等。
(五)机械加工
当热处理是工件加工过程的最后工序时,热处理畸变的允许值应满足图样上规定的工件尺寸,而畸变量要根据上道工序加工尺寸确定。
为此,应按照工件的畸变规律,热处理前进行尺寸的预修正,使热处理畸变正好处于合格范围内。
当热处理是中间工序时,热处理前的加工余量应视为机加工余量和热处理畸变量之和。
通常机械加工余量易于确定,而热处理由于影响因素多比较复杂,因此为机械加工留出足够的加工余量,其余均可作为热处理允许畸变量。
热处理后再加工,根据工件的变形规律,施用反变形、收缩端预胀孔,提高淬火后变形合格率。
(六)采用合适的介质
在保证同样硬度要求的前提下,尽量采用油性介质,实验和实践证明,再其他条件无差异的前提下,油性介质的冷却速度较慢,而水性介质的冷却速度则相对快一些。
而且,和油性介质相比,水温变化对水性介质冷却特性的影响较
大,在同样的热处理条件下,油性介质相对水性介质淬火后的变形量要相对小。
四、结束语
热处理能改善工件的机械性能,提高工件的强度和硬度,但引起的变形影响是不可避免的。
我们要重视我国现阶段的热处理技术和装备的改进,不断学习国外先进的技术,提高热处理工件质量及合格率,为我国的热处理行业作出贡献。
参考文献:
[1]刘晔东,热处理变形浅析. 机械工人:热加工. 2007年10期.
[2]雷声,齿轮热处理变形的控制. 机械工程师. 2008年5期.
[3]魏强、刘晓清,热处理淬火变形的控制. 汽车工艺与材料. 2008年7期.。