2014-2015年河南省漯河市召陵区八年级(下)期中数学试卷带解析
- 格式:doc
- 大小:398.50 KB
- 文档页数:20
2015-2016学年河南省漯河市召陵区八年级(下)第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)已知一个正方形的面积是5,那么它的边长是()A.5B.C.D.以上都不对2.(3分)要使式子有意义,a的取值范围是()A.a≠0B.a>﹣2且a≠0C.a>﹣2或a≠0D.a≥﹣2且a≠0 3.(3分)化简的正确结果是()A.(m﹣5)B.(5﹣m)C.m﹣5D.5﹣m4.(3分)下列三角形中是直角三角形的是()A.三边之比为5:6:7B.三边满足关系a+b=cC.三边之长为9、40、41D.其中一边等于另一边的一半5.(3分)一艘轮船以16nmile/h的速度从港口A出发向东北方向航行,另一轮船以12nmile/h 的速度从港口A出发向东南方向航行,则3h后两船相距()A.36nmile B.48nmile C.60nmile D.54nmile6.(3分)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等7.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补8.(3分)已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.259.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6B.12C.20D.2410.(3分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.cm B.4cm C.cm D.3cm二、填空题(每小题3分,共21分)11.(3分)化简:=.12.(3分)在△ABC中,∠C=90°,AB=10,AC=6,则另一边BC=,面积为,AB边上的高为.13.(3分)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于cm.14.(3分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=.15.(3分)如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠F AB=.16.(3分)若x,y为实数,且|x+2|+=0,则(x+y)2014的值为.17.(3分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=cm.三、解答题(共69分)18.(12分)(1)化简(+2)﹣(2)计算:(+)×(4﹣3)÷2(+6)(3﹣)19.(5分)如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过点C作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD=135°,BD=800m,求直线l上距离D点多远的C处开挖?(≈1.414,精确到1米)20.(6分)如图,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,连接AE,若BC=DE=2,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,求AF的值.21.(6分)先化简,再求值:(+)2﹣(﹣)(+),其中a=3,b=4.22.(6分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).23.(8分)已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.24.(8分)能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.25.(9分)学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中(如图),小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.26.(9分)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB 上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,求PE+PF的值.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.2015-2016学年河南省漯河市召陵区八年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)已知一个正方形的面积是5,那么它的边长是()A.5B.C.D.以上都不对【解答】解:∵正方形的面积是5,∴它的边长是.故选:B.2.(3分)要使式子有意义,a的取值范围是()A.a≠0B.a>﹣2且a≠0C.a>﹣2或a≠0D.a≥﹣2且a≠0【解答】解:根据题意,得解得a≥﹣2且a≠0.故选:D.3.(3分)化简的正确结果是()A.(m﹣5)B.(5﹣m)C.m﹣5D.5﹣m【解答】解:∵有意义,∴5﹣m≥0,即m≤5,∴原式=(5﹣m).故选:B.4.(3分)下列三角形中是直角三角形的是()A.三边之比为5:6:7B.三边满足关系a+b=cC.三边之长为9、40、41D.其中一边等于另一边的一半【解答】解:A、∵52+62≠72,可判断此三边不能构成直角三角形,此选项错误;B、三边满足a+b=c,不一定能判断此三角形是直角三角形,此选项错误;C、∵92+402=412,能判断此三角形是直角三角形,此选项正确;D、其中一边等于另一边的一半,不一定能判断此三角形是直角三角形,此选项错误;故选:C.5.(3分)一艘轮船以16nmile/h的速度从港口A出发向东北方向航行,另一轮船以12nmile/h 的速度从港口A出发向东南方向航行,则3h后两船相距()A.36nmile B.48nmile C.60nmile D.54nmile【解答】解:∵一轮船以16n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12n mi1e/h的速度同时从港口A出发向东南方向航行,∴∠BAC=90°,离开港口A3h后,AB=48n mi1e,AC=36n mi1e,∴BC==60(n mi1e).答:3h后两船相距60n mi1e.故选:C.6.(3分)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等【解答】解:∵AB∥EF∥DC,BC∥GH∥AD∴GH、BD、EF把一个平行四边形分割成四个小平行四边形,∴一条对角线可以把一个平行四边形的面积一分为二,得S黄=S蓝,(故D正确)S绿=S红,(故A正确)S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,(故B正确)S红与S蓝显然不相等.(故C错误)故选:C.7.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选:A.8.(3分)已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.9.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6B.12C.20D.24【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.10.(3分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.cm B.4cm C.cm D.3cm【解答】解:设正方形D的边长为x.则6×6+5×5+5×5+x2=100;解得x=.故选:A.二、填空题(每小题3分,共21分)11.(3分)化简:=.【解答】解:原式=3﹣2=.故答案为:.12.(3分)在△ABC中,∠C=90°,AB=10,AC=6,则另一边BC=8,面积为24,AB边上的高为 4.8.【解答】解:根据勾股定理,得:BC==8,面积是×6×8=24,AB边上的高为=4.8,故答案为8,24,4.813.(3分)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于16cm.【解答】解:如图,连接AC、BD,∵四边形ABCD是矩形,∴AC=BD=8cm,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=EF=AC=4cm,EH=FG=BD=4cm,∴四边形EFGH的周长等于4cm+4cm+4cm+4cm=16cm,故答案为:16.14.(3分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=12.【解答】解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=KG,CF=DG=KF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(KF﹣NF)2=KF2+NF2﹣2KF•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+KF2+NF2﹣2KF•NF=3GF2=12,故答案是:12.15.(3分)如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠F AB=22.5°.【解答】解:∵四边形ABCD为正方形,AC为对角线,∴∠DAC=∠CAB=45°.∵四边形AEFC为菱形,AF为对角线,∴AF平分∠CAB,∴∠F AB=∠CAB=22.5°.故答案为:22.5°.16.(3分)若x,y为实数,且|x+2|+=0,则(x+y)2014的值为1.【解答】解:由题意,得:,解得;∴(x+y)2014=(﹣2+3)2014=1;故答案为1.17.(3分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=3cm.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC,OB=BD,∵AC+BD=24cm,∴OA+OB=12cm,∵△OAB的周长是18cm,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF=AB=3cm.故答案为:3.三、解答题(共69分)18.(12分)(1)化简(+2)﹣(2)计算:(+)×(4﹣3)÷2(+6)(3﹣)【解答】解:(1)(+2)﹣=a+2﹣a=2;(2)(+)×==3+;(4﹣3)÷2==2﹣;(+6)(3﹣)==.19.(5分)如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过点C作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD =135°,BD=800m,求直线l上距离D点多远的C处开挖?(≈1.414,精确到1米)【解答】解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),答:直线L上距离D点566米的C处开挖.20.(6分)如图,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,连接AE,若BC=DE=2,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,求AF的值.【解答】解:如图,当A,D,E三点在一条直线上,且点D在线段AE上时,AE的长最大,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,BC=2,∴AD=BC=1,此时,AE=AD+DE=1+2=3,∵正方形DEFG中,∠E=90°,∴在Rt△AEF中,AF===.21.(6分)先化简,再求值:(+)2﹣(﹣)(+),其中a=3,b=4.【解答】解:原式=a+b+2﹣(a﹣b)=a+b+2﹣a+b=2b+2,当a=3,b=4时,原式=8+4.22.(6分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.23.(8分)已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.【解答】(1)解:∵CE=CD,点F为CE的中点,CF=2,∴DC=CE=2CF=4,∵四边形ABCD是平行四边形,∴AB=CD=4,∵AE⊥BC,∴∠AEB=90°,在Rt△ABE中,由勾股定理得:BE==;(2)证明:过G作GM⊥AE于M,∵AE⊥BE,GM⊥AE,∴GM∥BC∥AD,∵在△DCF和△ECG中,,∴△DCF≌△ECG(AAS),∴CG=CF,CE=CD,∵CE=2CF,∴CD=2CG,即G为CD中点,∵AD∥GM∥BC,∴M为AE中点,∴AM=EM(一组平行线在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等),∵GM⊥AE,∴AG=EG,∴∠AGM=∠EGM,∴∠AGE=2∠MGE,∵GM∥BC,∴∠EGM=∠CEG,∴∠CEG=∠AGE.24.(8分)能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.【解答】解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.25.(9分)学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中(如图),小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.【解答】解:(1)根据题意,得两条直角边分别是:39×30=1170,52×30=1560,利用勾股定理求出半径为=1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3,4,5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).26.(9分)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB 上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,求PE+PF的值.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.【解答】解:(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠BPF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=a cos45°=a.(2)∵四边形ABCD是正方形,∴AC⊥BD,∵PF⊥BF,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠OBA=45°,∴PF=BF.又∵BC=a,∴PE﹣PF=OF﹣BF=OB=BC cos45°=a cos45°=a.。
2014-2015学年八年级下学期期中数学试卷一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对3.函数中,自变量x的取值范围是( )A.B.C.D.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠D D.AB∥DC,∠B=∠D5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.467.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.58.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C.D.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=__________时,分式的值为0.12.,﹣的最简公分母是__________.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于__________.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为__________.15.如果分式方程无解,则m=__________.16.已知﹣=3,则代数式的值为__________.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为__________.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是__________.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形__________A.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为__________cm/s,a﹦__________cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:、、的分母中均不含有字母,因此它们是整式,而不是分式.、+1分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对考点:中点四边形.分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=G F=FE,∴四边形EFGH为菱形.故选:C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.3.函数中,自变量x的取值范围是( )A.B.C.D.考点:函数自变量的取值范围.分析:根据当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.解答:解:由,得3﹣2x>0,解得x<,故选:B.点评:本题考查了函数自变量的范围,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠DD.AB∥DC,∠B=∠D考点:平行四边形的判定.分析:根据平行四边形的判定定理进行判断即可.解答:解:A、根据两组对边分别相等的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形为平行四边形,故此选项符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠B=∠D,∴AD∥BC,∴根据两组对边分别平行四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的整式,结果不变,可得答案.解答:如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,结果不变.6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=7,∵△OCD的周长为23,∴OD+OC=23﹣7=16,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=32,故选A.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.5考点:一元二次方程的解;一元二次方程的定义.分析:根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C. D.考点:由实际问题抽象出分式方程.分析:关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间﹣实际的工作时间=2.解答:解:若设原计划每天绿化(x)m,实际每天绿化(x+10)m,原计划的工作时间为:,实际的工作时间为:方程应该为:﹣=2.故选:A.点评:此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.本题主要用到的关系为:工作时间=工作总量÷工作效率.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个考点:分式的值;约分.分析:首先化简分式可得,要使它的值为整数,则(x﹣1)应是3的约数,即x﹣1=±1或±3,进而解出x的值.解答:解:∵,∴根据题意,得x﹣1=±1或±3,解得x=0或x=2或x=﹣2或x=4,故选D.点评:此题考查分式的值,此类题首先要正确化简分式,然后要保证分式的值为整数,则根据分母应是分子的约数,进行分析.10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,因为QN取得最大值是OB 时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时AM=3,从而求得M的坐标(3,4).解答:解:如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,∵MP≤OA,QN≤OB,∴当点N与点B重合,QN取得最大值OB时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时△MON的面积最大,周长最短,∵=,即=,∴AM=3,∴M(3,4).故选B.点评:本题考查了直角梯形的性质,坐标和图形的性质,轴对称的性质等,作出辅助线是本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=﹣1时,分式的值为0.考点:分式的值为零的条件.分析:根据分式值为零的条件得x+1=0且x﹣2≠0,再解方程即可.解答:解:由分式的值为零的条件得x+1=0,且x﹣2≠0,解得:x=﹣1,故答案为:﹣1.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.12.,﹣的最简公分母是4x3y.考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:,﹣的最简公分母是4x3y;故答案为:4x3y.点评:此题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于12.考点:菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由a、b满足,即可求得a与b的值,又由菱形的两条对角线长为a和b,根据菱形的面积等于对角线积的一半,即可求得答案.解答:解:∵a、b满足,∴,解得:a=4,b=6,∵菱形的两条对角线长为a和b,∴菱形的面积为:ab=12.故答案为:12.点评:此题考查了菱形的性质以及非负数的非负性.注意掌握菱形的面积等于对角线积的一半是关键.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为6.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB.解答:解:∵EF是△ABD的中位线,∴AB=2EF=6,又∵AB=CD,∴CD=6.故答案为:6.点评:本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.15.如果分式方程无解,则m=﹣1.考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评:本题考查了分式方程无解的条件,是需要识记的内容.16.已知﹣=3,则代数式的值为﹣.考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=﹣3xy,原式变形后代入计算即可求出值.解答:解:∵﹣==3,即x﹣y=﹣3xy,∴原式===﹣,故答案为:﹣点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.考点:菱形的性质;勾股定理.专题:几何图形问题.分析:根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC 的长.解答:解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故答案为:.点评:根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2=+3.考点:分式方程的解.专题:计算题.分析:根据题中方程的解归纳总结得到一般性规律,所求方程变形后确定出解即可.解答:解:所求方程变形得:x﹣3+=c﹣3+,根据题中的规律得:x﹣3=c﹣3,x﹣3=,解得:x1=c,x2=+3,故答案为:x1=c,x2=+3点评:此题考查了分式方程的解,归纳总结得到题中方程解的规律是解本题的关键.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.考点:分式的化简求值.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m=0代入计算即可求出值.解答:解:(1)原式=﹣=﹣;(2)原式=•=•=,当m=0时,原式=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)先变形,再提公因式即可;(2)先把系数化为1,再配方法即可.解答:解:(1)整理得:(x﹣5)2+2(x﹣5)=0;(x﹣5)(x﹣5+2)=0,x﹣5=0或x﹣3=0,解得x1=5,x2=3;(2)把二次项系数化为1得,x2﹣2x﹣3=0,x2﹣2x=3,x2﹣2x+1=4,(x﹣1)2=4,x﹣1=±2;解得x1=﹣1,x2=3.点评:本题考查了解一元二次方程,用到的方法有:提公因式法和配方法,是常见题型,要熟练掌握.21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB 即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.解答:解:(1)①如图所示;②直线CD如图所示;(2)∵由图可知,AD=BC,AD∥BC,∴四边形ABCD是平行四边形.∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.考点:矩形的性质;线段垂直平分线的性质;作图—基本作图.分析:(1)分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)首先证得△COF≌△AOE,然后由线段垂直平分线的性质,证得AF=CF,即可证得结论.解答:(1)解:如图:分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OCF=∠OAE,在△OCF和△OAE中,,∴△COF≌△AOE(ASA),∴AE=CF,∵EF是AC的垂直平分线,∴AF=CF,∴AE=AF.点评:此题考查了矩形的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?考点:分式方程的应用.分析:根据实际比计划提前了4天这一等量关系列出方程求解.解答:解:设原来每天加固x平方米,则熟练后每天加固(1+25%)x平方米,由题意得:=解得:x=60经检验x=60是方程的解,∴﹣4=22答:原来每天能加固60平方米校舍,实际上加固校舍花了22天时间.点评:本题考查了分式方程的应用,解题的关键是找到等量关系.24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形CA.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.考点:等腰梯形的性质;等腰直角三角形;平行四边形的性质;菱形的性质;矩形的性质.专题:新定义.分析:(1)有和谐四边形的定义即可得到菱形是和谐四边形;(2)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠ABC的度数.解答:解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是和谐四边形;(2)解:∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形,在等腰Rt△ABD中,∵AB=AD,∴AB=AD=BC,如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°.如图2,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=∠BCF=15°,∴∠ABC=150°,综上:∠ABC的度数可能是:60°90°150°.点评:此题考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质,菱形的性质,此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为1cm/s,a﹦6cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.考点:二次函数综合题;动点问题的函数图象.专题:压轴题.分析:(1)根据点E时S最大,判断出2秒时点P运动至点B,点Q运动至点C,然后根据点P的速度求出AB,再根据3秒时,S=0判断出点P与点Q重合,然后根据追击问题的等量关系列出方程求出点Q的速度即可得解;(2)①求出3秒时点P、Q在点C重合,再求出点P到达点D的时间为5秒,到达点A 的时间为6秒,然后分3<t≤5时表示出PQ,然后根据三角形的面积公式列式整理即可;5<t≤6时,表示出AP、DQ,然后利用三角形的面积公式列式整理即可;②根据函数解析式作出图象即可.解答:解:(1)由图可知,2秒时点P运动至点B,点Q运动至点C,∵点P的速度为3cm/s,∴AB=3×=6cm,3秒时,S=0判断出点P与点Q重合,设点Q的速度为xcm/s,则3x+6=3×3,解得x=1,此时,BC=2×1=2cm,a=×6×2=6cm2,故答案为:1,6;(2)∵(6+3)÷3=3s,3÷1=3s,∴3秒时点P、Q在点C重合,点P到达点D的时间为:(6+3+6)÷3=5s到达点A的时间为:(6+3+6+3)÷3=6s,①若3<t≤5,则PQ=3t﹣t﹣6=2t﹣6,S=×(2t﹣6)×3=3t﹣9;若5<t≤6,则AP=(6+3+6+3)﹣3t=18﹣3t,DQ=(6+3)﹣t=9﹣t,S=×(18﹣3t)×(9﹣t)=t2﹣t+81;所以,S=;②函数图象如图2所示.点评:本题是二次函数综合题型,动点问题函数图象,主要利用了路程、速度、时间三者之间的关系,根据图2判断出2秒时点P、Q的位置是解题的关键,也是本题的难点,根据3秒时,点P、Q重合利用追击问题等量关系求出点Q的速度也很重要.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)考点:相似形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(3)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8,当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t;(2)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM(AAS).∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(3)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。
2015-2016学年河南省漯河市召陵区八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.下列关系成立的是()A.a0=1 B.a3n÷a n=a3C.(﹣a)3÷(﹣a2)=a D.a+a n﹣1=a n2.把多項式a2﹣4a分解因式,结果正确的是()A.a(a+2)(a﹣2)B.a(a﹣4)C.(a+2)(a﹣2)D.(a﹣2)2﹣43.下列等式成立的是()A.(﹣3)﹣2=﹣9 B.(﹣3)﹣2=C.a﹣2×b﹣2=a2×b2 D.4.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F5.化简的结果是()A.B.a C.D.6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.7.把14cm长的铁丝截成三段,围成不是等边三角形的三角形,并且使三边均为整数,那么()A.有1种截法B.有2种截法C.有3种截法D.有4种截法8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.二、填空题(本题共10小题,每小题3分,共21分)9.把0.0000007用科学记数法表示为.10.多项式4x2﹣12x2y+12x3y2分解因式时,应提取的公因式是.11.若9n=38,则n=.12.当x=时,分式值为零.13.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣5),则a+b的值为.14.已知,则代数式的值为.15.如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于D,若CD=3cm,则AC=cm.16.如图,CP、BP分别平分△ABC的外角∠ECB,∠DBC,若∠A=50°,那么∠P=.17.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为.18.李明同学从家到学校的速度是每小时a千米,沿原路从学校返回家的速度是每小时b千米,则李明同学来回的平均速度是千米/小时.(用含a,b的式子表示)三、解答题(本题共7小题,共66分)19.用乘法公式计算:(1)(2﹣3x)2﹣(3x+2)2(2)(2x+y+z)(2x﹣y﹣z)20.解方程:﹣=.21.先化简,再求值:(a﹣3﹣)÷,其中a=﹣2.22.已知a,b为实数,且ab=1,M=+,N=+,试确定M、N的大小关系.23.如图,给出五个等量关系:①AD=BC ②AC=BD ③CE=DE ④∠D=∠C⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.24.某次地震后,政府为安置灾民,准备从某厂调拨用于搭建板房的板材5600m2和铝材2210m,该厂现有板材4600m2和铝材810m,不足部分计划安排110人进行生产,若每人每天能生产板材50m2或铝材30m,则应分别安排多少人生产板材和铝材,才能确保同时完成各自的生产任务?25.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.2015-2016学年河南省漯河市召陵区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.下列关系成立的是()A.a0=1 B.a3n÷a n=a3C.(﹣a)3÷(﹣a2)=a D.a+a n﹣1=a n【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;零指数幂.【分析】分别根据0指数幂的运算法则、同底数幂的除法法则对各选项进行逐一判断即可.【解答】解:A、当a=0时,a0无意义,故本选项错误;B、a3n÷a n=a2n,故本选项错误;C、(﹣a)3÷(﹣a2)=a,故本选项正确;D、a与a n﹣1不是同类项,不能合并,故本选项错误.故选C.【点评】本题考查的是同底数幂的除法,熟知同底数幂的除法法则是底数不变,指数相减是解答此题的关键.2.把多項式a2﹣4a分解因式,结果正确的是()A.a(a+2)(a﹣2)B.a(a﹣4)C.(a+2)(a﹣2)D.(a﹣2)2﹣4【考点】因式分解-提公因式法.【分析】直接找出公因式a,进而提取公因式得出答案.【解答】解:a2﹣4a=a(a﹣4).故选:B.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.3.下列等式成立的是()A.(﹣3)﹣2=﹣9 B.(﹣3)﹣2=C.a﹣2×b﹣2=a2×b2 D.【考点】负整数指数幂;分式的基本性质.【分析】分别根据负整数指数幂、分式的基本性质分别进行计算.【解答】解:A、错误,(﹣3)﹣2=;B、正确;C、错误,a﹣2×b﹣2=;D、错误,.故选B.【点评】本题主要考查了负整数指数幂的意义,注意a﹣n=,而不是﹣a n.4.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.【点评】本题考查了全等三角形的判断方法;一般三角形全等判定的条件必须是三个元素,并且一定有一组对应边相等,要找准对应边是解决本题的关键.5.化简的结果是()A.B.a C.D.【考点】分式的乘除法.【分析】将原式变形后,约分即可得到结果.【解答】解:原式==a.故答案选B.【点评】题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选C.【点评】本题考查了由实际问题抽象出分式方程,理解题意,找到等量关系是解决问题的关键.本题用到的等量关系为:时间=路程÷速度.7.把14cm长的铁丝截成三段,围成不是等边三角形的三角形,并且使三边均为整数,那么()A.有1种截法B.有2种截法C.有3种截法D.有4种截法【考点】三角形三边关系.【分析】根据题目要求,根据构成三角形的条件,周长为14,可逐步分析,将每个符合题意的三角形写出即可.【解答】解:根据三角形的三边关系,两边之和大于第三边,最短的边是1时,不成立;当最短的边是2时,三边长是:2,6,6;当最短的边是3时,三边长是:3,5,6;当最短的边是4时,三边长是:4,4,6和4,5,5.最短的边一定不能大于4.综上,有2,6,6;3,5,6;4,4,6和4,5,5共4种截法.故选:D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.【考点】剪纸问题.【专题】操作型.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.二、填空题(本题共10小题,每小题3分,共21分)9.把0.0000007用科学记数法表示为7×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000007=7×10﹣7,故答案为:7×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.多项式4x2﹣12x2y+12x3y2分解因式时,应提取的公因式是4x2.【考点】因式分解-提公因式法.【分析】直接找出公因式,进而提取公因式得出答案.【解答】解:4x2﹣12x2y+12x3y2=4x2(1﹣3y+3xy2).故答案为:4x2.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.若9n=38,则n=4.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵9n=32n=38,∴2n=8,∴n=4.故答案为:4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.当x=﹣2时,分式值为零.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为零:分子为0,分母不为0.【解答】解:当|x|﹣2=0,且x﹣2≠0,即x=﹣2时,分式值为零.故答案是:﹣2.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣5),则a+b的值为﹣9.【考点】因式分解-十字相乘法等.【专题】计算题;因式分解.【分析】因式分解的结果利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b 的值,即可求出a+b的值.【解答】解:根据题意得:x2+ax+b=(x+1)(x﹣5)=x2﹣4x﹣5,∴a=﹣4,b=﹣5,则a+b=﹣4﹣5=﹣9.故答案为:﹣9.【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘法是解本题的关键.14.已知,则代数式的值为7.【考点】完全平方公式.【专题】压轴题.【分析】根据完全平方公式把已知条件两边平方,然后整理即可求解.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=9﹣2=7.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是解题的关键.15.如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于D,若CD=3cm,则AC=9cm.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先根据直角三角形的性质得出∠ABC的度数,再由线段垂直平分线的性质得出AD=BD,故可得出∠A=∠ABD=30°,故BD是∠ABC的角平分线,由此可得出DE的长,根据直角三角形的性质求出AD的长,进而可得出结论.【解答】解:∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°﹣30°=60°.∵DE是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=30°,∴BD是∠ABC的角平分线,∴CD=DE=3cm,∴AD=2DE=6cm,∴AC=AD+CD=6+3=9cm.故答案为:9.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.如图,CP、BP分别平分△ABC的外角∠ECB,∠DBC,若∠A=50°,那么∠P=65°.【考点】三角形内角和定理.【分析】运用三角形的内角和定理及外角的性质求出∠PBC+∠PCB的值,即可解决问题.【解答】解∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC+∠BCE=230°;∵BP、CP分别是△ABC的外角∠DBC和∠ECB的平分线,∴∠PBC+∠PCB=115°,∴∠P=180°﹣115°=65°,故答案为:65°【点评】该题主要考查了三角形的内角和定理及其应用问题;解题的关键是灵活运用有关定理来分析、判断;科学求解论证.17.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为+=18.【考点】由实际问题抽象出分式方程.【专题】应用题.【分析】关键描述语为:“共用了18天完成任务”,那么等量关系为:采用新技术前所用时间+采用新技术后所用时间=18天.【解答】解:采用新技术前所用时间为:,采用新技术后所用时间为:,∴所列方程为:+=18.【点评】找出题目中的关键语,找到相应的等量关系是解决问题的关键.注意工作时间=工作总量÷工作效率.18.李明同学从家到学校的速度是每小时a千米,沿原路从学校返回家的速度是每小时b千米,则李明同学来回的平均速度是千米/小时.(用含a,b的式子表示)【考点】列代数式(分式).【分析】设出从家到学校的路程为x千米,可表示出从家到学校和从学校返回家的时间,再求平均速度即可.【解答】解:设从家到学校的路程为x千米,则从家到学校的时间千米/时,从学校返回家的时间千米/时,李明同学来回的平均速度是:=千米/时,故答案为.【点评】本题考查了列代数式,速度、路程、时间之间的关系:路程=时间•速度.三、解答题(本题共7小题,共66分)19.用乘法公式计算:(1)(2﹣3x)2﹣(3x+2)2(2)(2x+y+z)(2x﹣y﹣z)【考点】完全平方公式;平方差公式.【分析】(1)利用完全平方公式,即可解答;(2)利用平方差公式,即可解答.【解答】解:(1)原式=4﹣12x+9x2﹣9x2﹣12x﹣4=﹣24x.(2)原式=[2x+(y+z)][2x﹣(y+z)]=(2x)2﹣(y+z)2=4x2﹣y2﹣z2﹣2yz.【点评】本题考查了平方差公式和完全平方公式,解决本题的关键是熟记平方差公式、完全平方公式.20.解方程:﹣=.【考点】解分式方程.【分析】观察可得最简公分母是x(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边乘x(x+2)(x﹣2)得到:5(x+2)﹣4(x﹣2)=3X5x+10﹣4x+8=3x﹣2x=﹣18x=9检验:x=9时,x(x+2)(x﹣2)≠0∴x=9的分式方程的根.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.21.先化简,再求值:(a﹣3﹣)÷,其中a=﹣2.【考点】分式的化简求值.【分析】先根据分式的化简法则把原式进行化简,再把a=﹣2代入进行计算即可.【解答】解:原式=•=•=2(a+4),当a=﹣2时,原式=2×(﹣2+4)=4.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.已知a,b为实数,且ab=1,M=+,N=+,试确定M、N的大小关系.【考点】分式的加减法.【专题】计算题;分式.【分析】利用作差法比较M与N大小即可.【解答】解:∵ab=1,∴M﹣N=+﹣(+)=﹣=﹣=0,则M=N.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.23.如图,给出五个等量关系:①AD=BC ②AC=BD ③CE=DE ④∠D=∠C⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.【考点】全等三角形的判定与性质.【专题】证明题;开放型.【分析】本题主要考学生的创新思维能力.自己找条件和结论,自己证明.由于①②⑤中所给的条件都属于两个全等三角形里的边和角,可任选其中两个当条件,第三个当结论比较简便.【解答】解:已知:AD=BC,AC=BD,求证:∠DAB=∠CBA.证明:∵AD=BC,AC=BD,AB=AB,∴△ADB≌△BCA.∴∠DAB=∠CBA.【点评】本题考查了全等三角形的判定及性质;在做此类题的时候,尽量选所给的条件都属于两个全等三角形里的边和角.注意隐含的条件的运用.24.某次地震后,政府为安置灾民,准备从某厂调拨用于搭建板房的板材5600m2和铝材2210m,该厂现有板材4600m2和铝材810m,不足部分计划安排110人进行生产,若每人每天能生产板材50m2或铝材30m,则应分别安排多少人生产板材和铝材,才能确保同时完成各自的生产任务?【考点】分式方程的应用.【分析】先设x人生产板材,则人生产铝材,根据生产时间相等得列出方程,再解方程即可.【解答】解:设x人生产板材,则人生产铝材,由题意得=,解得x=33,则110﹣x=77.答:分别安排33人生产板材,77人生产铝材,才能确保同时完成各自的生产任务.【点评】此题考查分式方程的应用,找出题目蕴含的等量关系是解决问题的关键.25.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】探究型.【分析】(1)易证∠FBA=∠FCE,结合条件容易证到△FAB≌△DAC,从而有FA=DA,就可得到AB=AD+BD=FA+BD.(2)由于点D的位置在变化,因此线段AF、BD、AB之间的大小关系也会相应地发生变化,只需画出图象并借鉴(1)中的证明思路就可解决问题.【解答】解:(1)AB=FA+BD.证明:如图1,∵BE⊥CD即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.在△FAB和△DAC中,.∴△FAB≌△DAC(ASA).∴FA=DA.∴AB=AD+BD=FA+BD.(2)(1)中的结论不成立.点D在AB的延长线上时,AB=AF﹣BD;点D在AB的反向延长线上时,AB=BD﹣AF.理由如下:①当点D在AB的延长线上时,如图2.同理可得:FA=DA.则AB=AD﹣BD=AF﹣BD.②点D在AB的反向延长线上时,如图3.同理可得:FA=DA.则AB=BD﹣AD=BD﹣AF.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质等知识,当条件没有改变仅仅是图形的位置发生变化时,常常可以通过借鉴已有的解题经验来解决问题.2016年3月7日。
2015-2016学年河南省漯河市召陵区八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)下列关系成立的是()A.a0=1B.a3n÷a n=a3C.(﹣a)3÷(﹣a2)=a D.a+a n﹣1=a n2.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣43.(3分)下列等式成立的是()A.(﹣3)﹣2=﹣9B.(﹣3)﹣2=C.a﹣2×b﹣2=a2×b2D.4.(3分)在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 5.(3分)化简的结果是()A.B.a C.D.6.(3分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.7.(3分)把14cm长的铁丝截成三段,围成不是等边三角形的三角形,并且使三边均为整数,那么()A.有1种截法B.有2种截法C.有3种截法D.有4种截法8.(3分)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.二、填空题(本题共10小题,每小题3分,共21分)9.(3分)把0.0000007用科学记数法表示为.10.(3分)多项式4x2﹣12x2y+12x3y2分解因式时,应提取的公因式是.11.(3分)若9n=38,则n=.12.(3分)当x=时,分式值为零.13.(3分)若多项式x2+ax+b分解因式的结果为(x+1)(x﹣5),则a+b的值为.14.(3分)已知,则代数式的值为.15.(3分)如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于D,若CD=3cm,则AC=cm.16.(3分)如图,CP、BP分别平分△ABC的外角∠ECB,∠DBC,若∠A=50°,那么∠P=.17.(3分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为.18.(3分)李明同学从家到学校的速度是每小时a千米,沿原路从学校返回家(用的速度是每小时b千米,则李明同学来回的平均速度是千米/小时.含a,b的式子表示)三、解答题(本题共7小题,共66分)19.(12分)用乘法公式计算:(1)(2﹣3x)2﹣(3x+2)2(2)(2x+y+z)(2x﹣y﹣z)20.(7分)解方程:﹣=.21.(7分)先化简,再求值:(a﹣3﹣)÷,其中a=﹣2.22.(8分)已知a,b为实数,且ab=1,M=+,N=+,试确定M、N的大小关系.23.(9分)如图,给出五个等量关系:①AD=BC ②AC=BD ③CE=DE ④∠D=∠C ⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.24.(10分)某次地震后,政府为安置灾民,准备从某厂调拨用于搭建板房的板材5600m2和铝材2210m,该厂现有板材4600m2和铝材810m,不足部分计划安排110人进行生产,若每人每天能生产板材50m2或铝材30m,则应分别安排多少人生产板材和铝材,才能确保同时完成各自的生产任务?25.(13分)如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.2015-2016学年河南省漯河市召陵区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)下列关系成立的是()A.a0=1B.a3n÷a n=a3C.(﹣a)3÷(﹣a2)=a D.a+a n﹣1=a n【分析】分别根据0指数幂的运算法则、同底数幂的除法法则对各选项进行逐一判断即可.【解答】解:A、当a=0时,a0无意义,故本选项错误;B、a3n÷a n=a2n,故本选项错误;C、(﹣a)3÷(﹣a2)=a,故本选项正确;D、a与a n﹣1不是同类项,不能合并,故本选项错误.故选:C.2.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.3.(3分)下列等式成立的是()A.(﹣3)﹣2=﹣9B.(﹣3)﹣2=C.a﹣2×b﹣2=a2×b2D.【分析】分别根据负整数指数幂、分式的基本性质分别进行计算.【解答】解:A、错误,(﹣3)﹣2=;B、正确;C、错误,a﹣2×b﹣2=;D、错误,.故选:B.4.(3分)在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选:C.5.(3分)化简的结果是()A.B.a C.D.【分析】将原式变形后,约分即可得到结果.【解答】解:原式==a.故选:B.6.(3分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选:C.7.(3分)把14cm长的铁丝截成三段,围成不是等边三角形的三角形,并且使三边均为整数,那么()A.有1种截法B.有2种截法C.有3种截法D.有4种截法【分析】根据题目要求,根据构成三角形的条件,周长为14,可逐步分析,将每个符合题意的三角形写出即可.【解答】解:根据三角形的三边关系,两边之和大于第三边,最短的边是1时,不成立;当最短的边是2时,三边长是:2,6,6;当最短的边是3时,三边长是:3,5,6;当最短的边是4时,三边长是:4,4,6和4,5,5.最短的边一定不能大于4.综上,有2,6,6;3,5,6;4,4,6和4,5,5共4种截法.故选:D.8.(3分)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.二、填空题(本题共10小题,每小题3分,共21分)9.(3分)把0.0000007用科学记数法表示为7×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000007=7×10﹣7,故答案为:7×10﹣7.10.(3分)多项式4x2﹣12x2y+12x3y2分解因式时,应提取的公因式是4x2.【分析】直接找出公因式,进而提取公因式得出答案.【解答】解:4x2﹣12x2y+12x3y2=4x2(1﹣3y+3xy2).故答案为:4x2.11.(3分)若9n=38,则n=4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵9n=32n=38,∴2n=8,∴n=4.故答案为:4.12.(3分)当x=﹣2时,分式值为零.【分析】分式的值为零:分子为0,分母不为0.【解答】解:当|x|﹣2=0,且x﹣2≠0,即x=﹣2时,分式值为零.故答案是:﹣2.13.(3分)若多项式x2+ax+b分解因式的结果为(x+1)(x﹣5),则a+b的值为﹣9.【分析】因式分解的结果利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b的值,即可求出a+b的值.【解答】解:根据题意得:x2+ax+b=(x+1)(x﹣5)=x2﹣4x﹣5,∴a=﹣4,b=﹣5,则a+b=﹣4﹣5=﹣9.故答案为:﹣9.14.(3分)已知,则代数式的值为7.【分析】根据完全平方公式把已知条件两边平方,然后整理即可求解.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=9﹣2=7.15.(3分)如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于D,若CD=3cm,则AC=9cm.【分析】先根据直角三角形的性质得出∠ABC的度数,再由线段垂直平分线的性质得出AD=BD,故可得出∠A=∠ABD=30°,故BD是∠ABC的角平分线,由此可得出DE的长,根据直角三角形的性质求出AD的长,进而可得出结论.【解答】解:∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°﹣30°=60°.∵DE是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=30°,∴BD是∠ABC的角平分线,∴CD=DE=3cm,∴AD=2DE=6cm,∴AC=AD+CD=6+3=9cm.故答案为:9.16.(3分)如图,CP、BP分别平分△ABC的外角∠ECB,∠DBC,若∠A=50°,那么∠P=65°.【分析】运用三角形的内角和定理及外角的性质求出∠PBC+∠PCB的值,即可解决问题.【解答】解∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC+∠BCE=230°;∵BP、CP分别是△ABC的外角∠DBC和∠ECB的平分线,∴∠PBC+∠PCB=115°,∴∠P=180°﹣115°=65°,故答案为:65°17.(3分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为+=18.【分析】关键描述语为:“共用了18天完成任务”,那么等量关系为:采用新技术前所用时间+采用新技术后所用时间=18天.【解答】解:采用新技术前所用时间为:,采用新技术后所用时间为:,∴所列方程为:+=18.18.(3分)李明同学从家到学校的速度是每小时a千米,沿原路从学校返回家的速度是每小时b千米,则李明同学来回的平均速度是千米/小时.(用含a,b的式子表示)【分析】设出从家到学校的路程为x千米,可表示出从家到学校和从学校返回家的时间,再求平均速度即可.【解答】解:设从家到学校的路程为x千米,则从家到学校的时间时,从学校返回家的时间时,李明同学来回的平均速度是:=千米/时,故答案为.三、解答题(本题共7小题,共66分)19.(12分)用乘法公式计算:(1)(2﹣3x)2﹣(3x+2)2(2)(2x+y+z)(2x﹣y﹣z)【分析】(1)利用完全平方公式,即可解答;(2)利用平方差公式,即可解答.【解答】解:(1)原式=4﹣12x+9x2﹣9x2﹣12x﹣4=﹣24x.(2)原式=[2x+(y+z)][2x﹣(y+z)]=(2x)2﹣(y+z)2=4x2﹣y2﹣z2﹣2yz.20.(7分)解方程:﹣=.【分析】观察可得最简公分母是x(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边乘x(x+2)(x﹣2)得到:5(x+2)﹣4(x﹣2)=3X5x+10﹣4x+8=3x﹣2x=﹣18x=9检验:x=9时,x(x+2)(x﹣2)≠0∴x=9的分式方程的根.21.(7分)先化简,再求值:(a﹣3﹣)÷,其中a=﹣2.【分析】先根据分式的化简法则把原式进行化简,再把a=﹣2代入进行计算即可.【解答】解:原式=•=•=2(a+4),当a=﹣2时,原式=2×(﹣2+4)=4.22.(8分)已知a,b为实数,且ab=1,M=+,N=+,试确定M、N的大小关系.【分析】利用作差法比较M与N大小即可.【解答】解:∵ab=1,∴M﹣N=+﹣(+)=﹣=﹣=0,则M=N.23.(9分)如图,给出五个等量关系:①AD=BC ②AC=BD ③CE=DE ④∠D=∠C ⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.【分析】本题主要考学生的创新思维能力.自己找条件和结论,自己证明.由于①②⑤中所给的条件都属于两个全等三角形里的边和角,可任选其中两个当条件,第三个当结论比较简便.【解答】解:已知:AD=BC,AC=BD,求证:∠DAB=∠CBA.证明:∵AD=BC,AC=BD,AB=AB,∴△ADB≌△BCA.∴∠DAB=∠CBA.24.(10分)某次地震后,政府为安置灾民,准备从某厂调拨用于搭建板房的板材5600m2和铝材2210m,该厂现有板材4600m2和铝材810m,不足部分计划安排110人进行生产,若每人每天能生产板材50m2或铝材30m,则应分别安排多少人生产板材和铝材,才能确保同时完成各自的生产任务?【分析】先设x人生产板材,则(110﹣x)人生产铝材,根据生产时间相等得列出方程,再解方程即可.【解答】解:设x人生产板材,则(110﹣x)人生产铝材,由题意得=,解得x=33,则110﹣x=77.答:分别安排33人生产板材,77人生产铝材,才能确保同时完成各自的生产任务.25.(13分)如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.【分析】(1)易证∠FBA=∠FCE,结合条件容易证到△FAB≌△DAC,从而有FA=DA,就可得到AB=AD+BD=FA+BD.(2)由于点D的位置在变化,因此线段AF、BD、AB之间的大小关系也会相应地发生变化,只需画出图象并借鉴(1)中的证明思路就可解决问题.【解答】解:(1)AB=FA+BD.证明:如图1,∵BE⊥CD即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.在△FAB和△DAC中,.∴△FAB≌△DAC(ASA).∴FA=DA.∴AB=AD+BD=FA+BD.(2)(1)中的结论不成立.点D在AB的延长线上时,AB=AF﹣BD;点D在AB的反向延长线上时,AB=BD ﹣AF.理由如下:①当点D在AB的延长线上时,如图2.同理可得:FA=DA.则AB=AD﹣BD=AF﹣BD.②点D在AB的反向延长线上时,如图3.同理可得:FA=DA.则AB=BD﹣AD=BD﹣AF.。
八年级数学参考答案一、1——5 ADDCA 6——8 CCB二、9.50°或80° 10.(3,2) 11.4cm 12.40°13.∠C=∠E或AB=FD或AD=FB 14.15 15.2.516.68° 17.6 18.13cm三、19.略20.(1)画图略;(2)A1(-1,-1)、B1(-2,2)、C1(2,3) (3)S△ABC=6.521.(1)10°(2)∠ECD=(∠B-∠A)22.先证明△ABE≌△DCE(AAS),得出AE=DE,BE=CE,∴AE+CE=DE+BE 即BD=CA,又∵BC=BC,所以△ABC≌△DCB (SSS).(本题还可以用其它方法,只要合理即可得分)23.(1)∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC, 即∠BAD=∠CAE,又∵AB=AC,AD=AE, ∴△ABD≌△ACE, ∴BD=EC.(2) ∵△ABD≌△ACE, ∴∠BDA=∠E,又∵∠E+∠ADE=90°,∴∠BDA+∠ADE=90°,即∠BDE=90°,∴BD⊥DE24.(1) ∵△ABC是等边三角形,∴AB=AC, ∠BAE=∠ACD,又∵AE=CD, ∴△ABE≌△CAD(SAS).(2) ∵△ABE≌△CAD, ∴∠ABE=∠CAD,AD=BE,又∵∠BFP=∠BAD+∠ABE, ∴∠BFP=∠BAD+∠CAD,又∵∠BAD+∠CAD=60°,∴∠BFP=60°,又∵BP⊥AD, ∴∠BPF=90°,∴∠FBP=30°,∴BF=2PF=18,∴BE=18+3=21,∴AD=2125. (1)∵AD是∠BAC的角平分线,AB=AC,∴∠BDP=90°,BD=CD∵BE⊥AC, ∴∠AEP=∠BEC=90°,在△BPD和△APE中,∠AEP=∠BDP=90°,∠BPD=∠APE∴∠EBC=∠EAP,在△BCE和△APE中, ∵∠AEP=∠BEC, BE=AE, ∠EBC=∠EAP,∴△BCE≌△APE.(2)∵△BCE≌△APE,∴BC=AP,∵BD=CD, ∴BD=BC, ∴BD=AP.(3) △BDQ是等腰直角三角形.∵BE=AE,F是AB的中点,∴EF是线段AB的垂直平分线,∴AQ=BQ, ∴∠BAQ=∠ABQ, ,∵BE=AE, ∠BEA=90°,∴∠BAE=45°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=22.5°, ∵∠BAD=∠ABQ, ∴∠BAD=∠ABQ=22.5°,∴∠BQD=22.5°×2=45°,∵∠ADB=90°,∴△BDQ是等腰直角三角形.。
2015-2016学年河南省漯河市召陵区八年级(上)期中数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.下面所给的交通标志是轴对称图形的是()A.B.C.D.2.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°3.下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等4.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm5.若一个多边形的内角和为900°,则从这个多边形的其中一个顶点出发引的对角线的条数为()A.4 B.5 C.6 D.76.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的E处.若∠A=23°,则∠BDC等于()A.46°B.60°C.68°D.77°7.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定8.如图,在△ABC中,AB=AC,D为AC上一点,E为AB上一点,且BC=BD,AD=DE=BE,那么∠A的度数为()A.36°B.45°C.60°D.75°二、填空题(本题共10小题,每小题3分,共30分)9.等腰三角形中,如果一个外角为130°,那么这个等腰三角形的顶角的度数为.10.如果点P关于x轴的对称点为(﹣3,﹣2),那么点P关于y轴的对称点的坐标为.11.一个三角形的周长为48cm,最大边与最小边的差为14cm,另一边与最小边之和为25cm,那么这个三角形最小边的长为.12.如图,将△ABC绕点C顺时针方向旋转50°得到△A′CB′,若AC⊥A′B′,连接AA′,则∠BAC 等于.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.如图,在△ABC中,E是BC上一点,EC=2BE,点D是AC的中点,若S△ABC=15,则S△ADF =.﹣S△BEF16.如图,在△ABC中,按以下步骤作图:①分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为.17.如图,△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,CE是∠ACB的平分线,且交AD于P点.如果AP=2,则AB的长为.18.如图,P为∠AOB的平分线上的一点,PC⊥OA于点C,D为OA上一点,E为OB上一点,∠ODP+∠OEP=180°,当OC=6.5cm时,OD+OE=.三、解答题(本大题共7小题,共66分)19.如图,已知△ABC,请你在这个三角形内求作一点P,使PA=PB,且点P到边AB、BC的距离也相等(写出作法,保留作图痕迹).20.如图,完成下列各题:(1)画出△ABC关于x轴的对称△A1B1C1,并写出点A1、B1、C1的坐标;(2)写出△ABC的面积(不要求过程).21.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)22.如图,已知AB=CD,∠A=∠D,求证:△ABC≌△DCB.23.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一直线上,连结BD.(1)求证:BD=EC;(2)BD与CE有何位置关系?请证你的猜想.24.如图,已知△ABC为等边三角形,AE=CD,AD、BE相交于点F.(1)求证:△ABE≌△CAD;(2)若BP⊥AD于点P,PF=9,EF=3,求AD的长.25.如图,在△ABC中,AB=AC,BE⊥AC于点E,BE=AE,AD是∠BAC的角平分线,和BE相交于点P,和BC边交于点D,点F是AB边的中点,连结EF,交AD于点Q,连结BQ.(1)求证:△BCE≌△APE;(2)求证:BD=AP;(3)判断△BDQ的形状,并证明你的结论.2015-2016学年河南省漯河市召陵区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.下面所给的交通标志是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.2.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°【考点】三角形的外角性质;平行线的性质.【分析】利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.【解答】解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.3.下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等【考点】全等图形.【分析】根据全等图形概念和性质对各个选项进行判断即可.【解答】解:全等三角形的三条边相等,三个角也相等,A正确;判定两个三角形全等的条件中至少有一个是边,B正确;面积相等的两个图形不一定是全等形,C错误;全等三角形的面积和周长都相等,D正确,故选:C.4.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.【解答】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选C.5.若一个多边形的内角和为900°,则从这个多边形的其中一个顶点出发引的对角线的条数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角;多边形的对角线.【分析】根据题意和多边形内角和公式求出多边形的边数,根据多边形的对角线的条数的计算公式计算即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=900°,解得,n=7,从七边形的其中一个顶点出发引的对角线的条数:7﹣3=4,故选:A.6.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的E处.若∠A=23°,则∠BDC等于()A.46°B.60°C.68°D.77°【考点】翻折变换(折叠问题).【分析】在△ABC中,先求得∠B=67°,由翻折的性质可知∠DEC=67°,由∠A+∠ADE=∠DEC可求得∠ADE=44°,然后根据∠BDC=求解即可.【解答】解:∵∠A+∠B=90°,∴∠B=90°﹣23°=67°.由翻折的性质可知:∠B=∠DEC=67°,∠BDC=∠EDC.∵∠A+∠ADE=∠DEC,∴∠EDA=67°﹣23°=44°.∴∠BDC===68°.故选:C.7.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.8.如图,在△ABC中,AB=AC,D为AC上一点,E为AB上一点,且BC=BD,AD=DE=BE,那么∠A的度数为()A.36°B.45°C.60°D.75°【考点】等腰三角形的性质.【分析】根据DE=BE,得到∠EBD=∠EDB=α,根据外角的性质得到∠AED=∠EBD+∠EDB=2α,根据等腰三角形的性质得到∠A=∠AED=2α,于是得到∠BDC=∠A+∠ABD=3α,由于∠ABC=∠C=∠BDC=3α,根据三角形的内角和列方程即可得到结论.【解答】解:∵DE=BE,∴∠EBD=∠EDB,设∠EBD=∠EDB=α,∴∠AED=∠EBD+∠EDB=2α,∵AD=DE,∴∠A=∠AED=2α,∴∠BDC=∠A+∠ABD=3α,∵BD=BC,AB=AB,∴∠ABC=∠C=∠BDC=3α,∴3α+3α+2α=180°,∴α=22.5°,∴∠A=45°.故选:B.二、填空题(本题共10小题,每小题3分,共30分)9.等腰三角形中,如果一个外角为130°,那么这个等腰三角形的顶角的度数为50°或80°.【考点】等腰三角形的性质.【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【解答】解:∵一个外角为130°,∴三角形的一个内角为50°,当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.10.如果点P关于x轴的对称点为(﹣3,﹣2),那么点P关于y轴的对称点的坐标为(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】分别利用关于x,y轴对称点的性质得出点的坐标即可.【解答】解:∵点P关于x轴的对称点为(﹣3,﹣2),∴P(﹣3,2),∴点P关于y轴的对称点的坐标为:(3,2).故答案为:(3,2).11.一个三角形的周长为48cm,最大边与最小边的差为14cm,另一边与最小边之和为25cm,那么这个三角形最小边的长为9cm.【考点】三元一次方程组的应用;三角形三边关系.【分析】设三角形的最长边为a,最小边为b,另一边为c,根据三角形的周长为48cm,得出a+b+c=48,再根据最大边与最小边的差为14cm,得出a﹣b=14,最后根据另一边与最小边之和为25cm,得出c+b=25,然后组成方程组求解即可.【解答】解:设三角形的最长边为a,最小边为b,另一边为c,根据题意得:,②+③得:a+c=39④,把④代入①得:b=9,则这个三角形最小边的长为9cm;故答案为:9cm.12.如图,将△ABC绕点C顺时针方向旋转50°得到△A′CB′,若AC⊥A′B′,连接AA′,则∠BAC 等于40°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ACA′=50°,∠A=∠A′,则根据AC⊥A′B′,利用互余可计算出∠A′=40°,从而得到∠BAC的度数.【解答】解:∵△ABC绕点C顺时针方向旋转50°得到△A′CB′,∴∠ACA′=50°,∠A=∠A′,∵AC⊥A′B′,∴∠A′=90°﹣50°=40°,∴∠BAC=40°.故答案为40°.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB).【考点】全等三角形的判定.【分析】要判定△ABC≌△FDE,已知AC=FE,BC=DE,具备了两组边对应相等,故添加∠C=∠E,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠C=∠E,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等.(答案不唯一).故填:∠C=∠E.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【考点】角平分线的性质.【分析】过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.15.如图,在△ABC中,E是BC上一点,EC=2BE,点D是AC的中点,若S△ABC=15,则S△ADF = 2.5.﹣S△BEF【考点】三角形的面积.【分析】根据题意先分别求出S △ABD ,S △ABE ,再根据S △ADF ﹣S △BEF =S △ABD ﹣S △ABE 即可求出结果.【解答】解:∵点D 是AC 的中点,∴AD=AC ,∵S △ABC =15,∴S △ABD =S △ABC =×15=7.5.∵EC=2BE ,S △ABC =15,∴S △ABE =S △ABC =×15=5,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =7.5﹣5=2.5.故答案为:2.5.16.如图,在△ABC 中,按以下步骤作图:①分别以点A 、C 为圆心,以大于AC 的长为半径画弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接AD ,若∠C=28°,AB=BD ,则∠B 的度数为 68° .【考点】作图—基本作图;线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得出AD=DC ,再利用等腰三角形的性质结合三角形内角和定理得出答案.【解答】解:由题意可得:MN 是AC 的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=28°,∴∠DAC=28°,∴∠ADB=56°,∵AB=BD,∴∠BAD=∠BDA=56°,∴∠B=180°﹣56°﹣56°=68°.故答案为:68°.17.如图,△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,CE是∠ACB的平分线,且交AD于P点.如果AP=2,则AB的长为6.【考点】含30度角的直角三角形;角平分线的性质;等边三角形的判定与性质.【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEC中,利用含30度角的直角三角形的性质来求EC的长度,然后在等腰△BEC中得到BE的长度,则易求AB的长度.【解答】解:∵△ABC中,∠BAC=90°,∠B=30°,∴∠ACB=60°.又∵CE是∠ACB的平分线,∴∠ECB=30°,∴∠AEC=∠B+∠ECB=60°,∠B=∠ECB∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠BAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEC中,∠ACE=30°,则EC=2AE=4,∴BE=EC=4,∴AB=BE+AE=6.故答案是:6.18.如图,P为∠AOB的平分线上的一点,PC⊥OA于点C,D为OA上一点,E为OB上一点,∠ODP+∠OEP=180°,当OC=6.5cm时,OD+OE=13cm.【考点】全等三角形的判定与性质;角平分线的性质.【分析】作PF⊥OB于F,根据角平分线的性质就可以得出PC=PF,根据HL可以判断Rt△PCO ≌Rt△PFO,从而可得OC=OF,然后根据AAS就可以得出△CDP≌△EFP,从而得到CD=EF,进而得出DO+E0=13cm.【解答】证明:过P作PF⊥OB于F,∴∠PFO=90°,∵P为∠AOB的平分线OP上一点,PC⊥OA,∴PC=PF,∠PCA=90°,∴∠PCA=∠PFO,在Rt△PCO和RtPFO中,,∴Rt△PCO≌Rt△PFO(HL),∴OC=OF.∵∠ODP+∠OEP=180°,且∠OEP+∠PEB=180°,∴∠ODP=∠FEP,在△CDP和△EFP中,,∴△CDP≌△EFP(AAS),∴CD=EF,∵DO+EO=DC+CO+EO,∴DO+EO=EF+EO+CO,∴DO+EO=FO+CO,∴DO+EO=2CO,∵CO=6.5cm,∴DO+E0=13cm.故答案为:13cm.三、解答题(本大题共7小题,共66分)19.如图,已知△ABC,请你在这个三角形内求作一点P,使PA=PB,且点P到边AB、BC的距离也相等(写出作法,保留作图痕迹).【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】作AB的垂直平分线和∠ABC的角平分线,两线相交于点P,则根据垂直平分线的性质定理有PA=PB,根据角平分线的性质定理得到点P到边AB、BC的距离相等,所以点P为满足条件的点.【解答】解:如图,20.如图,完成下列各题:(1)画出△ABC关于x轴的对称△A1B1C1,并写出点A1、B1、C1的坐标;(2)写出△ABC的面积(不要求过程).【考点】作图﹣轴对称变换.【分析】(1)分别作出点A、B、C关于x轴的对称点,然后顺次连接,并写出点A1、B1、C1的坐标;(2)用三角形ABC所在的矩形的面积减去三个小三角形的面积即可求解.【解答】解:(1)所作图形如图所示:A1(﹣1,﹣1)、B1(﹣2,2)、C1(2,3);=4×4﹣×1×3﹣×1×4﹣×3×4(3)S△ABC=6.5.21.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)【考点】三角形内角和定理;三角形的外角性质.【分析】(1)利用高的定义和互余得到∠BCD=90°﹣∠B,再根据角平分线定义得到∠BCE=∠ACB,接着根据三角形内角和定理得到∠ACB=180°﹣∠A﹣∠B,于是得到∠BCE=90°﹣(∠A+∠B),然后计算∠BCE﹣∠BCD得到∠ECD=(∠B﹣∠A),再把∠A=30°,∠B=50°代入计算即可;(2)直接由(1)得到结论.【解答】解:(1)∵CD为高,∴∠CDB=90°,∴∠BCD=90°﹣∠B,∵CE为角平分线,∴∠BCE=∠ACB,而∠ACB=180°﹣∠A﹣∠B,∴∠BCE==90°﹣(∠A+∠B),∴∠ECD=∠BCE﹣∠BCD=90°﹣(∠A+∠B)﹣(90°﹣∠B)=(∠B﹣∠A),当∠A=30°,∠B=50°时,∠ECD=×(50°﹣30°)=10°;(2)由(1)得∠ECD=(∠B﹣∠A).22.如图,已知AB=CD,∠A=∠D,求证:△ABC≌△DCB.【考点】全等三角形的判定.【分析】先证明△ABE≌△DCE可得出AE=DE,BE=CE,根据等式的性质可得AE+CE=DE+BE 即BD=CA,再加上公共边BC=BC,可证明△ABC≌△DCB.【解答】证明:∵在△ABE和△DCE中,∴△ABE≌△DCE(AAS),∴AE=ED,BE=CE,∴AC=DB,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).23.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一直线上,连结BD.(1)求证:BD=EC;(2)BD与CE有何位置关系?请证你的猜想.【考点】全等三角形的判定与性质.【分析】(1)求出∠BAD=∠CAE,根据SAS推出△ABD≌△ACE,根据全等三角形的性质推出即可;(2)根据全等三角形的性质得出∠BDA=∠E,根据∠E+∠ADE=90°求出∠BDA+∠ADE=90°即可.【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=EC;(2)BD⊥CE,证明:∵△ABD≌△ACE,∴∠BDA=∠E,又∵∠E+∠ADE=90°,∴∠BDA+∠ADE=90°,即∠BDE=90°,∴BD⊥DE.24.如图,已知△ABC为等边三角形,AE=CD,AD、BE相交于点F.(1)求证:△ABE≌△CAD;(2)若BP⊥AD于点P,PF=9,EF=3,求AD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等.(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BFP=60°,再根据直角三角形两锐角互余求出∠FBP=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BF=2FP,再根据AD=BE=BF+FE代入数据进行计算即可得解.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD,又∵AE=CD,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS).(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,AD=BE,又∵∠BFP=∠BAD+∠ABE,∴∠BFP=∠BAD+∠CAD,又∵∠BAD+∠CAD=60°,∴∠BFP=60°,又∵BP⊥AD,∴∠BPF=90°,∴∠FBP=30°,∴BF=2PF=18,∴BE=18+3=21,∴AD=21.25.如图,在△ABC中,AB=AC,BE⊥AC于点E,BE=AE,AD是∠BAC的角平分线,和BE相交于点P,和BC边交于点D,点F是AB边的中点,连结EF,交AD于点Q,连结BQ.(1)求证:△BCE≌△APE;(2)求证:BD=AP;(3)判断△BDQ的形状,并证明你的结论.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)求出∠AEP=∠BEC=90°,根据三角形内角和定理求出∠EBC=∠EAP,根据ASA推出△BCE≌△APE即可;(2)根据全等得出BC=AP,根据等腰三角形的性质得出BD=BC,即可求出答案;(3)根据线段垂直平分线的性质求出AQ=BQ,求出∠BAE=45°,根据角平分线的定义求出∠BAD=∠ABQ=22.5°,根据三角形外角性质求出∠BQD=45°,即可得出答案.【解答】证明:(1)如图:∵AD是∠BAC的角平分线,AB=AC,∴∠BDP=90°,BD=CD,∵BE⊥AC,∴∠AEP=∠BEC=90°,∵在△BPD和△APE中,∠AEP=∠BDP=90°,∠BPD=∠APE,∠PAE+∠PEA+∠APE=180°,∠BDP+∠BPD+∠EBC=180°,∴∠EBC=∠EAP,在△BCE和△APE中,,∴△BCE≌△APE;(2)∵△BCE≌△APE,∴BC=AP,∵BD=CD,∴BD=BC,∴BD=AP;(3)△BDQ是等腰直角三角形,证明:∵BE=AE,F是AB的中点,∴EF是线段AB的垂直平分线,∴AQ=BQ,∴∠BAQ=∠ABQ,∵BE=AE,∠BEA=90°,∴∠BAE=45°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=22.5°,∵∠BAD=∠ABQ,∴∠BAD=∠ABQ=22.5°,∴∠BQD=22.5°×2=45°,∵∠ADB=90°,∴△BDQ是等腰直角三角形.2017年3月2日。
漯河市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)计算得()A .B .C .D . 23. (2分)(2017·高安模拟) 为了调查瑞州市2016年初三年级学生的身高,从中抽取出200名学生进行调查,这个问题中样本容量为()A . 被抽取的200名学生的身高B . 200C . 200名D . 初三年级学生的身高4. (2分) (2019九下·沙雅期中) 若反比例函数y= (k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A . (1,﹣1)B . (﹣,4)C . (﹣2,﹣1)D . (,4)5. (2分)下列命题中,真命题是()A . 两对角线互相垂直且相等的四边形是正方形B . 两对角线相等的四边形是矩形C . 两对角线互相垂直的四边形是菱形D . 两对角线互相平分的四边形是平行四边形6. (2分) (2017九上·五莲期末) 如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A . 6B . 8C . 10D . 127. (2分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A .B .C .D .8. (2分)数学家们在研究15、12、10这三个数的倒数时发现:.因此就将具有这样性质的三个数称之为调和数,如6、3、2也是一组调和数.现有一组调和数:x、5、3(x>5),则x的值是()A . 6B . 7.5C . 12D . 159. (2分)(2017·历下模拟) 如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A . 1B . 2C . 3D . 410. (2分)(2018·沙湾模拟) 如图,在菱形中,,,、分别是边、中点,则周长等于()A .B .C .D .二、填空题 (共8题;共10分)11. (1分)(2019·平谷模拟) 当a________时,式子的值不小于0.12. (2分)(2018·海陵模拟) “任意打开一本100页的书,正好是第30页”,这是________事件(选填“随机”或“必然”或“不可能”).13. (1分)写出一个图象在第二、四象限的反比例函数的解析式________.14. (1分)如图,D、E、F分别是△ABC的AB、AC、BC上的中点,若AB=7,BC=6,AC=5,则△DEF的周长是________15. (2分) (2017八上·新化期末) 若分式方程 =2的一个解是x=1,则a=________.16. (1分)(2018·武进模拟) 已知x,y满足,当时,y的取值范围是________.17. (1分)(2018·潮南模拟) 如图,梯形ABCD的两条对角线交于点E,图中面积相等的三角形共有________对.18. (1分)如图,是反比例函数和(<)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若,则的值为________。
河南省漯河市召陵区2014-2015学年八年级下学期期中数学试卷一、选择题(每小题3分,共24分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.2.(3分)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠13.(3分)下面的等式总能成立的是()A.=a B.=a2C.•=D.=4.(3分)在平行四边形ABCD 中,∠A:∠B:∠C:∠D的值可以是()A.1:2:1:2 B.1:2:2:1 C.1:2:3:4 D.1:1:2:25.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.A B=CD B.A C=BD C.A B=BC D.AD=BC6.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.947.(3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4 C.1D.二、填空题(每小题3分,共30分)9.(3分)计算:(﹣2)3+(﹣1)0=.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)若实数a、b满足,则=.12.(3分)当x≤0时,化简|1﹣x|﹣的结果是.13.(3分)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=cm.14.(3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)15.(3分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.16.(3分)如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,那么四边形ABCD的面积是.17.(3分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.18.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(本题共7小题,满分66分)19.(10分)(1)计算:÷﹣×(2)已知x=﹣2,求(9+4)x2﹣(+2)x+4的值.20.(8分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?21.(8分)如图是某中学教学楼前的一个菱形花坛ABCD,其边长为20m,∠ABC=60°,沿着菱形的对角线修了两条小路AC,BD,求两条小路的长和花坛的面积.22.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.23.(10分)观察探究,完成证明和填空.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到的四边形EFGH叫做中点四边形.(1)求证:四边形EFGH是平行四边形;(2)请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?24.(11分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25.(11分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t (s).(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?河南省漯河市召陵区2014-2015学年八年级下学期期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.专题:计算题.分析:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解答:解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.点评:本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:x≥0且x≠1.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(3分)下面的等式总能成立的是()A.=a B.=a2C.•=D.=考点:二次根式的乘除法;二次根式的性质与化简.分析:根据二次根式的性质,即可解答.解答:解:A、=|a|,故错误;B、=|a|,故错误;C、正确;D、不能分解为,因为不知道a,b是否为非负数,故错误;故选:C.点评:本题考查了二次根式的乘除法,解决本题的关键是二次根式的性质.4.(3分)在平行四边形ABCD 中,∠A:∠B:∠C:∠D的值可以是()A.1:2:1:2 B.1:2:2:1 C.1:2:3:4 D.1:1:2:2考点:平行四边形的性质.分析:根据平行四边形的对角相等,容易得出结论.解答:解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴A正确,故选:A.点评:本题考查了平行四边形的对角相等的性质;熟练掌握平行四边形的性质是解决问题的关键.5.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.A B=CD B.A C=BD C.A B=BC D.AD=BC考点:矩形的判定.分析:四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.解答:解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形.故选:B.点评:此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.6.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.94考点:勾股定理.专题:数形结合.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47.故选:C.点评:能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.7.(3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16考点:矩形的性质;翻折变换(折叠问题).专题:压轴题.分析:解:在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.解答:解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.点评:本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4 C.1D.考点:正方形的性质;角平分线的性质;等腰直角三角形.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形A BCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选A.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(每小题3分,共30分)9.(3分)计算:(﹣2)3+(﹣1)0=﹣7.考点:实数的运算;零指数幂.专题:计算题.分析:先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣8+1=﹣7.故答案为:﹣7.点评:本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.10.(3分)若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:1﹣3x≥0,解得:x≤.故答案是:x≤.点评:本题考查的知识点为:二次根式的被开方数是非负数.11.(3分)若实数a、b满足,则=.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为012.(3分)当x≤0时,化简|1﹣x|﹣的结果是1.考点:二次根式的性质与化简.专题:压轴题.分析:依据绝对值和平方根的性质解题.解答:解:∵x≤0,∴1﹣x>0∴|1﹣x|﹣=1﹣x﹣|x|=1﹣x﹣(﹣x)=1.故答案为:1.点评:此题考查了绝对值和平方根的性质,要求掌握绝对值和平方根的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.13.(3分)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=4cm.考点:勾股定理.分析:先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.解答:解:根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD==4cm.故答案为:4.点评:本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.14.(3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)考点:菱形的判定.专题:开放型.分析:可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.解答:解:OA=OC,∵OB=OD,OA=O C,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.点评:此题主要考查了菱形的判定,关键是掌握菱形的判定定理.15.(3分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.考点:平行四边形的性质.专题:压轴题.分析:由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.解答:解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.点评:本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.16.(3分)如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,那么四边形ABCD的面积是36.考点:勾股定理;勾股定理的逆定理.分析:先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.解答:解:∵∠ABC=90°,AB=3,BC=4,∴AC===5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD=×3×4+×5×12=36.故答案是:36.点评:本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.17.(3分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.考点:菱形的性质;翻折变换(折叠问题).分析:根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.解答:解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.点评:本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.18.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.考点:翻折变换(折叠问题).专题:压轴题.分析:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.解答:解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(本题共7小题,满分66分)19.(10分)(1)计算:÷﹣×(2)已知x=﹣2,求(9+4)x2﹣(+2)x+4的值.考点:二次根式的混合运算.专题:计算题.分析:(1)根据二次根式的乘除法则运算;(2)把x的值代入原式,利用完全平方公式和平方差公式计算.解答:解:(1)原式=﹣+2=5﹣3+2=5﹣;(2)∵x=﹣2,∴原式=(9+4)(﹣2)2﹣(+2)(﹣2)+4=(9+4)(9﹣4)﹣(5﹣4)+4=81﹣80﹣1+4=4.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.(8分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?考点:勾股定理的应用.专题:计算题.分析:在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据AC=AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB1的长度,根据BB1=CB1﹣CB即可求得BB1的长度.解答:解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC=m=2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5m﹣0.7m=0.8m答:梯足向外移动了0.8m.点评:本题考查了勾股定理在实际生活中的应用,考查了勾股定理在直角三角形中的正确运用,本题中求CB1的长度是解题的关键.21.(8分)如图是某中学教学楼前的一个菱形花坛ABCD,其边长为20m,∠ABC=60°,沿着菱形的对角线修了两条小路AC,BD,求两条小路的长和花坛的面积.考点:菱形的性质;等边三角形的判定与性质;勾股定理.分析:先判定△ABC是等边三角形,根据等边三角形的三条边都相等可得AC=AB=BC,设对角线交点为O,根据菱形的对角线互相垂直求出OA,再利用勾股定理列式求出BO,然后求出BD,再利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.解答:解:∵四边形ABCD 是菱形,且∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC=20m,设AC、BD交于点O,则AO=10m,∴在直角三角形ABO中,BO2=AB2﹣AO2=202﹣102=300,∴BO=10m,∴BD=20m,又∵S菱形ABCD=AC•BD,∴S菱形ABCD=×20×20=200m2.点评:本题考查了菱形的性质,等边三角形的判定与性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.22.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.解答:证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.23.(10分)观察探究,完成证明和填空.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到的四边形EFGH叫做中点四边形.(1)求证:四边形EFGH是平行四边形;(2)请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是平行四边形;当四边形ABCD变成矩形时,它的中点四边形是菱形;当四边形ABCD变成正方形时,它的中点四边形是正方形;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?考点:中点四边形.专题:探究型.分析:(1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半.若顺次连接对角线相等的四边形各边中点,则所得的四边形的四条边都相等,故所得四边形为菱形;若顺次连接对角线互相垂直的四边形各边中点,则所得的四边形的四个角都是直角,故所得四边形为矩形;若顺次连接对角线相等且互相垂直的四边形各边中点,则综合上述两种情况,故所得的四边形为正方形;(3)由以上法则可知,中点四边形的形状是由原四边形的对角线的关系决定的.解答:解:(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,正方形;(3)中点四边形的形状是由原四边形的对角线的大小关系和位置关系决定的.故答案为平行四边形、菱形、正方形.点评:此题综合运用了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.24.(11分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.考点:平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).分析:(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.解答:(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.点评:此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.25.(11分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t (s).(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?考点:直角梯形.专题:动点型.分析:(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t﹣(24﹣t)=4时,四边形PQCD为等腰梯形,解此方程即可求得答案.解答:解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t.(1)∵AD∥BC,即PQ∥CD,∴当PD=CQ时,四边形PQCD为平行四边形,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若PQ=DC,分两种情况:①PQ=DC,由(1)可知,t=6,②PQ≠CC,由QC=PD+2(BC﹣AD),可得方程:3t=24﹣t+4,解得:t=7.点评:此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.。
2014-2015学年河南省漯河市召陵区八年级(下)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.2.(3分)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠13.(3分)下面的等式总能成立的是()A.=a B.=a2C.•= D.=4.(3分)在平行四边形ABCD 中,∠A:∠B:∠C:∠D的值可以是()A.1:2:1:2 B.1:2:2:1 C.1:2:3:4 D.1:1:2:25.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC6.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.947.(3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4 C.1 D.二、填空题(每小题3分,共30分)9.(3分)计算:(﹣2)3+(﹣1)0=.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)若实数a、b满足,则=.12.(3分)当x≤0时,化简|1﹣x|﹣的结果是.13.(3分)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=cm.14.(3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)15.(3分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.16.(3分)如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,那么四边形ABCD的面积是.17.(3分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O 处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.18.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(本题共7小题,满分66分)19.(10分)(1)计算:÷﹣×(2)已知x=﹣2,求(9+4)x2﹣(+2)x+4的值.20.(8分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?21.(8分)如图是某中学教学楼前的一个菱形花坛ABCD,其边长为20m,∠ABC=60°,沿着菱形的对角线修了两条小路AC,BD,求两条小路的长和花坛的面积.22.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.23.(10分)观察探究,完成证明和填空.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到的四边形EFGH叫做中点四边形.(1)求证:四边形EFGH是平行四边形;(2)请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?24.(11分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25.(11分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?2014-2015学年河南省漯河市召陵区八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.(3分)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1【解答】解:根据题意得:,解得:x≥0且x≠1.故选:D.3.(3分)下面的等式总能成立的是()A.=a B.=a2C.•= D.=【解答】解:A、=|a|,故错误;B、=|a|,故错误;C、正确;D、不能分解为,因为不知道a,b是否为非负数,故错误;故选:C.4.(3分)在平行四边形ABCD 中,∠A:∠B:∠C:∠D的值可以是()A.1:2:1:2 B.1:2:2:1 C.1:2:3:4 D.1:1:2:2【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴A正确,故选:A.5.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形.故选:B.6.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.94【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47.故选:C.7.(3分)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .12D .16【解答】解:在矩形ABCD 中,∵AD ∥BC ,∴∠DEF=∠EFB=60°,∵把矩形ABCD 沿EF 翻折点B 恰好落在AD 边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt △A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E ,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE +DE=2+6=8,∴矩形ABCD 的面积=AB•AD=2×8=16.故选:D .8.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4 C.1 D.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:A.二、填空题(每小题3分,共30分)9.(3分)计算:(﹣2)3+(﹣1)0=﹣7.【解答】解:原式=﹣8+1=﹣7.故答案为:﹣7.10.(3分)若在实数范围内有意义,则x的取值范围是x≤.【解答】解:根据题意得:1﹣3x≥0,解得:x≤.故答案是:x≤.11.(3分)若实数a、b满足,则=.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.12.(3分)当x≤0时,化简|1﹣x|﹣的结果是1.【解答】解:∵x≤0,∴1﹣x>0∴|1﹣x|﹣=1﹣x﹣|x|=1﹣x﹣(﹣x)=1.故答案为:1.13.(3分)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=4cm.【解答】解:根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD==4cm.故答案为:4.14.(3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.15.(3分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.16.(3分)如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,那么四边形ABCD的面积是36.【解答】解:∵∠ABC=90°,AB=3,BC=4,∴AC===5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=AB•BC+AC•CD四边形ABCD=×3×4+×5×12=36.故答案是:36.17.(3分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.18.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.三、解答题(本题共7小题,满分66分)19.(10分)(1)计算:÷﹣×(2)已知x=﹣2,求(9+4)x2﹣(+2)x+4的值.【解答】解:(1)原式=﹣+2=5﹣3+2=5﹣;(2)∵x=﹣2,∴原式=(9+4)(﹣2)2﹣(+2)(﹣2)+4=(9+4)(9﹣4)﹣(5﹣4)+4=81﹣80﹣1+4=4.20.(8分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?【解答】解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC==2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5﹣0.7=0.8m答:梯足向外移动了0.8m.21.(8分)如图是某中学教学楼前的一个菱形花坛ABCD,其边长为20m,∠ABC=60°,沿着菱形的对角线修了两条小路AC,BD,求两条小路的长和花坛的面积.【解答】解:∵四边形ABCD 是菱形,且∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC=20m,设AC、BD交于点O,则AO=10m,∴在直角三角形ABO中,BO2=AB2﹣AO2=202﹣102=300,∴BO=10m,∴BD=20m,又∵S=AC•BD,菱形ABCD=×20×20=200m2.∴S菱形ABCD22.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.23.(10分)观察探究,完成证明和填空.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到的四边形EFGH叫做中点四边形.(1)求证:四边形EFGH是平行四边形;(2)请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是平行四边形;当四边形ABCD变成矩形时,它的中点四边形是菱形;当四边形ABCD变成正方形时,它的中点四边形是正方形;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?【解答】解:(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,正方形;(3)中点四边形的形状是由原四边形的对角线的大小关系和位置关系决定的.故答案为平行四边形、菱形、正方形.24.(11分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【解答】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.25.(11分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t.(1)∵AD∥BC,即PQ∥CD,∴当PD=CQ时,四边形PQCD为平行四边形,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若PQ=DC,分两种情况:①PQ=DC,由(1)可知,t=6,②PD≠CQ,则四边形PDCQ是等腰梯形,则有QC=PD+2(BC﹣AD),可得方程:3t=24﹣t+4,解得:t=7.。