中南大学麻醉学2014--2015,2017--2018年考博真题
- 格式:doc
- 大小:37.50 KB
- 文档页数:5
中山大学附属第三医院神经内科博士生专业课考试试题学号:_________ 姓名:_________ 成绩:__________一、名词解释(5分×4=20分)1、短暂性全面遗忘症2、Lambert-Eaton综合征3、Ramsay-Hunt综合征4、痴呆二、简答题(10分×3=30分)1、癫痫持续状态的定义及其处理原则2、帕金森病的临床表现3、简述多发性硬化与视神经脊髓炎的鉴别要点三、问答题(25分×2=50分)1、急性缺血性卒中溶栓治疗的适应症和禁忌症2、请述双下肢乏力患者的诊疗思路答案一、名词解释(5分×4=20分)1、短暂性全面遗忘症突然起病的一过性记忆丧失,伴时间、空间定向力障碍,无意识障碍(1’)。
患者自知力保留,较复杂的皮层高级活动如书写、计算力和对话等保留完整,无神经系统其他的异常表现(1’)。
症状持续数分钟或数小时,多不超过24小时(1’),遗留有完全的或部分的对发作期事件的遗忘(1’)。
因颞叶、海马等部位的缺血所致(1’)。
2、Lambert-Eaton综合征自身免疫性疾病,自身抗体的靶器官是神经末梢突触前膜的钙离子通道和Ach囊泡释放区(2’)。
可伴发癌肿(1’)。
表现为四肢近端无力,活动后感疲劳,但短暂用力收缩后肌力反而增强(1’)。
神经高频重复电刺激有高频递增现象(1’)。
3、Ramsay-Hunt综合征膝状神经节单纯疱疹病毒感染(1’),可导致同侧周围性面瘫(额纹消失、不能皱眉,眼裂闭合不全,鼻唇沟浅,口角下垂,示齿偏向健侧,鼓腮不能、不能吹口哨等)(1’)、舌前2/3味觉消失(1’)及听觉过敏(1’),并有乳突部疼痛,耳廓、外耳道感觉减退和外耳道、鼓膜疱疹(1’)。
4、痴呆是由于脑功能障碍而产生的获得性、持续性智能损害综合征(1’),可由脑退行性变引起,也可以由其他原因(如脑血管病、外伤、中毒等)导致(1’),痴呆患者必须有两项或两项以上认知域受损(1’),并导致患者的日常或社会能力明显减退(1’),还可伴发精神行为的异常(1’)。
中南大学2010年外科学博士学位研究生入学考试试题长沙泰和医院神外-何承彪(2012年考博神外专业得分86分)公共题一、简答题(每题4分)1、高血钾的处理原则答:处理原则1、停用一切含钾的药物或溶液2、降低血钾浓度,可采取下列几项措施:1)促使K+ 转入细胞内①输注碳酸氢钠溶液:先静脉注射5% NaHCO3溶液60-100ml,再继续静脉滴注NaHCO3溶液100-200ml。
(这种高渗碱性溶液输入后可使血容量增加,不仅可使血清K+得到稀释,降低血钾浓度,又能使K+移入细胞内或由尿排出。
同时,还有助于酸中毒的治疗。
注入的Na+可使肾远曲小管的Na+、K+交换增加,使K+从尿中排出)。
②输注葡萄糖溶液及胰岛素:用25%葡萄糖溶液100-200ml,每5克糖加入正规胰岛素1U,静脉滴注。
可使K+转入细胞内,从而暂时降低血钾浓度。
必要时,可以每3-4小时重复用药。
③对于肾功能不全,不能输液过多者,可用10%葡萄糖酸钙100ml、11.2%乳酸钠溶液50ml、25%葡萄糖溶液400ml,加入胰岛素20U,作24小时缓慢静脉滴入。
2)阳离子交换树脂的应用:可口服,每次15g,每日4次。
可从消化道带走钾离子排出。
3)透析疗法:有腹膜透析和血液透析两种。
用于上述治疗仍无法除低血钾浓度时。
3、对抗心律失常:钙与钾有对抗作用,故静脉注射10%葡萄糖酸钙溶液20ml,能缓解K+对心肌的毒性作用。
此法可重复使用。
2、麻醉前用药的目的答:1)消除病人紧张,焦虑及恐惧的心情,使病人在麻醉前能够情绪安定,充分合作。
2)提高病人的痛阈,缓解或解除原发疾病或麻醉前有创操作引起的疼痛,以便病人在麻醉操作过程中能够充分合作。
3)抑制呼吸道腺体的分泌功能,减少唾液分泌,保持口腔内的干燥,以防发生误吸。
4)消除因手术或麻醉引起的不良反射,特别是迷走神经反射,抑制因激动或疼痛引起的交感神经兴奋,以维持血液动力学的稳定。
3、术后并发症答:术后并发症是指因手术操作,或手术创伤而引起的不良病症,总体上可将术后并发症化为两大类:一类为一般性并发症,即各专科手术后共同的并发症如切口感染,出血和肺炎等;另一类为各特定手术的特殊并发症,如胃切除后的倾倒综合征、肺叶切除术后的支气管胸膜瘘。
中南大学博士研究生英语考试真题全文共3篇示例,供读者参考篇1Mid-South University PhD English Exam InstructionsPart I: Reading ComprehensionRead the following passage and answer the questions that follow.(1) The benefits of exercise on physical health arewell-documented, but recent studies have explored the connection between physical activity and mental health. Scientists have found that regular exercise can have a positive impact on mood, reducing symptoms of anxiety and depression. One study published in the Journal of Psychiatric Research found that individuals who engaged in at least 30 minutes of physical activity three times a week were less likely to report feelings of depression.(2) The reason behind this connection lies in the release of endorphins, chemicals in the brain that act as natural painkillers and mood elevators. Exercise has been shown to increase endorphin levels, leading to feelings of happiness and well-being.Additionally, physical activity can help decrease stress hormones in the body, further contributing to improved mental health.(3) In addition to the chemical changes that occur in the brain, exercise also provides individuals with a sense of accomplishment and control. Setting and achieving fitness goals can boost self-esteem and confidence, while the routine of exercise can provide structure and stability during challenging times.Questions:1. What is the main topic of the passage?2. How does exercise benefit mental health?3. How do endorphins contribute to feelings of happiness?4. What role does setting and achieving fitness goals play in mental health?Part II: Essay WritingChoose one of the following topics and write an essay of at least 300 words.1. The importance of preserving the environment for future generations.2. The impact of technology on communication and relationships.3. The benefits of multiculturalism in society.Part III: Grammar and VocabularyComplete the following sentences with the correct verb tense or vocabulary word.1. I (to study) English for five years.2. The students (not, finish) their assignment yet.3. The new law (to take) effect next month.4. I can't find my keys. I think I (to lose) them.5. The restaurant has a great (variety/variation) of dishes on the menu.Good luck on your exam!篇2Unfortunately, I do not have access to specific exam questions such as the one you have requested. However, I can provide you with a general idea of what a typical Ph.D. English exam at Central South University might look like.The Ph.D. English exam at Central South University is designed to assess a candidate's proficiency in English and their ability to conduct academic research. The exam typically consists of several sections, including listening, reading, writing, and speaking.The listening section of the exam may involve listening to lectures or conversations and answering comprehension questions based on the material heard. This section is designed to test the candidate's ability to understand spoken English and their listening skills.The reading section of the exam often includes academic articles or passages related to the candidate's field of study. Candidates are required to read the material carefully and answer questions that test their comprehension and critical thinking skills.The writing section of the exam usually requires candidates to write an essay or a research paper on a given topic. This section assesses the candidate's ability to write clearly and coherently, as well as their ability to present and support arguments effectively.The speaking section of the exam typically involves aface-to-face interview with examiners. Candidates may be askedto discuss their research interests, present their findings, or respond to questions related to their field of study. This section tests the candidate's ability to communicate orally in English and to engage in academic discussions.Overall, the Ph.D. English exam at Central South University aims to evaluate a candidate's English language proficiency, academic writing skills, research abilities, and communication skills. Candidates who perform well on the exam demonstrate that they are capable of conducting research and communicating effectively in an academic setting.篇3The Ph.D. entrance exam for international students at Central South University (CSU) is a rigorous and comprehensive assessment of their English language proficiency, academic aptitude, and research potential. The exam is designed to evaluate the applicants' ability to understand and communicate in English, as well as their capacity to engage in advanced research and scholarly activities.The exam consists of three parts: reading comprehension, writing, and speaking. The reading comprehension section includes a series of passages on various topics, such as science,technology, social sciences, and humanities. Applicants are required to read the passages carefully and answer questions based on the content and context of the texts.In the writing section, applicants are asked to write an essay on a given topic within a specified time frame. The topics cover a wide range of disciplines and require critical thinking, analysis, and argumentation. The essays are evaluated based on the applicants' ability to develop ideas, present arguments coherently, and support their claims with evidence.The speaking section assesses the applicants' ability to communicate effectively in English. Applicants are required to participate in a conversation with the examiners, discuss a topic, and respond to questions. The examiners evaluate the applicants' fluency, pronunciation, vocabulary, and grammar.Overall, the Ph.D. entrance exam at CSU is a challenging test that requires thorough preparation and a high level of proficiency in English. Applicants are advised to familiarize themselves with the exam format, practice reading, writing, and speaking in English, and seek feedback from teachers or language experts to improve their skills.In conclusion, the Ph.D. entrance exam for international students at Central South University is an important step in theadmissions process and a key determinant of the applicants' readiness for advanced study and research. Successful performance on the exam demonstrates the applicants' ability to succeed in the Ph.D. program and contribute to the academic community at CSU.。
高考试题汇总目录(精心整理)2018年新课标全国Ⅰ卷高考试题word版(含详细答案)2017年新课标全国Ⅰ卷高考试题word版(含详细答案)2016年新课标全国Ⅰ卷高考试题word版(含详细答案)2015年新课标全国Ⅰ卷高考试题word版(含详细答案)2014年新课标全国Ⅰ卷高考试题word版(含详细答案)绝密★启用前2018年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
学·可能用到的相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ar 40 Fe 56 I 127一、选择题:本题共13个小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.生物膜的结构与功能存在密切的联系。
下列有关叙述错误的是A.叶绿体的类囊体膜上存在催化ATP合成的酶B.溶酶体膜破裂后释放出的酶会造成细胞结构的破坏C.细胞的核膜是双层膜结构,核孔是物质进出细胞核的通道D.线粒体DNA位于线粒体外膜上,编码参与呼吸作用的酶2.生物体内的DNA常与蛋白质结合,以DNA—蛋白质复合物的形式存在。
下列相关叙述错误的是A.真核细胞染色体和染色质中都存在DNA—蛋白质复合物B.真核细胞的核中有DNA—蛋白质复合物,而原核细胞的拟核中没有C.若复合物中的某蛋白参与DNA复制,则该蛋白可能是DNA聚合酶D.若复合物中正在进行RNA的合成,则该复合物中含有RNA聚合酶3.下列有关植物根系吸收利用营养元素的叙述,错误的是A.在酸性土壤中,小麦可吸收利用土壤中的N2和NO-3B.农田适时松土有利于农作物根细胞对矿质元素的吸收C.土壤微生物降解植物秸秆产生的无机离子可被根系吸收D.给玉米施肥过多时,会因根系水分外流引起“烧苗”现象4.已知药物X对细胞增值有促进作用,药物D可抑制药物X的作用。
中南大学博士研究生英语考试真题全文共3篇示例,供读者参考篇1Southern University Doctoral English ExamSection A: Vocabulary and Structure (10 points)Choose the correct word or phrase to complete each sentence.1. The project __________ a lot of time and effort, but it was worth it in the end.A. consumedB. reservedC. preservedD. delayed2. The new manager decided to __________ the company's policy on staff training.A. modifyB. adoptC. maintainD. disregard3. The team worked __________ to meet the deadline for the research paper.A. leisurelyB. swiftlyC. indiscriminatelyD. insincerely4. He has a __________ for finding solutions to complex problems.A. talentB. weaknessC. deficiencyD. disability5. The company's reputation was __________ damaged by the scandal.A. completelyB. slightlyC. moderatelyD. immenselySection B: Reading Comprehension (30 points)Read the passage carefully and answer the questions below.The Rise of Artificial IntelligenceArtificial intelligence (AI) is rapidly changing the way we live and work. From virtual assistants like Siri and Alexa toself-driving cars and automated factories, AI is becoming increasingly integrated into our daily lives.One of the key benefits of AI is its ability to analyze vast amounts of data quickly and accurately. This has led to significant advancements in fields such as medicine, finance, and transportation. AI algorithms can detect patterns in data that humans may overlook, leading to more accurate diagnoses, better investment decisions, and safer transportation systems.However, the rise of AI also raises concerns about job displacement and privacy. As machines become more capable of performing complex tasks, some worry that human workers will be replaced by robots and AI systems. Additionally, the collection and analysis of personal data by AI systems raise questions about privacy and data security.Despite these concerns, the potential of AI to revolutionize industries and improve our quality of life is undeniable. As AI technology continues to evolve, it is crucial that we carefully consider the ethical implications and ensure that AI is used responsibly for the benefit of society.Questions:1. What is one of the key benefits of AI mentioned in the passage?2. What are some of the concerns raised by the rise of AI?3. Why is it important to consider the ethical implications of AI?Section C: Writing (60 points)Write an essay of at least 300 words on the following topic: "The Impact of Technology on Education."In your essay, you should address the following points:- How has technology changed the way students learn?- What are some of the benefits and drawbacks of using technology in the classroom?- How can educators effectively incorporate technology into their teaching practices?- What role do you think technology will play in the future of education?Remember to provide examples and evidence to support your arguments.以上是中南大学博士研究生英语考试真题的部分内容,希望对您有所帮助。
精选文档2014 年全国硕士研究生入学一致考试数学二试题一、选择题 :1 8 小题,每题 4分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x 0时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则的取值范围是 ( ) (A) (2,)(B) (1,2)(C)(1,1)(D)(0, 1)22(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C) yxsin1(D)y x 2sin1xx(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x) f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x) (B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x) g ( x) (D) 当 f ( x)0 时, f (x)g ( x)(4) x t 2 7 上对应于 t1 的点处的曲率半径是()曲线t 2 4ty 1(A)10(B)10(C) 10 10(D) 5 1050100设函数 f ( x)arctan x ,若 f ( x)xf ( ) ,则 mil2(5) 0x 2()x(A)1(B) 2(C) 1(D)1323(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 22u阶连续偏导数, 且知足x y及2u 2u0 ,则()x2y2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得精选文档(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在 D 的内部获得,最大值在D 的界限上获得0 a b 0(7)a 0 0b 队列式c d 0 ()c 0 0 d(A) (adbc) 2(B)(adbc)2(C) a 2d2b 2c 2(D) b 2 c 2a 2d 2(8) 设 1, 2,3均为 3 维向量, 则对随意常数k, l ,向量组 1 k 3 , 2 l 3 线性没关是向量组1, 2,3 线性没关的( )(A) 必需非充足条件(B) 充足非必需条件(C) 充足必需条件(D) 既非充足也非必需条件二、填空题: 914小题,每题 4 分,共 24 分 . 请将答案写在答题纸 指定地点上 .1...((9)1dx__________.x 2 2x5(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x)2( x 1),x [0, 2] ,则 f 7)(__________.(11) 设 zz(x, y) 是由方程 e2 yzx y2z7确立的函数,则dz( 1 , 1 )__________.42 2(12) 曲线 rr ( ) 的极坐标方程是 r,则 L 在点 (r , )( , ) 处的切线的直角坐标方程是 __________.2 2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度 xx 22x 1, 则该细棒的质心坐标 x__________.(14) 设二次型 fx 1 , x 2 , x 3 x 12 x 2 2 2ax 1x 3 4x 2x 3 的负惯性指数为1,则 a 的取值范围为_______.三、解答题: 15~ 23 小题 , 共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证...明过程或演算步骤 . (15)( 此题满分 10 分)精选文档x 12e t 1 t dtt1求极限 lim x2 ln 1 .x 1x(16)( 此题满分10 分)已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .(17)( 此题满分10 分)设平面地区 D x, y 1 x2 y2 4, x 0, y 0 , 计算x sin x2 y2dxdy.x yD(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,z f (e x cosy) 知足 2 z 2z (4 z e x cos y) e2x,若x2 y2f (0) 0, f ' (0) 0,求 f (u) 的表达式.(19)( 此题满分 10 分)设函数 f ( x), g (x) 的区间 [a,b] 上连续,且 f (x) 单一增添, 0 g( x) 1.证明:(I) 0 xx a, x [ a, b] , g(t )dtaa bbg(t ) dtf (x)d x f ( x)g( x)dx .(II) aa a(20)( 此题满分 11 分)设函数 f (x) x , x 0,1 ,定义函数列 f ( x) f ( x), f ( x) f ( f (x)),,1 x 12 1f n (x) f ( f n 1 (x)), ,记 S n是由曲线 y f n ( x) ,直线x 1 及 x 轴所围成平面图形的面积,求极限 lim nS n.n(21)( 此题满分 11 分)已知函数 f ( x, y) 知足 f 2( y 1) ,且 f ( y, y) ( y 1) 2 (2 y)ln y, 求曲线 f ( x, y) 0y所围成的图形绕直线y 1旋转所成的旋转体的体积.精选文档(22)( 此题满分 11 分)1 2 34 设矩阵A 0 11 1 , E 为三阶单位矩阵 . 1 23(I) 求方程组 (II) 求知足Ax 0的一个基础解系;AB E 的全部矩阵 .(23)( 此题满分 11 分)1 1 1 0 0 1 1 110 2证明 n 阶矩阵与相像 .1 1 1 0 0 n2014 年全国硕士研究生入学一致考试数学二试题答案一、选择题 :1 8 小题,每题 4 分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则 的取值范围是 ( )(A)(2, )(B) (1,2)(C)(1,1) (D) (0, 1)【答案】 B22【分析】由定义lim ln (1 2x) lim (2 x)lim 2 x 1x 0x xxx 01 0 1 .所以,故精选文档12x2当 x0 时, (1 cos x) ~ 1 是比 x 的高阶无量小,所以10,即2.2应选 B(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C)y x sin1(D) yx2sin1xx【答案】 C11x sinsin【分析】对于 C 选项: limxlim1 lim x 1 0 1 .xxx xxlim[ x sin1x] limsin 1 0 ,所以 y x sin 1存在斜渐近线 yx .xxxx x应选 C(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x)f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x)(B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x)g ( x)(D) 当 f ( x) 0 时, f (x)g ( x)【答案】 D【分析】令 F ( x) g (x) f ( x)f (0)(1 x) f (1)x f ( x) ,则F (0) F (1) 0 ,F ( x) f (0) f (1) f ( x) , F ( x)f ( x) .若 f ( x) 0 ,则 F (x) 0 , F (x) 在 [0,1] 上为凸的 .又 F(0) F (1) 0 ,所以当 x [0,1] 时, F (x) 0 ,进而 g(x)f ( x) .应选 D.(4) 曲线x t 2 7上对应于 t1 的点处的曲率半径是()y t 2 4t 1(A)10(B)10(C) 10 10(D) 5 1050100【答案】 C精选文档【分析】dy t 12t 4 3dx 2t t 1d 2 ydy ' 2t 2 12 t 1dxt 12tt 1dxky ''1,R 1 10 10y '233k121 q 2应选 C2(5) 设函数 f ( x) arctan x ,若 f (x) xf ( ) ,则 milx2x(A) 1(B) 2(C) 1(D)13 23【答案】 D【分析】因为f ( x)f ' ( )1 2 ,所以 2x f (x) x1f (x)2x f (x)x arctanx1111 x 2lim lim lim lim x22 f ( x)2 arctanx 3x 23x 0 x 0 x x 0 x x 0应选 D.(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 2 阶连续偏导数, 且知足2u2u0 ,则及y 2x 2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得 (B) u(x, y) 的最大值和最小值都在 D 的内部上获得( )2ux y()(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在D 的内部获得,最大值在D 的界限上获得精选文档【答案】 A【分析】记 A2u 2 , B2u ,C2u2 , B 0, A, C 相反数xx yy则 =AC-B2 0 , 所以 u(x, y) 在 D 内无极值,则极值在界限处获得 .应选 A0 a b 0(7) a 0 0 b ( )队列式c d 0 0c 0 0 d(A) ( ad bc )2 (B) ( ad bc)2(C) a 2d 2 b 2 c 2(D) b 2c 2a 2 d 2【答案】 B【分析】由队列式的睁开定理睁开第一列0 a b 0 a b 0 a b 0 a 0 0 b a cd 0c 0 0 b 0 cd 0 0 0 dc dc0 0 dad (ad bc) bc(ad bc)(ad bc) 2 .(8) 设 a 1 , a 2 , a 3 均为三维向量,则对随意常数 k, l , 向量组 a 1 ka 3 , a 2 la 3 线性没关是向量组a 1, a 2 ,a 3 线性没关的( )(A) 必需非充足条件 (B) 充足非必需条件(C) 充足必需条件 (D) 既非充足也非必需条件【答案】 A1 0【分析】1k32l31231 .k l1 0) 记 A1k32l3 ,B123 ,C0 1.若1,2, 3 线性无k l精选文档关,则 r ( A) r ( BC ) r (C ) 2 ,故1k3,2l 3 线性没关 .) 举反例.令30 ,则1,2 线性没关,但此时1,2, 3 却线性有关 .综上所述, 对随意常数 k ,l ,向量1k3,2l 3 线性没关是向量1, 2,3 线性没关的必要非充足条件 . 应选 A二、填空题: 914 小题 , 每题 4 分, 共 24 分 . 请将答案写在答题纸 指定地点上 ....(9)11 dx __________.x 22x5【答案】38【分析】111x 1 111x 2dxx 1 2dx arctan 2 2 x 542132 428(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x) 2( x 1), x [0, 2] ,则 f 7)(__________.【答案】 1【分析】 f ' x 2 x 1 , x0,2 且为偶函数则 f ' x 2 x 1 ,x 2,0又 fxx 2 2x c 且为奇函数,故 c=0f xx 2 2x ,x2,0又f x 的周期为 4,f7 f1 1(11) 设 zz(x, y) 是由方程 e 2 yz x y 2z7 确立的函数,则 dz1 1)__________.4( ,2 2 【答案】1(dx dy)27【分析】对 e 2 yz x y 2z方程两边同时对 x, y 求偏导4精选文档e 2 yz2y z 1 zx xe 2 yz (2z 2 y z ) 2 yz 0y y当 x11z, y时 ,22故z1 11 , z 1 11 x ( 2,2)2 y ( 2 , 2 )2故dz1 11dx (1)dy1(dx dy)2 2222( , )(12) 曲线 lim nS n 的极坐标方程是 r,则 L 在点 (r , ) ( ,) 处的切线的直角坐标方程是n2 2__________.【答案】 y2 x2【分析】由直角坐标和极坐标的关系x r cos cosy r sin,sin于是 r ,, 2 , 对应于 x, y 0,,22切线斜率 dydycos sin dy ddx dxcossindxd20,2所以切线方程为 y2x 022x即y=2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度x x 2 2x 1, 则该细棒的质心坐标 x __________.【答案】1120精选文档1x dxx【分析】质心横坐标 x1 x dx1 1 x 2x 3 x 2 10 5x dx=2x 1 dxx3 311 2x 4 2 3 x 2 1 11 xx dx= x x2x 1 dx x 0 04 3 21211x 12=115203(13) 设二次型 f x 1 , x 2 , x 3x 1 2x 22 2ax 1 x 3 4x 2 x 3 的负惯性指数是 1 ,则 a 的取值范围_________.【答案】2,2f x 1, x 2 , x 3x 12a 2 x 32 x 224x 32【分析】配方法:ax 32x 3因为二次型负惯性指数为 1,所以 4 a 20 ,故 2 a 2.三、解答题: 15~ 23 小题,共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证 ... 明过程或演算步骤 .(15)( 此题满分 10 分)x 2 1et1 t dtt1求极限 lim1 .xx 2ln 1xx1dtx1dt【分析】1t 2 (e t 1) tlim1 t 2(e t 1) tlim1 )1xx 2ln(1xx2xx1lim[ x 2 (e x 1) x]x1 tttxlime1 t lim e1 lim t1 .tt 2t 02t t 0 2t 2(16)( 此题满分 10 分)精选文档已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .【分析】由 x2 y2 y 1 y ,得( y2 1) y 1 x2①此时上边方程为变量可分别方程,解的通解为1y3y x 1 x3 c3 3由 y(2) 0 得 c 2321 x当 y (x) 0 时,x 1 ,且有:x1, y ( x)01 x 1,y ( x)0x 1, y ( x)0所以 y(x) 在x 1 处获得极小值,在x 1 处获得极大值y( 1) 0, y(1) 1即: y(x) 的极大值为1,极小值为0.(17)( 此题满分10 分)设平面地区【分析】 D对于x, y 1 x2 y2x sin x2 y2D 4, x 0, y 0 , 计算x ydxdy .Dy x 对称,知足轮换对称性,则:xsin( x2 y2 ) ysin( x2 y2 )x y dxdyx ydxdyD DIxsin( x2 y2 ) 1 x sin( x2 y2 ) ysin( x2 y2 ) x ydxdy2 x y x ydxdy D D1 sin( x2 y2 )dxdy2 D精选文档1d2rdr2sin r 21 )1r(rd cos24 11 cos r r |122 cos rdr4 11 2 1 1sin r |124 34(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,zxcosy) 知足2z 2z(4 z e xcos y) e 2x,若f (e 2y 2xf (0)0, f ' (0) 0,求 f (u) 的表达式 .【分析】由 zfe x cos y , zf (e x cos y) e xcos y, zf (e x cos y)e x sin yxy2zf (e x cos y) e x cos y e x cos y f (e x cos y) e x cos y ,x 22 zf xxxsin yf (e xcos y)xcos yy 2( e cos y)e sin ye e2z2zxcos y e 2x由2+y 24z e,代入得,xfe x cos y e 2x[4 f e x cos y e x cos y]e 2 x即f e x cos y 4 f e x cos y e x cos y ,令 e x cos y=t , 得 f t 4 f tt特点方程24 0,2得齐次方程通解y c 1e 2tc 2e 2t精选文档设特解 y * at b ,代入方程得 a1 , b 0 ,特解 y * 1 t4 1 t4则原方程通解为 y=f tc 1e 2t c 2 e 2t4由 f0, f '0 0 ,得 c 11 ,c 21, 则16 16y=f u1 e2 u 1 e 2 u 1u . (19)(10 分)16 164此题满分设函数 f ( x), g( x) 在区间 [a,b] 上连续,且 f ( x) 单一增添, 0g ( x) 1 ,证明: ( I )xxa, x [ a,b] ,g(t) dt aab bg (t )dtf ( x)d xf ( x)g( x)dx.(II )aaa【分析】( I )由积分中值定理x dt gxa ,[ a, x]g ta0 g x 1 ,0 gx ax ax t dtxaga( II )直接由 0 g x1,获得x dtx1dt = x ag t aauau( II )令 F u f x g x dxaaaF ' u f u g uf aug t dtaug t dtf x dxg ug uf uf ag t dta由( I )知 0uu aaau g t dtg t d t uaa又因为 fx 单增,所以 fuf au0 g t dtaF ' u0, F u 单一不减, F uF a取 ub ,得 F b 0 ,即( II )建立 .(20)( 此题满分 11 分)设函数 f (x)x, x 0,1 ,定义函数列1 xf 1 ( x) f ( x), f 2 ( x) f ( f 1 ( x)), , f n ( x) f ( f n 1( x)),及 x 轴所围成平面图形的面积,求极限lim nS n .n【分析】 f 1 (x)x, f 2 ( x)x, f 3 ( x)x,1 x1 2x 1 3x精选文档,记 S n 是由曲线 y f n ( x) ,直线 x 1, f n ( x)x, 1 nxxx1 1S n 1 f n ( x) dx1 dx1n ndx11nxnx111 1 111 ln(11n1dxn1dx n n 2 nx) 0nx112 ln(1 n) n nlim nS n 1lim ln(1n) 1lim ln(1x) 1 lim1 1 0 1nnnxxx1 x(21)( 此题满分 11 分)已 知 函 数 f ( x, y) 满 足f 2 (y 1 ,) 且 f ( y, y)( y 2 1 )( 2y )求yl n 曲 线,yf ( x, y) 0 所围成的图形绕直线 y1 旋转所成的旋转体的体积 .【分析】因为f 2( y 1) ,所以 f ( x, y) y 2 2 y ( x), 此中 ( x) 为待定函数 .y又因为 f ( y, y)( y 1)22 y ln y, 则 ( y) 12 y ln y ,进而f ( x, y) y 2 2y 12 x ln x ( y 1)22 x ln x .令 f ( x, y)0, 可得 ( y 1)22 x ln x ,当 y1时, x 1 或 x 2 ,进而所求的体积为V2 y 1 22 2 x ln xdx1 dx12x 2ln xd2x12x 2 22ln x(2x )12 12ln 2 (2x x2 ) 124 (22)( 此题满分11 分)精选文档2xdx22ln 2 5 2ln 25.4 41 2 3 4设矩阵A 0 1 1 1 ,E为三阶单位矩阵.1 2 0 3(I)求方程组(II)求知足【分析】Ax 0的一个基础解系;AB E 的全部矩阵 B .1 2 3 4 1 0 0 1 2 3 4 1 0 0A E 01 110 1 0 01 110 1 01 2 0 3 0 0 1 0 4 3 1 1 0 11 2 3 4 1 0 0 1 0 0 1 2 6 10 1 1 1 0 1 0 0 1 0 2 1 3 1 ,0 0 1 3 1 4 1 0 0 1 3 1 4 1(I) Ax 0 的基础解系为1,2,3,1T(II) e1T T0,0,1T 1,0,0 , e2 0,1,0 , e3Ax e1的通解为x k1 2, 1, 1,0 T 2 k1, 1 2k1 , 1 3k1, k1 TAx e2的通解为x k2 6, 3, 4,0 T6 k2 , 3 2k2 , 4T3k2 , k2Ax e3的通解为x k3T1 k3,1 2k3,1T 1,1,1,0 3k3 , k32 k1 6 k2 1 k3B 1 2k1 3 2k2 1 2k3(k1 , k2 , k3为随意常数)1 3k1 4 3k2 1 3k3k1 k2 k3(23)( 此题满分11 分)1 1 1 0 0 11 1 1 0 0 2相像 .证明 n 阶矩阵与1 1 1 0 0 n11 【分析】已知 A1 1 21 ,,B =01n则 A 的特点值为 n , 0 ( n 1重 ).A 属于n 的特点向量为 (1,1, ,1)T ; r ( A) 1 ,故 Ax 0 基础解系有 n1个线性没关的解向量,即 An=属 于0 有 n 1 个 线 性 无 关 的 特 征 向 量 ; 故 A 相 似 于 对 角 阵.B 的特点值为 n , 0 ( n 1重 ) ,同理 B 属于0 有 n 1 个线性没关的特点向量,故 B 相似于对角阵.由相像关系的传达性,A 相像于B .2015 年全国硕士研究生入学一致考试数学二试题及答案分析一、选择题:( 1~ 8 小题 , 每题 4 分,共 32 分。