第6 单纯形法的灵敏度分析与对偶
- 格式:pptx
- 大小:588.45 KB
- 文档页数:51
《管理运筹学》第四版课后习题解析第6章单纯形法的灵敏度分析与对偶1.解: (1)c 1≤24 (2)c 2≥6 (3)c s 2≤82.解:(1)c 1≥−0.5 (2)−2≤c 3≤0 (3)c s 2≤0.53.解:(1)b 1≥250 (2)0≤b 2≤50 (3)0≤b 3≤1504.解: (1)b 1≥−4 (2)0≤b 2≤10 (3)b 3≥45. 解:最优基矩阵和其逆矩阵分别为:⎪⎪⎭⎫ ⎝⎛=1401B ,⎪⎪⎭⎫ ⎝⎛-=-14011B ; 最优解变为130321===x x x ,,最小值变为-78; 最优解没有变化; 最优解变为2140321===x x x ,,,最小值变为-96;6.解:(1)利润变动范围c 1≤3,故当c 1=2时最优解不变。
(2)根据材料的对偶价格为1判断,此做法有利。
(3)0≤b 2≤45。
(4)最优解不变,故不需要修改生产计划。
(5)此时生产计划不需要修改,因为新的产品计算的检验数为−3小于零,对原生产计划没有影响。
7. 解:(1)设321,,x x x 为三种食品的实际产量,则该问题的线性规划模型为,, 4005132 4505510 35010168 325.2max 321321321321321≥≤++≤++≤++++=x x x x x x x x x x x x x x x z 约束条件:解得三种食品产量分别为0,75.43321===x x x ,这时厂家获利最大为109.375万元。
(2)如表中所示,工序1对于的对偶价格为0.313万元,由题意每增加10工时可以多获利3.13万元,但是消耗成本为10万元,所以厂家这样做不合算。
(3)B 食品的加工工序改良之后,仍不投产B ,最大利润不变;若是考虑生产甲产品,则厂家最大获利变为169.7519万元,其中667.31110,167.144321====x x x x ,,;(4)若是考虑生产乙产品,则厂家最大获利变为163.1万元,其中382.70,114321====x x x x ,,;所以建议生产乙产品。
§6 对偶单纯形法在介绍对偶单纯形法之前,让我们先利用对偶理论来重温一下单纯形法的基本思想,以便给单纯形法一种新的解释。
考虑线性规划(LP )和其对偶规划(DP ):x c T min b w T max(LP) s.t ⎩⎨⎧≥=0x b Ax (DP) s.t TT c A w ≤我们已经知道,(LP )的单纯形表为基变量 x 1 x 2 ┄ x nx B B -1 A B -1bf c B T B -1 A – c T c B T B –1b定理1 设(LP)的任一基本解为x 0,它对应于基B ,并作(w 0 )T = c B T B –1。
若x 0 和w 0 分别是(LP)和(DP )的可行解,则x 0 和w 0 也分别是(LP)和(DP )的最优解。
证明 因w 0 是(DP )的可行解,即 (w 0 )T A ≤ c T从而有 c B T B –1A - c T ≤ 0 此式说明,x 0是对应于基B 的基本可行解,且所有的检验数λj ≤ 0故x 0是(LP )的最优解。
此外,还有(w 0 )T b = c B T B –1 b = c B T x B 0 = c x 0从而由线性规划的对偶定理知,w 0 也是(DP )的最优解。
证毕。
由以上证明过程可看到:x 0((LP )的任一基本解)的检验数全部非正与(w 0 )T = c B T B –1是对偶问题(DP )的可行解等价。
据此我们可对单纯形法作如下解释:从一个基本解x 0出发迭代到另一个基本解,在迭代过程中始终保持解的可行性(基本可行解),同时使它所对应的对偶规划的解w 0(满足(w 0 )T = c B T B –1 )的不可行性逐步消失(即检验数逐步变为非正);直到w 0是(DP )的可行解,x 0就是(LP )的最优解。
因(LP )和(DP )互为对偶问题,故基于对称的想法,我们也可以把迭代过程建立在满足对偶问题(DP )的可行解上,即在迭代过程中保持对应的对偶问题的解w 0的可行性(从而x 0的检验数全部非正),逐步消除原问题(LP )的基本解x 0的不可行性(即使x 0非负),最后达到双方同时为可行解,x 0和w 0也就同时为最优解了。
第 2 章 线性规划的图解法11a.可行域为 OABC 。
b.等值线为图中虚线所示。
12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。
7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O1有唯一解 x 1 = 0.2 函数值为 3.6 x 2 = 0.6 b 无可行解 c 无界解 d 无可行解 e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 =3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 30 3x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0 = −4 x 1 − 6x 3 − 0s 1 − 0s 2 3x 1 − x 2 − s 1 =6x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4 x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x '− 2 x '' − 0s − 0s' ''− 3x 1 + 5x 2− 5x 2 + s 1 = 702 x ' − 5x ' + 5x '' = 50122 ' ' '' 3x 1 + 2 x 2 − 2x 2− s 2 = 30' ' ''4 、解:x 1, x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 20 3x 1 + 3x 2 − s 2 = 18 4 x 1 + 9x 2 − s 3 = 36x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。