变频及伺服应用技术项目1 西门子变频器的运行与功能解析2016.7
- 格式:ppt
- 大小:16.94 MB
- 文档页数:221
西门子变频器工作原理西门子变频器也可用于家电产品。
使用西门子变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。
用于电机控制的西门子变频器,既可以改变电压,又可以改变频率。
但用于荧光灯的西门子变频器主要用于调节电源供电的频率。
汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。
西门子变频器的工作原理被广泛应用于各个领域。
例如计算机电源的供电,在该项应用中,西门子变频器用于抑制反向电压、频率的波动及电源的瞬间断电。
1 西门子变频器的工作原理我们知道,交流电动机的同步转速表达式位:n = 60 f(1 - s)/p (1)式中 n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式 (1) 可知,转速 n 与频率 f 成正比,只要改变频率 f 即可改变电动机的转速,当频率 f 在 0 ~ 50Hz 的范围内变化时,电动机转速调节范围非常宽。
西门子变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。
2 西门子变频器控制方式低压通用变频输出电压为 380 ~ 650V ,输出功率为 0.75 ~ 400kW ,工作频率为 0 ~ 400Hz ,它的主电路都采用交—直—交电路。
其控制方式经历了以下四代。
2.1U/f=C 的正弦脉宽调制( SPWM )控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
变频及伺服应用技术教案-范文模板及概述示例1:标题:《探索变频与伺服应用技术的创新教学实践——构建高效能工控技术教案》引言:在当今工业自动化领域,变频及伺服应用技术作为核心技术之一,对于提升设备性能、节能降耗以及实现精确控制等方面发挥着至关重要的作用。
因此,如何将这些先进的技术理念融入到教学实践中,设计并实施一套科学且实用的变频及伺服应用技术教案,培养适应未来智能制造需求的技术人才,是当前职业教育和高等教育亟待解决的问题。
主体部分:一、变频与伺服技术基础理论概述这部分将详细解析变频与伺服技术的基本原理、工作方式及其在工业控制中的核心地位,为后续的应用教学奠定坚实的理论基础。
二、变频与伺服系统结构及功能分析深入探讨变频器和伺服驱动器的硬件组成、软件算法,结合实际案例讲解其在速度控制、位置控制、转矩控制等应用场景中的具体实现。
三、变频与伺服应用技术的教学设计与实施1. 教学内容设计:根据技术发展前沿和企业实际需求,设计涵盖基础知识、故障诊断、系统集成调试等内容的教学模块。
2. 教学方法与手段:采用理论授课、模拟仿真、实物操作相结合的方式,通过实验实训、项目式学习等方式让学生亲身体验变频与伺服技术的实际应用过程。
3. 评价体系构建:建立以能力为导向,知识、技能、素质全面发展的多元评价体系,检验学生对变频与伺服应用技术的掌握程度。
四、变频与伺服技术的发展趋势与人才培养展望结合工业4.0、智能制造等大背景,阐述变频与伺服技术在未来发展趋势,提出针对此类技术人才的培养目标和策略,强调创新思维与实践能力的重要性。
结语:变频与伺服应用技术教案的编制与实施,不仅有助于提高学生的专业技术素养,更能有效对接产业需求,为我国制造业的转型升级输送大批具备先进控制技术的专业人才。
只有不断深化教育教学改革,才能使我们的教育真正走在科技发展的前列,为社会进步提供源源不断的动力。
示例2:标题:探索变频与伺服应用技术的创新教案设计一、引言在现代工业自动化领域中,变频技术和伺服技术作为核心技术之一,发挥着至关重要的作用。
西门子变频器两种控制模式的分析及应用变频器是一种重要的工业控制器件,在工业控制领域中得到了广泛的应用。
变频器在应用的过程中通过与普通的交流电动机相配合可以在某些场合实现步进电机或是伺服电动机的一些功能。
西门子变频器是一种应用较多的变频器,对于其的控制主要是通过操作面板或是外部端子进行控制的。
文章介绍西门子变频器外部常用端子与面板的基础上对如何通过上述两种方式进行参数的设定实现对于交流电动机的运行控制。
标签:西门子变频器;控制方式;外部端子控制;控制面板前言西门子变频器是一种工业控制领域中应用较多的一种控制设备,其通过对固定输入的电压和频率进行内部的转换,依据控制信号将其转换为所需的电压和频率的交流电进而实现对于电动机的控制。
在西门子变频器工作的过程中首先需要将输入的工频交流电转换为直流电,而后再根据需要将直流电逆变为控制要求的交流电。
在西门子变频器工作的过程中通过PWM技术使得在电动机启动的过程中使用较小的启动电流并获得较大的启动转矩并调速平滑。
在分析西门子变频器外部端子的功能及作用的基础上做好对于西门子变频器的参数设置,确保其正常工作。
1 西门子变频器的组成及外部端子简述1.1 西门子变频器的组成西门子变频器主要是由操作面板、控制模块与外部端子等三个部分组成,其主要与普通交流电动机相配合在一些对于电动机控制精度要求一般的场合进行工作,以取代步进电机或是交流伺服电机,降低成本与能耗。
随着科技的进步与经济的快速发展,西门子变频器正被应用于越来越多的领域。
西门子MM420系列变频器是一种应用较多的变频器,其多应用于对三相交流电动机的变频控制。
西门子MM420系列的变频器在出厂时各参数为系统默认,在使用时与西门子工控装置和设备相连接时如无特殊要求可不经调试而直接进行使用,可靠性与适应性较强,西门子MM420系列变频器是一款功能较齐全的变频器。
1.2 西门子MM420系列变频器外部端子西门子MM420系列变频器的外部端子如图1所示,其中1、2端子输入的是模拟量10V电源公共端,3、4端子为模拟量输入端可以外接电位器来实现对于频率设定值的更改,5-7号端子为数字量输入端子,其中默认情况下5为正转控制,6为反转控制,7为故障复位,8、9端子则代表的是直流24V电源公共端。
西门子变频器讲解1.西门子变频器的结构及各部分的功能;整流部分:主要是把三相交流电整成直流;直流回路部分:对整流部分出来的直流电压进行稳压和滤波逆变部分:将直流回路的电压逆变成可调频的三相交流电2.在变频器内部有的电路板,分别起的作用CUVC控制板:控制功能及参数设定电源板:24V控制电源的提供,直流母线的采集IVI背板:电流互感器,变频器测温线,与触发板进行通讯整流单元触发板:触发晶闸管,将三相交流电整流成直流IGBT触发板:触发IGBT,将直流电转换为交流电3.西门子变频器CUVC控制板上的端子功能4个可以作为输入或输出的IO端子3.4.5.6,3个只能作为输入的IO端子7.8.9;两个模拟输入口和,两个模拟输出口和4. 西门子变频器中如何使其运行在40HZA.由面板直接给定40HZB.由参数给固定频率,比如将P443=45,将P405=40HZC.由模拟信号给定,比如为模拟通道1给定,设置=44—20MA,在模拟通道中输入的电流值;5.在西门子变频器参数中,控制字和状态字的意思,并介绍以下参数的意思:P330、P443、P590、P571和P572、P578和P579; 控制字为变频器的输入型号,用来控制变频器的启动,停止,快停,方向,变频器内部的参数等,状态字为变频器的输出信号,用来显示变频器的运行状态,如准备信号,运行反馈信号,故障反馈等P330:负载类型0为线性恒转矩负载,1为抛物线特性,如风机等P443:为变频器的速度给定源P590:用来选择开关量连接器的BICO参数P571和P572:用来选择变频器的旋转磁场方向;P578和P579:用来选择变频器内部的电机数据组常见问题:1.西门子变频器出现F037故障模拟信号有出错,检查模拟输入的电缆是否有断路,模拟信号线是否接反;2.西门子变频器出现F011故障F011为变频器过流报警,需检查以下机个方面1.检查负载情况,机械是否被卡死2.拆开电机电缆,用摇表检查电机和电缆是否存在短路和对地情况3.用万用表检查功率单元是否完好4.用万用表检查电流互感器时候玩完好5.更换IVI背板,测试6.更换CUVC控制板,测试3.西门子变频器出现F015故障,如何进行检查F015为变频器堵转报警,应检查以下几个方面:1.检查负载情况,机械是否被卡死2.如有编码器,应检查编码器的接线,或直接更换新的编码器;检查编码器的电缆和屏蔽电缆是否良好3.更换CUVC控制板,测试。
浅析西门子变频器的应用摘要:本文作者介绍了运行定位控制系统的工作原理,分析了西门子MM420 变频器的控制方式和工作特点,描述了控制系统如何使用MM420变频器实现对交流电机进行驱动,介绍了MM420 变频器关键参数的作用,分析了影响变频器使用效果的各种因素,供大家参考。
关键词:西门子MM420;变频器;应用Abstract: In this paper, the author introduces the operation positioning control system work principle, analyzes the Siemens MM420inverter control way and work characteristics, describes on how to use MM420 inverter for the control system drive AC motor, introduces the key parameters function of the MM420 converter, and analyzes the various factors of infusing the frequency converter using, for your reference.Key words: Siemens MM420; inverter; application变频器启动时对电机冲击小而且各种保护功能完善,能够延长电机的使用寿命。
将西门子MM420 变频器应用于定位控制系统能够减少电气元器件,变频器调试简单从而减少控制系统的设计时间,提高控制系统的控制精度,增强控制系统的可靠性,达到满意的控制效果。
通过西门子MM420 变频器来驱动电机,增强了对电机的保护,使控制系统的可靠性和精度都有较大提高。
1.MM420 变频器1.1 简要介绍MM420 变频器是西门子公司的一款适用于各种交流调速应用场合的高性能变频器,用于控制三相交流电机的转速和转矩。
西门子变频器工作原理西门子变频器也可用于家电产品。
使用西门子变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。
用于电机控制的西门子变频器,既可以改变电压,又可以改变频率。
但用于荧光灯的西门子变频器主要用于调节电源供电的频率。
汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。
西门子变频器的工作原理被广泛应用于各个领域。
例如计算机电源的供电,在该项应用中,西门子变频器用于抑制反向电压、频率的波动及电源的瞬间断电。
1 西门子变频器的工作原理我们知道,交流电动机的同步转速表达式位:n = 60 f(1 - s)/p (1)式中 n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式 (1) 可知,转速 n 与频率 f 成正比,只要改变频率 f 即可改变电动机的转速,当频率 f 在 0 ~ 50Hz 的范围内变化时,电动机转速调节范围非常宽。
西门子变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。
2 西门子变频器控制方式低压通用变频输出电压为 380 ~ 650V ,输出功率为 0.75 ~ 400kW ,工作频率为 0 ~ 400Hz ,它的主电路都采用交—直—交电路。
其控制方式经历了以下四代。
2.1U/f=C 的正弦脉宽调制( SPWM )控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
变频器的参数变频器的参数设置变频器的参数设定在调试过程中是十分重要的。
由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT或整流桥等器件。
变频器的品种不同,参数量亦不同。
一般单一功能控制的变频器约50~60个参数值,多功能控制的变频器有200个以上的参数。
但不论参数多或少,在调试中是否要把全部的参数重新调正呢?不是的,大多数可不变动,只要按出厂值就可,只要把使用时原出厂值不合适的予以重新设定就可,例如外部端子操作、模拟量操作、基底频率、最高频率、上限频率、下限频率、启动时间、制动时间(及方式)、热电子保护、过流保护、载波频率、失速保护和过压保护等是必须要调正的。
当运转不合适时,再调整其他参数。
现场调试常见的几个问题处理起动时间设定原则是宜短不宜长,具体值见下述。
过电流整定值OC过小,适当增大,可加至最大150%。
经验值1.5~2s/kW,小功率取大些;大于30kW,取>2s/kW。
按下起动键*RUN,电动机堵转。
说明负载转矩过大,起动力矩太小(设法提高)。
这时要立即按STOP停车,否则时间一长,电动机要烧毁的。
因电机不转是堵转状态,反电热E=0,这时,交流阻抗值Z=0,只有直流电阻很小,那么,电流很大是很危险的,就要跳闸OC动作。
制动时间设定原则是宜长不宜短,易产生过压跳闸OE。
具体值见表1的减速时间。
对水泵风机以自由制动为宜,实行快速强力制动易产生严重“水锤”效应。
起动频率设定对加速起动有利,尤以轻载时更适用,对重载负荷起动频率值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动频率从0开始合适。
起动转矩设定对加速起动有利,尤以轻载时更适用,对重载负荷起动转矩值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动转矩从0开始合适。
基底频率设定基底频率标准是50Hz时380V,即V/F=380/50=7.6。
但因重载负荷(如挤出机,洗衣机,甩干机,混炼机,搅拌机,脱水机等)往往起动不了,而调其他参数往往无济于事,那么调基底频率是个有效的方法。