27.2.1相似三角形的判定2导学案
- 格式:docx
- 大小:83.47 KB
- 文档页数:2
27.2.1 相似三角形的判定(一)学习目标1.掌握“两角对应相等,两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”难点:三角形相似的判定方法3的运用.一、复习回顾(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)如(2)题图,△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?二、新课学习1、三角形相似的判定方法3如果一个三角形的两个角与另一个三角形两个角对应相等,那么这两个三角形相似.2、例题讲解例1已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.3、课堂练习1 、填一填(1)如图3,点D 在AB 上,当∠=∠时,△ACD ∽△ABC 。
(2)如图4,已知点E 在AC 上,若点D 在AB 上,则满足条件,就可以使△ADE 与原△ABC 相似。
2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .3. 如图,△ABC 中, DE ∥BC ,EF ∥AB ,试说明△ADE ∽△EFC .ABD图 3 ● A BC E图 44.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.三、拓展延伸1 、图1中DE ∥FG ∥BC ,找出图中所有的相似三角形。
九年级数学下册第69导学案 第___周第___课时 课题27.2.1 相似三角形的判定(二) 课 型 新授 主备人 聂端英 备课组审核徐其良 张金丽 郝伟艳 级部审核 常明友 学生姓名 教师寄语 学而不思则罔,思而不学则殆。
学习目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养同学们获得数学猜想的经验,激发同学们探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 一、新知链接1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC 与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?2.(1)提出问题:首先,由三角形全等的SSS 判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领同学们画图探究;(3)【归纳】三角形相似的判定方法13.(1)提出问题:怎样证明这个命题是正确的呢?(2)引领同学们探求证明方法.4.用上面同样的方法进一步探究三角形相似的条件:(1)提出问题:由三角形全等的SAS 判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?(2)让同学们画图,自主展开探究活动.(3)【归纳】三角形相似的判定方法2二、合作探究例1(教材P46例1)分析:判定两个三角形是否相似,可以根据已知条件,看是不是符合相似三角形的定义或三角形相似的判定方法,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边. B'C'A'A B C例2已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长. 解:三、课堂练习1.如果在△ABC 中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看?2.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△DEF .3.已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD •AD ,求证:△ADC ∽△CDP .四、课堂小结:本节课的收获是什么?自我评价专栏(分优良中差四个等级)自主学习: 合作与交流: 书写: 综合:。
相似三角形的判定(三)导学案一、知识与技能掌握“两角对应相等,两个三角形相似”的判定方法。
二、过程与方法让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
三、情感,态度与价值观培养学生的观察﹑发现﹑比较﹑归纳能力。
四、教学重难点重点:三角形相似的判定方法3“两角对应相等,两个三角形相似” 难点:三角形相似的判定方法3的运用 教学过程 一,预习导学1.什么叫相似三角形?怎么表示?(在学生回答完后,教师总结) 对应角相等,对应边成比例的三角形,叫做相似三角形。
(注意:三角形相似不一定限定在两个三角形之间,可以是两个以上,但不能是一个。
)表示:如果∆ABC 与∆A'B'C'相似,则记作∆ABC ∽∆A'B'C'.用数学符号表示:∵∠A=∠A ',∠B =∠B ',∠C =∠C ',且''''''C B BC C A AC B A AB ==,∴∆ABC ∽∆A 'B 'C '.注意:与三角形全等的书写类似,表示对应角的字母顺序需要一样; (这也是三角形相似的一个判定方法)预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.A BCD E图(1)ADEBC图(2)ABCED图(3)判定定理1:如果两个三角形的三组 相等,那么这两个三角形相似;'''''','''C A AC C B BC B A AB C B A ABC ==∆∆和如图所示,在求证:△ABC ∽△A ’B’C’ 探究:在A ’B'上截取 A ’D=AB ,过点D 作DE ∥B ’C ’交A ’C ’于点E , 则△A ’DE ∽ ;∵__________'''==B A D A 又∵''''''C A AC C B BC B A AB==,A ’D=AB∴DE= ,A ’E= ; ∴ ≌ ; ∴△ABC ∽△A ’B’C’④判定定理2:如果两个三角形的 相等,并且相应的 相等, 那么这两个三角形相似;如图所示,在△ABC 和△A ’B’C’中,''''C A AC B A AB =,∠A=∠A ’,求证:△ABC ∽△A ’B’C’证明:在A ’B 上截取 A ’D=AB ,过点D 作DE ∥B ’C ’交A ’C ’于点E∴△A’DE ∽ ;∴''''''C A C B D A AD ==又∵''''C A ACB A AB =,A ’D=AB ;∴'''''C A AC C A E A =∴A ’E=AC ; ∵∠A=∠A ’;∴△A’DE ≌ ; ∴△ABC ∽△A ’B’C’ 二,自学助学1如图,△ABC 中,点D 在AB 上,如果ABAD AC∙=2,那么△ACD 与△ABC 相似吗?说说你的理由. 分析:△ACD ∽△ABC, ∵AB AD AC ∙=2E DA'B'C'ABC E DA'B'C'ABC∴ACAD ABAC =又∵∠CAD=∠BAC∴△ACD ∽△ABC2如(1)题图,△ABC 中,点D 在AB 上,若∠ACD=∠B ,那么△ACD 与△ABC 相似吗? 三,探究研学1.阅读教材P46—P47,完成探究4:作∆ABC 与∆A'B'C',使得∠A=∠A',∠B=∠B',这时它们的第三角满足∠C=∠C' 吗?分别度量这两个三角形的边长,计算B A AB '',C A AC'',C B BC'',你有什么发现?2.观察两副三角尺,其中同样角度(300与600,或450与450)的两个三角尺大小可能不同,但它们看起来是相似的。
27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。
27.2.1 相似三角形的判定第2课时 三边成比例的两个三角形相似【教学目标】1.理解“三边成比例的两个三角形相似”的判定方法;(重点)2.会运用“三边成比例的两个三角形相似”的判定方法解决简单问题.【教学过程】一、情境导入我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?在如图所示的方格上任画一个三角形,再画第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?二、合作探究探究点:三边对应成比例的两个三角形相似【类型一】 直接利用定理判定两个三角形相似在Rt △ABC 中,∠C =90°,AB =10,BC =6,在Rt △EDF 中,∠F =90°,DF =3,EF =4,则△ABC 和△EDF 相似吗?为什么?解析:已知△ABC 和△EDF 都是直角三角形,且已知两条边长,所以可利用勾股定理分别求出第三边的长,看对应边是否对应成比例.解:△ABC ∽△EDF .在Rt △ABC 中,AB =10,BC =6,∠C =90°,由勾股定理得AC =AB 2-BC 2=102-62=8.在Rt △DEF 中,DF =3,EF =4,∠F =90°,由勾股定理得ED =DF 2+EF 2=32+42=5.在△ABC 和△EDF 中,BC DF =63=2,AC EF =84=2,AB ED =105=2,所以BC DF =AC EF =AB ED,所以△ABC ∽△EDF . 方法总结:利用三边对应成比例判定两个三角形相似时,应说明三角形的三边对应成比例,而不是两边对应成比例.【类型二】网格中的相似三角形如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,判断△ABC和△DEF是否相似,并说明理由.解析:首先由勾股定理,求得△ABC和△DEF的各边的长,即可得ABDE=ACDF=BCEF,然后由三组对应边的比相等的两个三角形相似,即可判定△ABC和△DEF相似.解:△ABC和△DEF相似.由勾股定理,得AB=25,AC=5,BC=5,DE=4,DF=2,EF=25,∵ABDE=ACDF=BCEF=254=52,∴△ABC∽△DEF.方法总结:在网格中计算线段的长,运用勾股定理是常用的方法.【类型三】利用相似三角形证明角相等如图,已知ABAD=BCDE=ACAE,找出图中相等的角,并说明你的理由.解析:由ABAD=BCDE=ACAE,证明△ABC∽△ADE,再利用相似三角形对应角相等求解.解:在△ABC和△ADE中,∵ABAD=BCDE=ACAE,∴△ABC∽△ADE,∴∠BAC=∠DAE,∠B=∠D,∠C=∠E.方法总结:在证明角相等时,可通过证明三角形相似得到.【类型四】利用相似三角形的判定证明线段的平行关系如图,某地四个乡镇A,B,C,D之间建有公路,已知AB=14千米,AD=28千米,BD=21千米,BC=42千米,DC=31.5千米,公路AB与CD平行吗?说出你的理由.解析:由图中已知线段的长度,可求两个三角形的对应线段的比,证明三角形相似,得出角相等,通过角相等证明线段的平行关系.解:公路AB与CD平行.∵ABBD=1421=23,ADBC=2842=23,BDDC=2131.5=23,∴△ABD∽△BDC,∴∠ABD=∠BDC,∴AB∥DC.方法总结:如果在已知条件中边的数量关系较多时,可考虑使用“三边对应成比例,两三角形相似”的判定方法.【类型五】利用相似三角形的判定解决探究性问题要制作两个形状相同的三角形教具,其中一个三角形教具的三边长分别为50cm,60cm,80cm,另一个三角形教具的一边长为20cm,请问怎样选料可使这两个三角形教具相似?想想看,有几种解决方案.解析:要使两个三角形相似,已知一个三角形的三边和另一个三角形的一边,则我们可以采用三边分别对应成比例的两个三角形相似来判定.解:①当长为20cm的边长的对应边为50cm时,∵50∶20=5∶2,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:20cm,24cm,32cm;②当长为20cm的边长的对应边为60cm时,∵60∶20=3∶1,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:503cm,20cm,803cm;③当长为20cm的边长的对应边为80cm时,∵80∶20=4∶1,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:12.5cm,15cm,20cm.∴有三种解决方案.方法总结:解答此题的关键在于分类讨论,当对应比不确定时,采用分类讨论的方法可避免漏解.三、板书设计1.三角形相似的判定定理:三边对应成比例的两个三角形相似;2.利用相似三角形的判定解决问题.【教学反思】因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.从课后作业情况看出学生对这节课的知识总体掌握得较好.27.2.1 相似三角形的判定第2课时三边成比例的两个三角形相似一、学习目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法的判定方法.2.能够运用三角形相似的条件解决简单的问题.二、重点、难点重点:掌握这种判定方法,会运用这种判定方法判定两个三角形相似.难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.三、课堂引入1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?2.(1)提出问题:首先,由三角形全等的SSS 判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?3. 探究任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。
人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计2一. 教材分析人教版九年级数学下册第27.2.1节《相似三角形的判定》是整个初中数学的重要内容,也是九年级数学的教学难点之一。
本节内容主要介绍了相似三角形的定义、性质和判定方法,为后续几何学习奠定了基础。
教材通过丰富的例题和练习,使学生能够熟练掌握相似三角形的判定方法,并能够运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的几何知识,对三角形的基本概念和性质有所了解。
但是,对于相似三角形的定义和判定方法,学生可能存在一定的困难。
因此,在教学过程中,需要关注学生的认知水平,通过引导、启发、讨论等方式,帮助学生理解和掌握相似三角形的判定方法。
三. 教学目标1.了解相似三角形的定义和性质;2.掌握相似三角形的判定方法;3.能够运用相似三角形的知识解决实际问题。
四. 教学重难点1.相似三角形的定义和性质;2.相似三角形的判定方法。
五. 教学方法1.情境教学法:通过生活实例引入相似三角形的概念,激发学生的学习兴趣;2.引导发现法:引导学生发现相似三角形的性质和判定方法,培养学生的探究能力;3.讲练结合法:在讲解相似三角形的基础上,进行相应的练习,巩固所学知识。
六. 教学准备1.教学课件:制作详细的教学课件,包括图片、动画、例题等;2.练习题:准备相应的练习题,以便在课堂上进行操练和巩固;3.板书设计:设计清晰易懂的板书,便于学生理解和记忆。
七. 教学过程1.导入(5分钟)–利用生活实例,如建筑设计、电路图等,引入相似三角形的概念;–引导学生思考:为什么这些实例中的三角形相似?2.呈现(10分钟)–讲解相似三角形的定义和性质;–通过动画演示,让学生直观地感受相似三角形的性质。
3.操练(10分钟)–呈现一组三角形,让学生判断它们是否相似;–引导学生运用相似三角形的性质进行判断。
4.巩固(10分钟)–让学生自主完成练习题,巩固所学知识;–针对学生的疑惑,进行讲解和解答。
27.2.1相似三角形的判定2导学案
学习目标:
1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.
2.能够运用三角形相似的条件解决简单的问题.
学习重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似。
学习难点:会准确的运用两个三角形相似的条件来判定三角形是否相似会证明。
学习过程备注
一、复习导学:
(1) 两个三角形全等有哪些判定方法?
(2) 我们学习过哪些判定三角形相似的方法?
(3) 相似三角形与全等三角形有怎样的关系?
二、探究研讨:
如图,如果要判定△ABC与△A’B’C’相似,是不
是一定需要一一验证所有的对应角和对应边的关
系?
探究一: 由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?
1、操作:同学们将一个三角形各边扩大或者缩小它的a倍,所得三角形与原三角形相似吗?
2、验证:已知:如图,在△ABC和△A′B′C′中,
求证△ABC∽△A′B′C′
证明:
3、归纳:三角形相似的判定方法2:的两个三角形相似.
几何语言表述:∵
∴△ABC∽△A′B′C′
探究二:由三角形全等的SAS,你能得出什么猜想?自主完成画图操作,小组交流结论。
小组合作完成,归纳得出重要的知识点及证明方法。
画图,自主展
AB BC CA A B B C C A
已知:在△ABC 和△A′B′C′中, 求证:△ABC ∽△A′B′C′ 证明:
三角形相似的判定方法3: ___ __的两个三角形相似. 几何语言表述:
三、巩固提升:
1、根据下列条件,判定△ABC 与△A′B′C′是否相似,并说明理由: (1) △ABC 与△A′B′C′中,∠A=120°,AB=7cm,AC=14cm, ∠A′=120°A′B′=3cm,A′C′=6cm;
(2) △ABC 与△A′B′C′中,AB=4cm,BC=6cm,AC=8cm, A′B′=12cm,B′C′=18cm,A′C′=21cm.
2、如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△EFD .
3.如图,AB•AC=AD•AE ,且∠1=∠2,求证:△ABC ∽△AED .(把等积式转化为等比式)
开探究活动
小组合作探究总结判定定理及证明方法。
独立完成后,小组交流展示
看哪组做得好
A ,A
B
C k A A
A B A C。