(1)求数列{an}和 {bn} 的通项公式,
(2)设
cn
an bn
,求数列 {cn }的前n项和 Tn.
.
例题
练 习
3.已知等差数列an的前n项和为Sn
na1
n(n 1) 2
d,
用类比的方法,写出等比数列前n项积的表达式Tn __
二.等比、等差数列和的形式:
an成等差数列 an An B Sn An2 Bn
an(q 1)成等比数列 Sn A(qn 1)(A 0)
例1 等差数列{an}的首项a1>0, 前n项和为Sn,若Sm=Sk(m≠k), 问n为何值时,Sn最大?
1 1
n
பைடு நூலகம்
128
1
1 2
n
128
2
例3:设数列{an} 满足
a1 3a2 32 a3 3n1an
1 3
n, n
N*,
(1)求数列{an }的通项公式,
(2)设
bn
n an
,求数列{bn }的前n项和
Sn.
评:(1)知 Sn 求 an . . (2)错位相减法求和.
变式:设数列 {an}的前n项和为 Sn 2n2, {bn}为等比数列,且 a1 b1,b2 (a2 a1) b1.
a5
a1q 4
q
2
,
a6
a1q5
q 1
因为 a4,a5 1,a6 成等差数列,所以 a4 a6 2(a5 1)
即
q 3
q 1
2(q2
1) ,q 1 (q 2
1)
2(q2
1) .所以q
1 2
.
故
an