七年级数学工程问题
- 格式:ppt
- 大小:652.00 KB
- 文档页数:11
七年级工程问题的解题技巧解决七年级工程问题需要一些基本的解题技巧,这些技巧可以帮助学生理清问题、分析情境并找到合适的解决方法。
以下是一些解决工程问题的技巧:
1.明确问题:首先,确保对问题有准确的理解。
仔细阅读问题陈述,提出明确的问题,确保了解要求。
2.分析信息:将问题中提供的信息进行整理和分析。
标出已知条件、需要求解的未知数,理清关键信息。
3.应用数学知识:用适当的数学概念和公式解决问题。
这可能涉及到面积、体积、比例、代数等数学知识。
4.图形辅助:如果问题涉及图形,绘制图形可以帮助更好地理解和解决问题。
学会使用图形辅助解题。
5.列出步骤:将解题过程分解成步骤,按顺序进行。
这有助于学生组织思维,避免遗漏信息。
6.实际意义:确保理解问题的实际背景和意义。
这有助于学生将抽象的数学问题与实际情境联系起来。
7.检查答案:在得出答案后,要仔细检查一遍。
确保答案符合实际情境,以及是否符合常理。
8.与同学讨论:与同学一起讨论问题,共同思考解决方法,可以拓展思路,加深理解。
9.实践练习:解决更多的工程问题,通过不断的实践提高解题能力,逐渐熟练掌握解题方法。
10.注意细节:在解决问题的过程中,要注意问题中的细节和特殊情况。
有时一个小细节可能对整个解题过程有重要影响。
通过掌握这些技巧,学生可以更有信心和效率地解决七年级工程问题。
解题是一个培养逻辑思维和数学应用能力的过程,通过不断的实践和学习,学生可以逐渐提高解决问题的能力。
人教版七年级上册数学一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如7.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.甲、乙两工程队共同承包了一段长4600米的排污管道铺设工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成230米,乙队平均每天比甲队多完成115米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?9.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.(1)如果由这两个工程队从两端同时施工,需要多少天可以铺好这条管线?(2)如果先让甲乙工程队合作先施工(3)a +天,余下的工程再由甲工程队施工(42)+a 天,恰好完成该工程,求甲工程队一共参与了多少天?10.某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款5000元.已知甲单独做30天完成,乙单独做20天完成,为此甲、乙两工程队商定共同承包这项工程.(1)若甲、乙两工程队全程合作,多少天能完成这项工程?(2)在两工程队合作完成这项工程的75%时,甲临时有其他任务被调走,余下的工程由乙单独完成,则这项工程能否在15天内完成?请说明理由.11.一段河道治理任务由A ,B 两个工程队完成.A 工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A 工程队单独做6天后,B 工程队加入合作完成剩下的工程,问B 工程队工作了多少天?17.某工厂有甲、乙两条加工相同原材料的生产线.甲生产线加工m吨原材料需要(2m+3)小时;乙生产线加工n吨原材料需要(3n+2)小时.(1)求甲生产线加工2吨原材料所需要的时间;(2)求乙生产线8小时能加工的原材料的吨数;(3)该企业把7吨原材料分配到甲、乙两条生产线,若两条生产线加工的时间相同,则分配到甲、乙生产线的吨数分别为多少?18.一项工程甲队单独做需要15天完成,乙队单独做需要30天完成.(1)求甲、乙两队合作完成该工程的天数;(2)现甲队先单独做3天,然后剩余工程由两个工程队合作完成.甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,求最终需要分别向甲、乙两队支付工程款的钱数.(要求利用一元一次方程解决问题)19.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要_____天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?20.某工厂要制作一块广告牌,请来三名工人,已知甲单独做12天可完成,乙单独做20天可完成,丙单独做15天可完成.现在甲和乙合做了4天,余下的工作乙和丙两人合作完成,(1)余下的工作乙和丙两人合作多少天才能完成?(2)完成后,工厂支付酬金4800元,如果按各人完成的工作量计算报酬,那么应如何分配?参考答案:(2)甲中途离开了10天16.原计划36天完成任务.17.(1)7小时(2)2吨(3)分配到甲、乙生产线的吨数分别为4吨和3吨.18.(1)10天(2)最终需要向甲队支付38.5万元工程款,向乙队支付16万元工程款19.(1)2.4(2)师傅和徒弟各分225元20.(1)余下的工作乙和丙两人合作4天才能完成;(2)甲的报酬为1600元,乙的报酬为1920元,丙的报酬为1280元.。
初一数学工程问题解题技巧
工程问题是应用题中的一种类型,这类问题常常涉及到工作效率、工作时间和工作量之间的关系。
以下是初一数学工程问题的解题技巧:
1. 理解基本概念:工程问题中的基本概念包括工作效率、工作时间和工作量。
工作效率指单位时间内完成的工作量,通常用单位时间内完成的工作量来表示,如每天完成的工作量、每小时完成的工作量等。
工作时间指完成工作量所需的时间。
工作量指需要完成的总任务量。
2. 运用公式:工程问题中有一些常用的公式,例如:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。
理解并灵活运用这些公式是解决工程问题的关键。
3. 建立方程:根据题目中的已知条件,建立方程是解决工程问题的重要方法。
通过设立未知数,用代数式表示工作效率、工作时间或工作量等,然后根据公式列出方程,解方程即可求出未知数的值。
4. 注意单位:在工程问题中,单位非常重要。
确保所有的工作量、工作效率和工作时间都使用相同的单位,否则可能会导致错误的答案。
5. 画图辅助理解:对于一些复杂的工程问题,可以通过画图来帮助理解和分析问题。
画图可以直观地展示工作量、工作效率和工作时间之间的关系,有助于找到解题的思路。
6. 多做练习:解决工程问题需要熟练掌握相关的概念和方法。
通过多做练习题,可以加深对工程问题的理解,提高解题的能力和技巧。
一、相遇问题:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二、相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间三、追击问题:速度差×追及时间=路程差路程差÷速度差=追及时间(同向追及)速度差=路程差÷追及时间甲经过路程—乙经过路程=追及时相差的路四、水流问题:顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷ 2当两船相对航行时,甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度当两船同向航行时,后(前)船静水速度—前(后)船静水速度=两船距离缩小(拉大)的速度五、工程问题:(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
六、利润与折扣问题:利润=售出价-成本;实际售价=原售价×10%×几折利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)定价=成本+利润利润=成本×利润率定价=成本×(1+利润率)七、存储利息问题:顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做存期,利息与本金的比叫做利率。
利息的 20%付利息税。
一、相遇问题:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二、相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间三、追击问题:速度差×追及时间=路程差路程差÷速度差=追及时间(同向追及)速度差=路程差÷追及时间甲经过路程—乙经过路程=追及时相差的路四、水流问题:顺水速度=船速+水速逆水速度=船速—水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷ 2当两船相对航行时,甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度当两船同向航行时,后(前)船静水速度—前(后)船静水速度=两船距离缩小(拉大)的速度五、工程问题:(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
六、利润与折扣问题:利润=售出价-成本;实际售价=原售价×10%×几折利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)定价=成本+利润利润=成本×利润率定价=成本×(1+利润率)七、存储利息问题:顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做存期,利息与本金的比叫做利率.利息的 20%付利息税。
1.一件工作,甲独做要12小时完成,乙独做要10小时完成,甲、乙合作多少小时完成2.一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半3.一件工作,甲、乙合做12天完成,已知甲、乙工作效率的比是1:3;两人单独做各要多少天4.有一件工程,甲独做20天可以完成这件工程的1/9,乙独做9天可以完成这件工程的1/10,甲、乙两人合做,需要几天可以完成这件工程的一半5.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成;三人合做几小时可以完成工作的一半的一半6.有一批书,小明9天可装订3/4,小丽20天可装订5/6;小明和小丽两个人合作几天可以装完7.打扫多功能教室,甲组同学13小时可以打扫完,乙组同学14小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室8某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几名工人加工甲种零件.9.一个水池有甲、乙两个进水管,单开甲管,1/6小时能注满水池;单开乙管,1/7小时能注满水池;如果甲、乙两管同时开启,多少时间水池还有1/4尚未注水10.一个蓄水池装了一根进水管和三根放水速度一样的出水管;单开一根进水管20分钟可注满空池,单开一根出水管,45分钟可以放完满池的水;现有2/3池水,如果四管齐开,多少分钟后池水还剩下2/511.植树节期间,两所学校共植树棵,其中海石中学植树的数量比励东中学的倍少棵,求两校各植树多少棵.12.将一批工业最新动态信息输入管理储存网络,甲单独做需要6小时,乙单独做需要4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作13.将一批工业最新动态信息输入管理储存网络,甲单独做需要6h,乙单独做需要4h,甲先做30min,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作14.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天15.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水16.某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问这批服装订货任务是多少套原计划多少天完成17.问题:山中有古寺,不知道住着多少僧人,只知道用餐时,他们三个人合用一只碗吃饭,四个人合用一只碗喝汤,不多不少共用了224只碗.这个寺内一共有多少名僧人18.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.问小组成员共有多少名他们计划做多少个“中国结”19.油桶制造厂的某车间主要负责生产制造油桶用的的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套20.用白铁皮做罐头盒,每张铁皮可制盒身16个,或盒底43个,一个盒身与两个盒底配成一套罐头盒;现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒21.一件工程,甲、乙、丙单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天后,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程22.整理一批图书,如果由一个人单独做要花60小时;现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作;假设每个人的工作效率相同,那么先安排整理的人员有多少人23.某生态食品加工厂收购了一批质量为10000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000kg,求粗加工的该种山货质量.24.一条山洞长500米,甲、乙两个工程队,从两头同时施工,甲队每天钻15米,20天后甲、乙两队会合,则乙队每天钻山洞多少米25.汶川大地震发生后,各地人民纷纷捐款捐物支援灾区,我省某企业向灾区捐助价值94万元的A、B两种帐篷共600顶,已知A种帐篷每顶1700元,B种帐篷每顶1300元,问捐A种帐篷多少顶,B神帐篷多少顶26.某人完成一份文稿的打字工作,现已完成,还剩30页,求这份文稿的总页数;27.某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成原计划共做多少零件28.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知两个大齿轮与三个小齿轮配成一套,问应该如何安排工人才能使生产的产品刚好配套29.初一4班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,初一4班乒乓球小组共有多少人7分30.甲队原有工人68人,乙队原有工人44人,现又有42名工人调入这两队,为了使乙队的人数是甲队人数的,应调往甲乙两队各多少人7分31.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶。
初一工程问题解题技巧
工程问题在数学中是一个常见的问题类型,尤其在初一阶段。
解决这类问题需要理解和掌握一些基本的概念和解题技巧。
以下是解决初一工程问题的几个关键技巧:
1.理解问题背景:首先,要确保你理解问题的背景。
工程问题通常涉及到工作、时间和效率。
因此,你需要清楚地知道每个任务是什么,以及每个任务需要多少时间来完成。
2.识别变量:在工程问题中,你通常会遇到几个变量,如工作量、时间和效率。
识别这些变量并理解它们之间的关系是解决问题的关键。
3.建立数学模型:一旦你理解了问题的背景和变量,接下来就是建立一个数学模型。
你可以使用简单的算术来表达工作、时间和效率之间的关系。
4.找出未知数:在许多工程问题中,你可能需要找出某些未知数。
例如,你可能需要找出完成某项任务所需的时间或效率。
5.使用公式和定理:在解决工程问题时,使用适当的公式和定理可以帮助你更快地找到答案,例如工作量=效率×时间。
6.检查答案:最后,一定要检查你的答案是否符合问题的实际情况。
你可以通过将答案代入原问题或使用常识来验证答案的正确性。
通过掌握这些技巧,你可以更有效地解决初一工程问题。
同时,不断练习和反思也是提高解题能力的重要途径。