_二次函数图象及性质(复习)_
- 格式:ppt
- 大小:1.08 MB
- 文档页数:46
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第三单元 函数及其图象专题3.4 二次函数的图象与性质知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05【例1】已知二次函数y=2(x-3)2+1.下列对其图象的说法:①开口向下; ②当x<3时,y随x的增大而减小;③顶点坐标为(3,-1); ④对称轴为直线x=-3;则其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个A解析式开口方向对称轴顶点坐标一般式顶点式交点式(h,k)x=ha>0向上a<0向下无y=a(x-h)2+ky=a(x-x1)(x-x2)y=ax2+bx+c1.抛物线y=(x+3)(x-1)的对称轴是直线_______.2.二次函数y=ax 2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:则该函数图象的对称轴是( ) A.直线x=-3 B.直线x=-2 C.直线x=-1 D.直线x=03.对于二次函数y=ax 2-2ax-3a+3的性质,下列说法中错误的是( ) A.抛物线的对称轴为直线x=1 B.抛物线一定经过两定点(-1,3)和(3,3) C.当a<0时,抛物线与x轴一定有两个不同的交点 D.当a>0时,抛物线与x轴一定有两个不同的交点x=-1x …-3-2-101…y …-3-2-3-6-11…B D4.在同一坐标系中,一次函数y=-mx+n 2与二次函数y=x 2+m的图象可能是( )Dy OxAy Ox B y OxC y OxD 5.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax 2的图象有可能是( )y OxA-11y O xB-11yOx C-11y Ox D-11C6.已知二次函数y=ax 2-2ax-3a(a≠0),关于此函数的图象及性质,下列结论中不一定成立的是( ) A.该图象的顶点坐标为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0); C.若该图象经过点(-2,5),则一定经过点(4,5); D.当x>1时,y随x的增大而增大.7.已知二次函数y=ax 2+bx+c中,y与x的部分对应值如下表:根据表中信息,下列结论错误的是( ) A.其图象开口向下; B.其图象的对称轴为直线x=2 C.方程ax 2+bx+c=0有一个根大于5; D.当x<1时,y随x的增大而增大D知识点一强化训练二次函数图象与性质C x -1014y -7/3131用描点法画出函数的图象知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05yOx1y=ax 2+bx+c【例2】已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则以下结论同时成立的是( ) A. B. C. D.abc>0b 2-4ac<0abc<02a+b>0abc>0a+b+c<0abc<0b 2-4ac>0判断常见式子的符号判断方法a a的符号决定抛物线的开口方向及大小ba,b的符号(左同右异)决定抛物线对称轴的位置c c决定抛物线与y轴交点的位置b 2-4ac b 2-4ac决定抛物线与x轴的交点个数a+b+c 当x=1时,y=a+b+c 4a+2b+c 当x=2时,y=4a+2b+cC1.已知二次函数y=ax 2+bx+c的图象如图,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b 2-4ac<0;④4a+2b+c>0其中正确的是( ) A.①③ B.只有② C.②④ D.③④2.如图是抛物线y=ax 2+bx+c(a≠0)的一部分,下列结论:①ab<0,②b 2-4ac>0,③9a-3b+c<0,④b-4a=0,⑤方程ax 2+bx=0的两根为x 1=0,x 2=-4.其中正确的结论有( ) A.①③④ B.②④⑤ C.①②⑤ D.②③⑤Cx 1Oyx =1B xOy-23.如图,已知抛物线y=ax 2+bx+c与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,下列结论:①abc<0,② ,③ac+b+1=0,④2+c是关于x的一元二次方程ax 2+bx+c=0的一个根其中正确的有______.4.如图是抛物线y=ax 2+bx+c的一部分,下列结论:①b-2a=0,②4a-2b+c<0,③10a-b+c=0,④(-3,y 1),(1.5,y 2)是抛物线上两点,则y 1>y 2,⑤8a+7b+2c >0.其中正确的是________. ①④y O x1C A B ④点B的坐标为(2+c,0)∴④正确.∴③错误;③把A(-c,0)代入y=ax 2+bx+c得ac 2-bc+c=0∴ac-b+1=0,xy O2x =-1①③④③当x=-4时,y=16a-4b+c=0∵-b/2a=-1,∴10a-b+c=0,∴-3b=-6a,∴b=2a,⑤∵b=2a,4a+2b+c=0,∴8a+7b+2c=6a<0∴c=-8a5.二次函数y=ax2+bx+c图象如图,下列结论错误的是( )A.4ac<b2B.abc<0C.b+c>3aD.a<b6.如图,若抛物线y=ax2+bx+c(a≠0)经过点(-1,0),则下列结论①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中正确的结论是( )A.①③B.②③C.②④D.②③④DyO x-1-2C.∵-b/2a>-1, ∴-b<-2a∵a-b+c>0,∴a-2b+b+c>0∴a-4a+b+c>0,∴b+c>3aD.∵a-b+c>0 ∴a-b>-c>0∴a>bD③∵-b/2a<0.5,yO x-11∴a+a+c<0即2a+c<0∴-b>a∵a-b+c=0知识点二强化训练抛物线与a,b,c的关系知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05平移方向平移前的解析式平移后的解析式简记向左平移m个单位y=a(x-h)2+k向右平移m个单位向上平移m个单位向下平移m个单位y=a(x-h+m)2+k y=a(x-h-m)2+ky=a(x-h)2+k+m y=a(x-h)2+k-m左加右减上加下减平移a 不变.1.上下平移, 括号外__________; 2.左右平移, 括号内__________.上加下减左加右减一般式顶式点顶点坐标变换前y=x 2+2x-3关于x轴对称关于y轴对称关于原点对称关于顶点对称关于y=-2对称y=(x+1)2-4(-1,-4)y=-(x+1)2+4 y= (x-1)2-4 y=-(x-1)2+4 y=-x 2+2x+3y= x 2-2x-3y=-x 2-2x+3y=-x 2-2x-5y=-(x+1)2-4 y=-x 2-2x-1y=-(x+1)2(1,-4) (1,4) (-1,-4) (-1,0)(-1,4) 一般式变换前后的对应点变换前y=x 2+2x-3关于x轴对称关于y轴对称关于原点对称任取一点(x,y)y=-x 2+2x+3y= x 2-2x-3y=-x 2-2x+3对称点(-x,y) 对称点(-x,-y) 对称点(x,-y) 代入y=x 2+2x-3 代入y=x 2+2x-3 代入y=x 2+2x-3知识点三强化训练二次函数的图象的变换1.将抛物线y=(x-1)2+2绕关于直线 x=-1 对称的新抛物线所对应的函数解析式是____________.2.把抛物线y=-x 2沿着x轴方向平移3个单位长度,那么平移后抛物线的解析式是_____________________.3.如图,抛物线y=x 2-4x(0≤x≤4)记为l 1,l 1与x轴分别交于点O,A 1;将l 1绕点A1旋转180º得到l 2交于点A 2;将l 2绕点A 2旋转180º得到l 3,l 3交x轴于点A 3;…,如此变换下去,若点P(2021,m)在这种连续变换的图象上,则m=____.y=(x+3)2+2y=-1y=-(x-1)2-4y=-(x+3)2或y=-(x-3)2 3知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05【例4】已知二次函数y=x 2-3x+m的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x 2-3x+m=0的两实数根是( )A.x 1=1,x 2=-1B.x 1=1,x 2=2C.x 1=1,x 2=0D.x 1=1,x 2=3B1.已知二次函数y=x 2-x+ m-1的图象与x轴有交点,则m的取值范围是_____.2.已知抛物线y=x 2-4x+k的顶点在x轴下方,则k的取值范围是______.3.函数y=ax 2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是____________ .4.二次函数y=ax 2+bx+c(a≠0)与x轴交于点(x 1,0)与(x 2,0)(x 1<x 2),方程ax 2+bx+c-a=0的两根为m、n(m<n),则下列判断正确的是( ) A.b 2-4ac≥0 B.x 1+x 2>m+n C.m<n<x 1<x 2 D.m<x 1<x 2<n5.已知m>0,关于x的一元二次方程(x+1)(x-2)-m=0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( )x <-4或x >2m≤5k <4D A知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练051.若二次函数y=ax 2+bx+c图象上部分点的坐标如下表,则该图象的顶点坐标为( ) A.(-2,-2) B.(-3,-3) C.(-1,-3) D.(0,-6)2.已知二次函数y=ax 2-4ax+m(a,m为常数,且a>0)的图象与直线y=3的一个交点为(-2,3),则关于x的一元二次方程ax 2-4ax+m-3=0的两个实数根是()A.x 1=-2,x 2=6B.x 1=-1,x 2=3C.x 1=-2,x 2=4D.x 1=-1,x 2=63.已知二次函数y=ax 2+bx+c的图象开口向下,并经过(2,-3),(-2,0)两点,那么该函数图象的对称轴( )A.有可能为y轴B.有可能在y轴的右边且在直线x=2的左边x …-3-2-101…y …-3-2-3-6-11…A A提升能力拓展训练二次函数C4.已知在二次函数y=ax 2-2x-3a的图象有三点A(x 1,y 1),B(x 2,y 2),C(0,-3),其中x 1<-1,0<x 2<3,则y 2-y 1的值为( )A.正数B.负数C.0D.非负数5.关于抛物线y=x 2-(a+1)x+a-2,下列说法错误的是( ) A.开口向上 B.不论a为何值,都过定点(1,2)C.当a=2时,经过坐标原点OD.当a>0时,对称轴在y轴的右侧6.四位同学在研究函数y=x 2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值,乙发现-1是方程x 2+bx+c=0的一个根,丙发现函数的最小值为3,丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论错误,则该同学是( ) A.甲 B.乙 C.丙 D.丁B BB7.已知点P(1,m)关于原点对称的点在一次函数y=2x-3的图象上,则点P的坐标是______.8.已知抛物线y=ax 2+bx+c与x轴交于点(-3,0),(1,0),则b:a=_____.9.二次函数y=-(x-h)2+2的图象上有两点A(1,y 1),B(2,y 2),若y 1≤y 2,则h的取值范围为________.10.已知二次函数y=m(x-2m)2+m 2,当x>m+1时,y随x的增大而增大,则m的取值范围是_________.11.当0≤x≤3时,直线y=a与抛物线y=(x-1)2-3有交点,则a的取值范围是___________.12.已知二次函数y=-x 2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是______.(1,5)2:10<m≤1h≥1.5-3≤x≤1b≤113.若抛物线y=x 2+2x+c与坐标轴只有两个交点,则c的值为______.14.已知直线y=4与二次函数y=x 2-2mx+m 2+3(m是常数)的图象交于M,N两点(点M在点N的左侧),与y轴交于点P.当点P,M,N中恰好有一点是其余两点组成线段的中点时,m的值为_________.15.如图,二次函数y=-x 2+4与x轴交于A、B两点(点A在点B的左侧),等腰直角△ACD的直角顶点D在x轴上,AD=3.现将△ACD沿x轴的正方向平移,则当点C在函数图象上时,△ACD的平移距离为______.16.如图,抛物线y=ax 2-4x+c经过坐标原点,与x轴交与点A(-4,0).若在抛物线上存在一点P,满足S △AOP =8,则点P的坐标___________________________.0,3或-30或1x y O D B A C 4或617.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),则下列说法不正确的是( ) A.点A,B的坐标分别是(t,0)(t+2,0) B.AB为定值C.当y≥0时,t≤x≤t+2D.y的最小值为-118.已知抛物线y=ax 2-2ax+a-c与y轴的正半轴相交,直线AB∥x轴,且与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,当x=x 1+x 2时,函数值为p,当 时,函数值为q,则p-q的值为( ) A.a C.-a+c D.a-c CA对称轴:∴x 1+x 2=2∴p=4a-4a+a-c=a-c ;q=a-2a+a-c=-c∴p-q=a-c-(-c)=a19.在平面直角坐标系中,把横、纵坐标都是整数的点叫做整点,如图,已知反比例函数 与二次函数 的图象所围成的阴影部分中(不含边界)有5个整点,则k的值可能为( ) A.4 B.3 C.2 D.14C y O x 43(1,3)(1,2)(1,1)(2,3)(2,2)(2,1)(3,2)(3,1)2≤x <3×××20.二次函数 的图像与x轴围成的封闭区域内(包括边界),横纵坐标都是整数的点有___个721.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上横纵坐标均为整数的点称为好点,已知点P为抛物线y=-(x-m)2+m+2的顶点,若点P在正方形OABC的内部,该抛物线下方(包括边界)恰好存在8个好点,则m的取值范围为_____________.yO x44P22.如图,抛物线 ,点F(0,p),直线l:y=-p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A、B两点,AA1⊥l于点A1,BB1⊥l于点B1,连接A1F、B1F、A1O、B1O,若A1F=a,B1F=b,则△A1OB1的面积=____(只用a,b表示).yOxlFB1A1BA23.设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).若该函数图象经过A(-23.1,4),B(0,-1),C(1,1)三个点中的两个点,求该二次函数的解析式.当x=1时,y=0,所以不经过点C.y=3x2-2x-1。
考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。
而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式1.二次函数的3种表达式及其性质作用2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项 ,一次项系数为 ,常数项为 .2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣5D.y=(x﹣2)2﹣63.在平面直角坐标系中,若将抛物线y=2x2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( )A.y=2(x﹣3)2+3B.y=2(x+3)2+3C.y=2(x﹣3)2+1D.y=2(x+3)2+24.抛物线y=2x2向下平移3个单位长度后所得新抛物线的顶点坐标为( )A.(﹣3,0)B.(3,0)C.(0,﹣3)D.(0,3)5.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(6,3).若抛物线y=mx2+2mx+m+3(m为常数,m≠0)向右平移a(a>0)个单位长度,平移后的抛物线的顶点在线段AB上,则a的取值范围为 .考向二、二次函数的图象特征与最值1.对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线;顶点坐标:;a>二次函数有最小值;a <二次函数有最大值;2.图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .函数有最小值1,有最大值3B .函数有最小值﹣1,有最大值3C .函数有最小值﹣1,有最大值0D .函数有最小值﹣1,无最大值2.如图是四个二次函数的图象,则a 、b 、c 、d 的大小关系为( )A.d<c<a<b B.d<c<b<a C.c<d<a<b D.c<d<b<a3.如图是二次函数y=ax2+bx的大致图象,则一次函数y=(a+b)x﹣b的图象大致是( )A.B.C.D.4.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.5.已知二次函数y=x2﹣2x+2在m≤x≤m+1时有最小值m,则整数m的值是( )A.1B.2C.1或2D.±1或26.如图,点P是抛物线y=﹣x2+2x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .考向三、二次函数图象与系数的关系二次函数图象题符号判断类问题大致分为以下几种基本情形∶1.抛物线y =ax 2+bx +c 的对称轴为直线x =−1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b +c =0;④6a ﹣2b +c <0;⑤若点(0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2,其中正确的判断是( )A .②③④⑤B .②③④C .②③⑤D .②④⑤2.已知二次函数y =ax 2+bx +c 的y 与x的部分对应值如表:x﹣1013y0﹣1.5﹣20根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x﹣1)2﹣2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c=﹣1.5的两个根为0或2;④若y>0,则x>3;⑤a(am+b)≥a﹣b(m为任意实数).其中所有正确的结论为( )A.①②④B.②③⑤C.②③④D.①③⑤3.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是( )A.a>0B.C.或a>0D.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是( )A.①③④B.①②③⑤C.①②③④D.①②③④⑤5.已知二次函数y=x2﹣2mx+m2+2m(1)①函数的顶点坐标为 (用含m的代数式表示);②该顶点所在直线的解析式为 ;在平面直角坐标系中画出该直线的图象;(2)当m=1时,二次函数关系式为 ,在平面直角坐标系中画出此函数的图象;(3)已知点A(﹣3,1)、B(1,1)连结AB.若抛物线y=x2﹣2mx+m2+2m与线段AB有且只有一个交点,求m的取值范围;(4)把二次函数y=x2﹣2mx+m2+2m(x≤2m)的图象记为G,当G的最低点到x轴的距离为1时,直接写出m的值.考向四、二次函数与方程、不等式(组)1.二次函数y=ax2+bx+c(a≠0)与一元二次方程之间的关系:1)求交点:①求抛物线与x轴交点坐标→直接让y=0,即:ax2+bx+c=0②求抛物线与某直线l的交点坐标→联立抛物线与直线解析式,得新组成的一元二次方程,解新方程即的两图象交点横坐标,再代入直线或抛物线解析式即可得交点坐标。
第三部分函数专题09二次函数的图象与性质(6大考点)核心考点核心考点一二次函数的图象与性质核心考点二与二次函数图象有关的判断核心考点三与系数a、b、c有关的判断核心考点四二次函数与一元二次方程的关系核心考点五二次函数图象与性质综合应用核心考点六二次函数图象的变换新题速递核心考点一二次函数的图象与性质(2022·浙江宁波·统考中考真题)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2B.32m>C.1m<D.322m<<(2021·江苏常州·统考中考真题)已知二次函数2(1)y a x=-,当0x>时,y随x增大而增大,则实数a的取值范围是()A.a>B.1a>C.1a≠D.1a<(2022·江苏徐州·统考中考真题)若二次函数2=23y x x--的图象上有且只有三个点到x轴的距离等于m,则m的值为________.知识点:二次函数的概念及表达式1.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2.二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:()()12y a x x x x =--,其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.知识点:二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2ba,244ac b a -)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2b a 时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2b a 时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小【变式1】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式2】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式3】(2022·江苏盐城·滨海县第一初级中学校考三模)如图1,对于平面内的点A 、P ,如果将线段P A 绕点P 逆时针旋转90°得到线段PB ,就称点B 是点A 关于点P 的“放垂点”.如图2,已知点()4,0A ,点P 是y 轴上一点,点B 是点A 关于点P 的“放垂点”,连接AB 、OB ,则OB 的最小值是______.【变式4】(2022·吉林长春·校考模拟预测)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点()0,2A ,点()2,0C ,则互异二次函数()2y x m m =--与正方形OABC 有公共点时m 的最大值是__________.【变式5】(2021·湖北随州·一模)如图,抛物线2(0,0)y ax k a k =+><与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且14PC OC =.过点P 作DE AB ∥,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示)(2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若90ODC ∠=︒,4k =-,求a 的值.核心考点二与二次函数图象有关的判断(2021·广西河池·统考中考真题)点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是()A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >(2021·湖南娄底·统考中考真题)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是()A .0104x <≤B .01142x <≤C .01324x <≤D .0314x <≤(2020·广西贵港·中考真题)如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.知识点、抛物线的三要素:开口方向、对称轴、顶点.①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.知识点、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是,(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★知识点、直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y nkx y 2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121【变式1】(2022·四川泸州·校考模拟预测)二次函数2y ax bx c =++(0a ≠)的自变量x 与函数y 的部分对应值如下表:x…1-01234…2y ax bx c =++…8301-03…则这个函数图像的顶点坐标是()A .()2,1-B .()12-,C .()1,8-D .()4,3【变式2】(2022·山东日照·校考一模)设()12,A y -,()21,B y ,()32,C y 是抛物线()212y x =-++上的三点,则1y ,2y ,3y 的大小关系为()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>【变式3】(2021·陕西西安·校考模拟预测)在同一坐标系中,二次函数211y a x =,222y a x =,233y a x =的图象如图,则1a ,2a ,3a 的大小关系为______.(用“>”连接)【变式4】(2022·广西·统考二模)如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则a 的取值范围是______.【变式5】(2022·河南南阳·统考三模)在平面直角坐标系中,已知抛物线242y ax ax =-+.(1)抛物线的对称轴为直线_______,抛物线与y 轴的交点坐标为_______;(2)若当x 满足15x ≤≤时,y 的最小值为6-,求此时y 的最大值.核心考点三与系数a、b、c 有关的判断(2022·湖北黄石·统考中考真题)已知二次函数2y ax bx c =++的部分图象如图所示,对称轴为直线=1x -,有以下结论:①<0abc ;②若t 为任意实数,则有2a bt at b -≤+;③当图象经过点(1,3)时,方程230ax bx c ++-=的两根为1x ,2x (12x x <),则1230x x +=,其中,正确结论的个数是()A .0B .1C .2D .3(2022·山东日照·统考中考真题)已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为32x =,且经过点(-1,0).下列结论:①3a +b =0;②若点11,2y ⎛⎫⎪⎝⎭,(3,y 2)是抛物线上的两点,则y 1<y 2;③10b -3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有()A .1个B .2个C .3个D .4个(2021·贵州遵义·统考中考真题)抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)经过(0,0),(4,0)两点.则下列四个结论正确的有___(填写序号).①4a +b =0;②5a +3b +2c >0;③若该抛物线y =ax 2+bx +c 与直线y =﹣3有交点,则a 的取值范围是a 34≥;④对于a 的每一个确定值,如果一元二次方程ax 2+bx +c ﹣t =0(t 为常数,t ≤0)的根为整数,则t 的值只有3个.知识点、二次函数图象的特征与a,b,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y 轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,h x =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。
数学九年级下《二次函数的图像和性质》复习二一、知识回顾1.二次函数的概念一般地,如果y=,那么y叫做x的函数.注意:(1)二次项系数;(2)ax2+bx+c必须是;(3)一次项可以为零,常数项也可以为零,一次项和常数项可以同时为零;(4)自变量x的取值范围是.2.二次函数的图象及性质二次函数y=ax2+bx+c(a,b,c为常数,a≠0) 图象( ) ( )开口方向开口向上开口向下对称轴直线x=直线x=顶点坐标()()增减性当x<-b2a时,y随x的增大而减小;当x>-b2a时,y随x的增大而增大当x<-b2a时,y随x的增大而增大;当x>-b2a时,y随x的增大而减小最值当x=-b2a 时,y有最小值当x=-b2a时,y有最大值3、抛物线y=ax2+bx+c (a≠0)的图像与系数a.b.c之间的关系⑴a的作用当a___0时,抛物线开口向上.当a___0时,抛物线开口向下,概括口诀为:“正上.负下”;反之,当抛物线开口向上时,a___0,当抛物线开口向下时,a____0,概括口诀为:“上正.下负”。
⑵b的作用①当a.b符号______时,抛物线的对称轴在y轴左侧;当a.b符号______时,抛物线的对称轴在y轴右侧,概况口诀为:“同号在左.异号在右”;反之根据抛物线对称轴的位置判断a.b符号的口诀为:“左同号.右异号”。
②根据抛物线的对称轴x =a b2-,可知a.b 符号决定了对称轴的位置。
⑶c 的作用当c___0时,抛物线与y 轴的交点在y 轴的正半轴;当c___0时,抛物线与y 轴的交点在y 轴的负半轴,概括口诀为“正上.负下”;反之,由抛物线与y 轴交点的位置,判断c 的符号的口诀“上正.下负”。
4、二次函数图象的平移抛物线y =ax 2与y =a (x -h )2,y =ax 2+k ,y =a (x -h )2+k 中|a |相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下表:二、知识学习考点一、二次函数的定义例1. 下列函数是二次函数的是( )A .y 2x 1=+B .y 2x 1=-+C .2y x 2=+D .1y x 22=-举一反三:【变式】下列函数中,是二次函数的是( )A .y =8x 2-1 B .y =8x -1 C .y =8x D .y =8x2+1考点二、二次函数的图象及性质例2 若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是( ) A .抛物线开口向上 B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)举一反三:【变式1】已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.【变式2】(1)二次函数y=-3x2-6x+5的图象的顶点坐标是()A.(-1,8) B.(1,8)C.(-1,2) D.(1,-4)(2)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(-1,y1),(2,y2),试比较y1和y2的大小:y1________y2.(填“>”“<”或“=”)【变式3】已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一考点三、二次函数图象与系数a,b,c的关系例3 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A.①②B.①③C.①③④D.①②③④举一反三【变式1】如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个B.2个C.3个D.4个【变式2】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是__________.(只要求填写正确命题的序号)【变式3】小明从如图的二次函数y=ax2+bx+c的图象中,观察得出了下面五个结论:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确的结论有()A.2个 B.3个 C.4个 D.5个考点四、二次函数图象的平移例4 二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位举一反三:【变式1】将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是( )A .y =(x -1)2+2 B .y =(x +1)2+2 C .y =(x -1)2-2 D .y =(x +1)2-2【变式2】将二次函数y=x 2的图象向左平移一个单位长度,再向下平移3个单位长度所得的图象解析式为( )A .()2y x 13=-+ B .()2y x 13=++ C .()2y x 13=-- D .()2y x 13=+- 【变式3】下列二次函数的图象,不能通过函数y=3x 2的图象平移得到的是( ) A .y=3x 2+2 B .y=3(x ﹣1)2C .y=3(x ﹣1)2+2 D .y=2x 2【课堂巩固】1、如图,把函数y=x 的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x 的图象;也可以把函数y=x 的图象上各点的横坐标变为原来的0.5倍,纵坐标不变,得到函数y=2x 的图象.类似地,我们可以认识其他函数.2、某班“数学兴趣小组”对函数y=x 2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.课后习题一、选择题1. 将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为( ).A .2(1)4y x =++ B .2(1)4y x =-+ C .2(1)2y x =++ D .2(1)2y x =-+ 2.已知二次函数2y ax bx c =++的图象,如图所示,则下列结论正确的是( ).A .0a >B .0c <C .240b ac -<D .0a b c ++>3.若二次函数25y x bx =++配方后为2(2)y x k =-+,则b.k 的值分别为( ). A .0,5 B .0,1 C .-4,5 D .-4,14.抛物线2y x bx c =++的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为223y x x =--,则b.c 的值为( ).A .b=2,c=2B . b=2,c=0C . b= -2,c= -1D . b= -3,c=25.已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(3,0),则a+b+c 的值( )A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax 2+bx+c 与一次函数y=ax+c ,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数2241y x x =--的最小值是________.8.已知二次函数22y ax ax c =-+,当x =-1时,函数y 的值为4,那么当x =3时,函数y 的值为________.9.二次函数2y x bx c =++的图象经过A(-1,0).B(3,0)两点,其顶点坐标是________.10.二次函数23y x mx =-+的图象与x 轴的交点如图所示.根据图中信息可得到m 的值是________.第10题 第11题11.如图二次函数y=ax 2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是_____________;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是_______________.12.已知二次函数y=x 2-2x-3的图象与x 轴交于点A.B 两点,在x 轴上方的抛物线上有一点C ,且△ABC 的面积等于10,则C 点的坐标为____________.三、解答题1、如图,已知抛物线y=-x 2+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0)(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.。
二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。
当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。
(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。
当k 0时向上平移;当k0时向下平移。
(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。
当h0时向左平移;当h0时向右平移。
(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。
当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。
3.二次函数的最值公式:形如y =ax + bx + c的二次函数。
当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。
6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。
二次函数复习二:二次函数的图像和性质班级:姓名:知识点一.二次函数的图像和性质1.二次函数图像的画法: 五点作图法(1)顶点坐标;(2)与x轴的交点坐标;(3)与y轴的交点坐标,再找到该点关于对称轴对称的对称点坐标。
2.抛物线c bx ax y ++=2中, a 、b 、c 的作用(1)a 决定开口方向及开口大小.a >0时,抛物线开口向上 ,a <0时,抛物线开口向下(a 的绝对值越大,抛物线的开口越小)。
(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(口诀:左同右异 ,即a 、b 同号,对称轴在y 轴左侧) (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 3.二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点横坐标。
因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点。
当∆>0时,图像与x 轴有两个交点;当∆=0时,图像与x 轴有一个交点;当∆<0时,图像与x 轴没有交点。
对称轴122x x x +=,在x 轴上截的线段长是||AB a =。
4.二次函数图象的平移① 对于抛物线y =ax 2+bx +c 的平移.通常先将一般式转化成顶点式()2y a x h k =-+,再遵循左加右减,上加下减的的原则,化为顶点式有两种方法:配方法,顶点坐标公式法。
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法 【例1】求作函数64212++=x x y 的图象 【例2】求作函数342+--=x x y 的图像。
二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。
二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。
下面将对二次函数的图像和性质进行详细总结。
一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。
3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。
4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。
5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。
二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。
2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
《二次函数的图像与性质》复习课秦皇岛市抚宁区大新寨学区初级中学朱爱斌复习目标:知识与技能目标:1.回忆所学二次函数的基础知识,进一步理解掌握2.灵活运用基础知识解决相关问题,提高学生解决问题的能力过程与方法目标:1.学生自查遗忘的知识点,回答问题,提出问题。
2.经历例题习题的解答,提高技能。
3.讨论、交流,教师答疑、解惑、指导。
情感、态度与价值观目标:渗透二次函数在实践中的运用,使学生知道学为所用,树立服务社会的思想。
复习重点、难点:二次函数的基础知识回忆及灵活运用。
复习方法:自主探究、分组合作交流教学过程:课前的话:很高兴今天我和同学们有这一课之缘。
可能这节《二次函数图像与性质》复习课同学们已经在老师的指导下掌握的很好了,可是,每个老师都有自己教学的侧重点,不同的老师讲解同一段内容,相信会让同学们对于这一段的知识掌握的更加全面、运用得更加熟练。
另外,我还给同学们准备了一份见面礼,这个盒子里面有一个很珍贵的礼物,你在商店是绝对买不到的,我准备了6份,大家想不想要?我准备把它送给这节课表现最好的几位同学。
评委老师就是后面的几位听课老师,麻烦几位老师根据上课表现,在课程结束后,把这个小礼物送给你认为表现最好的同学。
我这里也留一个,送给第一个给我惊喜的同学。
一、导入语:二次函数这章知识点很多,其运用有一定难度,而且它的知识在中考所占比重又非常大。
这节课,老师领着大家把二次函数的图像与性质中一些基础内容复习一下。
二、二次函数解析式的复习1.出题:(小组讨论)每个小组各出一道求二次函数解析式的习题,把你出的题写在老师为你们准备的“研学卡”上面。
写完后,交到组长那里,由组长收集整理,重复的选出一道比较好的。
2.做题:出题组上来组长或由组长指派一人主持这道题的解答过程,请其他同学来回答,你来判断对错以及补充。
3.课堂预设:一共有三种解析式:一般式、顶点式、交点式。
如果缺少,老师随机应变出题。
三、图像及性质基础知识的理解和运用1.出题:(小组讨论)每个小组根据二次函数图像和性质出题若干,可以一个知识点出一道题,也可以一道题包含几个知识点,把你出的题写在老师为你们准备的“研学卡”上面。