解析 当 x≤0 时,令 x2-2=0,解得 x=- 2(正根舍去),
所以在(-∞,0]上,f(x)有一个零点; 当 x>0 时,f′(x)=2+1x>0 恒成立, 所以f(x)在(0,+∞)上是增函数. 又因为f(2)=-2+ln 2<0,f(3)=ln 3>0,所以f(x)在(0,+∞)上有一个零点, 综上,函数f(x)的零点个数为2.
思维升华
判断函数零点所在区间的基本依据是零点存在性定理.对于含有参数的函数 的零点区间问题,往往要结合图象进行分析,一般是转化为两函数图象的交 点,分析其横坐标的情况进行求解.
师生共研
题≤0,
例 1 (1)函数 f(x)=
的零点个数是 2 .
2x-6+ln x,x>0
基础自测
JICHUZICE
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.( × ) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( ) (3)二次函数y×=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.( ) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(√x)<g(x).( )
3.已知函数f(x)=logax+x-b(a>0且a≠1).当2<a<3<b<4时,函数f(x)的零点 x0∈(n,n+1),n∈N*,则n= . 2 解析 对于函数y=logax, 当x=2时,可得y<1, 当x=3时,可得y>1, 在同一坐标系中画出函数y=logax,y=-x+b的图象, 判断两个函数图象的交点的横坐标在(2,3)内, ∴函数f(x)的零点x0∈(n,n+1)时,n=2.