平方差公式与完全平方差公式
- 格式:doc
- 大小:80.00 KB
- 文档页数:4
平方差公式和完全平方公式一、平方差公式:设有两个数a和b,平方差公式可以表示为:(a+b)*(a-b)=a^2-b^2例如,对于任意两个实数a和b,有(a + b)^2 - (a - b)^2 = 4ab这个公式的应用十分广泛,对于二次方程的因式分解、求根等问题有很大的帮助。
通过平方差公式,可以将一个二次方程因式分解为两个一次方程的乘积,从而简化计算过程。
举个例子,假设有一个二次方程x^2+5x+6=0,我们可以将其因式分解为(x+2)(x+3)=0,然后求解得到x=-2或x=-3通过平方差公式,我们可以简化计算过程,直接得到因式分解的结果。
二、完全平方公式:完全平方公式是指一个二次三项式可以表示为一个完全平方的形式。
设有一个二次三项式x^2 + bx + c,完全平方公式可以表示为:x^2 + bx + c = (x + m)^2 + n其中m和n是常数。
通过完全平方公式,我们可以将一个二次三项式转化为一个完全平方的形式,从而进行进一步的求解。
举个例子,假设有一个二次三项式x^2+6x+9,根据完全平方公式可以将其表示为(x+3)^2通过完全平方公式,我们可以快速得到该二次三项式的解为x=-3与平方差公式类似,完全平方公式也是简化计算的重要工具。
通过完全平方公式,我们可以将一个二次三项式转化为一个完全平方,从而更方便地进行求解。
总结:平方差公式和完全平方公式是数学中常用的两个公式,用于求解一元二次方程。
平方差公式使我们能够将一个二次方程进行因式分解,简化计算过程。
完全平方公式用于将一个二次三项式转化为一个完全平方,进一步求解。
这两个公式在数学的教学和实际应用中有着重要的作用,帮助我们更方便地求解问题,提高计算的效率。
平方差公式和完全平方公式因式分解平方差公式和完全平方公式是数学中常用的因式分解方法,它们在解题过程中起到了十分重要的作用。
本文将为大家详细介绍这两个公式,帮助大家理解其原理和应用。
首先,我们来了解一下平方差公式。
平方差公式的表达形式为a² - b² = (a + b)(a - b)。
简言之,它告诉我们两个平方数相减的结果可以因式分解为两个因数的乘积:一个因数是两个平方数的和,另一个因数是两个平方数的差。
这个公式可以极大地简化计算,特别是在解方程或因式分解的题目中,往往能起到事半功倍的效果。
那么,我们来看一个应用平方差公式的例子。
假设我们需要将x² - 4x + 4进行因式分解。
我们可以使用平方差公式进行分解,将x² - 4x + 4看作是(a - b)²的形式,其中a为x,b为2。
根据平方差公式,我们可以得到(x - 2)²,也就是x² - 4x + 4的因式分解形式。
通过应用平方差公式,我们可以将一个多项式快速分解为一对平方数的差的乘积。
接下来,我们将介绍完全平方公式。
完全平方公式的表达形式为a² + 2ab + b² = (a + b)²。
它告诉我们一个二次多项式可以因式分解为两个相同的因数的平方。
与平方差公式类似,完全平方公式也可以在解题过程中提供方便。
我们来看一个应用完全平方公式的例子。
假设我们需要将x² + 6x + 9进行因式分解。
根据完全平方公式,我们可以将x² + 6x + 9看作是(a + b)²的形式,其中a为x,b为3。
带入完全平方公式,我们可以得到(x + 3)²,也就是x² + 6x + 9的因式分解形式。
通过应用完全平方公式,我们可以迅速将二次多项式转化为平方的形式。
在实际应用中,平方差公式和完全平方公式可以帮助我们进行因式分解,并简化问题的求解过程。
平方差公式和完全平方差公式
1、公式不同
完全平方差公式:(a-b)²=a²-2ab+b²。
平方差公式:a²-b²=(a+b)(a-b)。
2、计算具体数据结果不同(若a=2,b=1)
完全平方差公式:(a-b)²=a²-2ab+b²=1。
平方差公式:a²-b²=(a+b)(a-b)=3。
3、表达意思不同
完全平方差公式:两数差的平方,等于它们的平方和减去它们的积的2倍。
平方差公式:指两个数的和与这两个数差的积,等于这两个数的平方差。
完全平方公式口诀:
首平方,尾平方,首尾相乘放中间。
或首平方,尾平方,两数二倍在中央。
也可以是:首平方,尾平方,积的二倍放中央。
(a±b)²=a²±2ab+b²
同号加、异号减,负号添在异号前。
1
即(a+b)²=a²+2ab+b²(a-b)²=a²-2ab+b²
注意:后面一定是加号。
2。
平方差公式和完全平方公式因式分解
平方差公式和完全平方公式因式分解
平方差公式和完全平方公式是数学中常用的公式,在因式分解中起到了重要作用。
以下是这两个公式的介绍和因式分解方法:
1. 平方差公式:
平方差公式用于因式分解具有平方项的差的平方。
其公式为:a^2 - b^2 = (a + b)(a - b)。
利用此公式,我们可以将一个差的平方写成两个因数的乘积。
2. 完全平方公式:
完全平方公式用于因式分解一个二次多项式。
其公式为:a^2 + 2ab + b^2 = (a + b)^2。
利用完全平方公式,我们可以将一个二次多项式写成一个完全平方的形式。
因式分解示范:
1. 平方差公式因式分解:
假设我们要因式分解x^2 - 9。
根据平方差公式,我们有:x^2 - 9 = (x + 3)(x - 3)。
2. 完全平方公式因式分解:
假设我们要因式分解x^2 + 6x + 9。
根据完全平方公式,我们有:x^2 + 6x + 9 = (x + 3)^2。
通过使用平方差公式和完全平方公式,我们可以将一个多项式因式分解为乘积的形式。
这两个公式在代数中的应用非常广泛,帮助我们简化表达式,解决方程和证明数学性质等问题。
需要注意的是,因式分解可能会涉及到更复杂的多项式和多步操作。
理解和熟练运用这些公式,可以在数学问题求解中提高效率和准确性。
数学平方差公式和完全平方差公式数学中有许多重要的公式,在代数学中,平方差公式和完全平方差公式都是不可忽视的公式之一。
让我们来看看平方差公式。
平方差公式是一种将两个数的平方差表示为两个数之差乘以两个数的和的公式。
具体来说,对于任意两个数a和b,平方差公式可以表示为:(a - b)^2 = a^2 - 2ab + b^2平方差公式在代数学中的应用非常广泛。
它可以用来简化计算过程,特别是在求解二次方程、证明等数学问题中非常有用。
例如,在解二次方程时,我们经常会遇到需要对方程进行化简的情况。
平方差公式可以帮助我们将方程化简为更简单的形式,从而更方便地求得解。
接下来,我们来介绍完全平方差公式。
完全平方差公式是一种将一个二次多项式表示为两个平方差之和的公式。
具体来说,对于任意一个二次多项式ax^2 + bx + c,完全平方差公式可以表示为:ax^2 + bx + c = (px + q)^2 + r其中,p、q、r是待定系数。
通过求解这些系数,我们可以将给定的二次多项式表示为两个平方差之和的形式。
完全平方差公式在代数学中也有广泛的应用。
它可以用来解决二次方程、证明等数学问题。
例如,在解二次方程时,我们通常需要将方程化简为完全平方差的形式,从而更容易找到解。
此外,在证明中,完全平方差公式也可以帮助我们简化推导过程,使证明更加简洁明了。
总结一下,平方差公式和完全平方差公式在代数学中起着重要作用。
它们可以帮助我们简化计算、解决问题,并在证明中发挥重要作用。
熟练掌握这些公式,对于提高数学水平和解决实际问题都有很大的帮助。
因此,在学习代数学的过程中,我们应该重视平方差公式和完全平方差公式的学习和应用。
通过不断的练习和实践,我们可以更好地掌握这些公式,并在数学学习中取得更好的成绩。
第三讲 平方差公式和完全平方公式【名言警句】细节决定成败!【知识点归纳讲解】(一)平方差公式:(a+b)(a-b)=a 2-b 2 两数和与这两数差的积,等于它们的平方差. 特征:①左边:二项式乘以二项式,两数(a 与b )的和与它们差的乘积. ②右边:这两数的平方差. 平方差公式的常见变形:①位置变化:如()()()()22a b b a b a b a b a +-=+-=-②符号变化:如()()()()()2222a b a b b a b a b a b a ---=---+=--=-⎡⎤⎡⎤⎣⎦⎣⎦或()()()()()2222a b a b a b a b a b a b ---=-+-=--=-+ ③系数变化:如()()()()()22ma mb a b m a b a b m a b +-=+-=-(二)完全平方公式()()22222222a b a ab b a b a ab b+=++-=-+ 完全平方公式常见变形:① 符号变化:如()()22222a b a b a ab b --=+=++ ()()22222a b a b a ab b -+=-=-+②移项变化:()()22222222a b a ab b a b a ab b +=++-=-+⇒()()22222222a b a b ab a b a b ab+=+-+=-+⇒()()224a b a b ab +--=【经典例题讲解】(一)平方差公式例1:计算:()()()()2244a b b a b a b a ---+-例2:计算:①(2x+y )(2x-y) ②(y x 3121+)(y x 3121-)③(-x+3y)(-x-3y) ④(2a+b)(2a-b)(4)22b a +.【同步演练】应用平方差公式计算(1)()()a a 2121+- (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+3121312122x x (3)()()y x y x 3232+---例3:某初级中学得到政府投资,进行了校园改造建设,他们的操场原来是长方形,改建后变为正方形,正方形的边长比原来的长方形少6米,比原来的长方形的宽多了6米,问操场的面积比原来大了还是小了?相差多少平方米?(二)完全平方公式例1:已知2291822a b ab a b +==+,,求的值例2:利用完全平方公式计算:(1)1022 (2)1972【同步演练】利用完全平方公式计算:(1)982 (2)2032例3:计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x【同步演练】)3)(3(+---b a b a例4:若22)2(4+=++x k x x ,则k =若k x x ++22是完全平方式,则k =例:5:完全平方公式的推广()2222222a b c a b c ab ac bc ++=+++++()222222222a b c d a b c d ab bc cd ad +++=+++++++附加题:若实数222,,9,a b c a b c ++=满足()()()222a b b c c a -+-+-则代数式的最大值是多少?【课堂检测】 (一)平方差公式 一、填空题1、=--+-)2)(2(y y _______.2、=-+)2)(2(y x y x ______.3、=-+)3121)(3121(b a b a ______. 4、=---))((22x a x a _______. 5、=++-))()((22b a b a b a _______. 6、=-+-))((y x y x _______. 7、=+-----+))(())((y x y x y x y x _______. 8、+xy (_______)-xy (_______)81122-=y x . 二、选择题9、下列各式中,能直接用平方差公式计算的是( ) (A ))22)(2(b a b a +--; (B ))2)(2(a b b a +-; (C ))2)(2(b a b a +--; (D ))2)(2(b a a b ++-.10、下列各式中,运算结果是223625y x -的是( ) (A ))56)(56(x y x y --+- ; (B ))56)(65(x y y x +-; (C ))56)(56(x y x y ++- ; (D ))65)(65(y x y x +--. 三、解答题11.计算)2)(2())((n m n m n m n m -+-+-.12.先化简后求值2),2)(2()2)(2(22-=-+--+x x x x x .13.解方程4)2()1)(1(2=---+x x x x .(二)完全平方公式 一、填空题1、=-+)2)(2(b a b a _______.2、)5(x +-_______225x -=. 用平方差公式计算并填空3、)218(5.75.8+=⨯__ ___4363=. 4、=⨯95105_______.5、=-+22)2()2(y x y x (_______)2. 二、选择题6、=+----))((y x y x _______.( )(A )22y x +-;(B )22y x -;(C )22y x --;(D )22y x +.7、如果16)(2-=+a m a p ,则( )(A )4),4(=+=m a p ; (B )4),4(-=-=m a p (C )4),4(-=+=m a p ; (D )4,4=+-=m a p . 三、解答题8、解不等式x x x x x 3)6()3)(3(>+-+-.9、解方程)1)(1(2)3)(12(+-=+-x x x x .10、先化简后求值)5)(5(2)4)(3(-+-+-x x x x ,其中10-=x11、一个梯形上底是)(b a +㎝,下底是)(b a -㎝,高为)2(b a +㎝,求梯形的面积,若2,215==b a ,求这个梯形的面积.【课后作业】一、填空题(每题2分,共28分)1.(34=⋅a a ____()⨯____34)+=a ; 2.=-⋅-54)()(x y y x _________; 3.()(23=m _____)(_____23)⨯=m ; 4.=-⋅--535)(])([a a _________; 5.=⨯3)87(_________3387⨯=; 6.(8164=y x ______2); 7.已知长方形的长是m 4,它的面积是nm 20,则它的宽是_________;8.=⋅+-222483)41(6y x x y x xy _________;9.=⋅+n m 2)7(_________;10.=+--)()(b a a a b b _________; 11.=++))((t z y x _________; 12.=+++-))()()((4422b a b a b a b a _________; 13.=++-+-))((c b a c b a _________; 14.=--+22)()(b a b a _________. 二、选择题(每题3分,共12分)15.下列各式中正确的是( )(A )222)(b a b a -=-; (B )2222)2(b ab a b a ++=+; (C )222)(b a b a +=+; (D )2222)(b ab a b a +-=+-.16.计算)102.2()105.3(53⨯⨯⨯的结果并用科学记数法表示,正确的结果是( ) (A )770000000;(B )71077⨯;(C )8107.7⨯;(D )7107.7⨯.17.20072006)32()23(⋅-的计算结果是( )(A )23-;(B )32-;(C )32;(D )23.18.下列计算正确的是( )(A )1262432a a a a a =⋅+⋅; (B )252212)2(3bc a c a ab =⋅;(C )322322+=⋅⋅+⋅n n a a a a a a ; (D )432222)21()2(y x y x xy -=-⋅-.三、简答题:(每题6分,共30分)19.计算:4453)()(a a a a -+-20.结果用)(y x -的幂的形式表示62323)(2])[(])[(y x x y y x -+-+-.21.用简便方法计算63720052006)2()81()125.0()8(⨯+-⨯-22.计算453210)2()(b a ab b a +⋅- .23.计算)1()1(22++-++x x x x x . 24.计算))()((22b a b a b a -+-.四、解答题(每题5分,共20分)25.解方程)2(2)2()1(-=++-x x x x x x26.化简并求值31,3),3)(3(==--b a a b b a 其中.27.化简并求值2,)1()12(22-=-++x x x 其中.28.计算2)(c b a --29.综合题(10分,每小题5分)(1)已知一个圆的半径若增加2厘米,则它的面积就增加39平方厘米,求这个圆的直径.(用π的代数式表示这个圆的直径)(2)阅读:若一家商店的销售额10月比9月份增长(减少)10%,则设这家商店9月10月份销售额的增长率为0.1(-0.1);理解:甲、乙两店9月份的销售额均为a万元,在10月到11月这两个月中,甲,问到商店的销售额的平均每月增长率为x,乙商店的销售额平均每月的增长率为x11月底时,甲商店的销售额比乙商店的销售额多多少万元(用a和x的代数式表示结果).【课后作业】家长意见及建议:家长签字:日期:年月日。
乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。
这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。
例 1.已知a b 2 , ab 1,求a2b2的值。
例 2.已知a b 8, ab2,求 (a b)2的值。
解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。
解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。
Word 文档平差公式与完全平公式(a+b )2 = a 2+2ab+b 2(a -b )2=a 2-2ab+b2(a+b )(a -b )=a 2-b 2应用1、平差公式的应用:例1、利用平差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解:例2、计算:(1)(y x 41--)(y x 41+-) (2)(-m -n )(m -n )(3)(m +n )(n -m )+3m 2(4)(x+y )(x -y )(x 2-y 2)解:例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ 解:应用2、完全平公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2(3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:例5、利用完全平公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:试一试:计算:123456789×123456787-1234567882=_______________Word 文档应用3、乘法公式的综合应用: 例6、计算:(1)(x+5)2-(x+2)(x -2)(2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解: 例7、(1)若4ax x 412++是完全平式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平式,则M=_______________ 例8、(1)已知:3a1a =+,则:__________a1a 22=+(2)已知:5a 1a =-,则:__________a 1a 22=+(3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:(1))1011()411)(311)(211(2222----ΛΛ (2))12()12)(12)(12)(12(32842+++++ΛΛ解:例10、证明:x 2+y 2+2x -2y+3的值总是正的。
平方差公式与完全平方公式平方差公式:22))((b a b a b a -=-+说明:相乘的两个二项式中,a 表示的是完全相同的项,+b 和-b 表示的是互为相反数的两项。
所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。
熟悉公式:(5+6x)(5-6x)中 是公式中的a , 是公式中的b(5+6x)(-5+6x)中 是公式中的a , 是公式中的b(x-2y)(x+2y)中 是公式中的a , 是公式中的b(-m+n)(-m-n)中 是公式中的a , 是公式中的b(a+b+c )(a+b-c)中 是公式中的a , 是公式中的b(a-b+c )(a-b-c)中 是公式中的a , 是公式中的b将下列各式转化成平方差形式(1) 36-x 2 (2)a 2-91b 2 (3) x 2-16y 2 (4) x 2y 2-z 2 (5) (x+2)2-9 (6)(x+a)2-(y+b)2 (7) 25(a+b)2-4(a -b)2例1:计算下列各题1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (a+2b)(a-2b)6. (2x+12)(2x-12)例2:计算下列各题:1、 1998×20022、1.01×0.99 3.(20-19)×(19-89)例3::计算下列各题1、(a+b )(a-b)(a 2+b 2)2、(a+2)(a-2)(a 2+4)3、(x-12)(x 2+ 14)(x+ 12)例4:计算下列各题1、(-2x-y )(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)例5;计算下列各题1.(a+2b+c )(a+2b-c)2.(a+b-3)(a-b+3)3.(m-n+p)(m-n-p)完全平方公式完全平方公式:2222)(b ab a b a +±=± 注意不要漏掉2ab 项熟悉公式1、a 2+b 2=(a+b)2 =(a-b)22、(a-b )2=(a+b)2 ; (a+b)2=(a-b)23、(a+b)2 +(a-b )2=4、(a+b)2 --(a-b )2=5.将下列各式转化成完全平方式形式(1)a 2-4a +4 (2)a 2-12ab +36b 2 (3)25x 2+10xy +y 2(4)16a 4+8a 2+1 (5) (m +n)2-4(m +n)+4 (6) 16a 4-8a 2+1(7)249114x x --例1:计算下列各题1、2)(y x +2、2)23(y x -3、2)21(b a +4、2)12(--t5、2)313(c ab +- 6、2)2332(y x + 7、2)121(-x 8、(0.02x+0.1y)2 例2:利用完全平方公式计算:(1)1022 (2)1972 (3)982 (4)2032例3:(1)若22)2(4+=++x k x x ,求k 值。
【知识点】一、平方差公式:(a+b )(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方之差。
1、即:(a+b )(a-b) = 相同符号项的平方 - 相反符号项的平方2、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。
3、能否运用平方差公式的判定①有两数和与两数差的积 即:(a+b )(a-b)或(a+b )(b-a) ②有两数和的相反数与两数差的积 即:(-a-b )(a-b)或(a+b )(b-a) ③有两数的平方差 即:a 2-b 2 或-b 2+a 2二、完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定 ①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2或-a 2-2ab-b 2或 -a 2+2ab-b 2探索练习:1、计算下列各式: (1)()()22-+x x (2)()()a a 3131-+ (3)()()y x y x 55-+2、观察以上算式及其运算结果,你发现了什么规律?3、猜一猜:()()=-+b a b a -平方差公式1、平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b a b a b a -=-+。
2、其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
随堂练习:1、下列各式中哪些可以运用平方差公式计算 (1)()()c a b a -+ (2)()()x y y x +-+ (3)()()ab x x ab ---33 (4)()()n m n m +--2、判断:(1)()()22422b a a b b a -=-+ ( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+x x x ( ) (3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( )3、计算下列各式:(1)()()b a b a 7474+- (2)()()n m n m ---22 (3)()()33221221--+-+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-x x x x4、填空:(1)()()=-+y x y x 3232 (2)()()116142-=-aa(3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab (4)()()229432y x y x -=-+5、求()()()22y x y x y x +-+的值,其中2,5==y x6、计算:(1)()()c b a c b a --+- (2)()()()()()42212122224++---+-x x x x x x【例】运用平方差公式计算:102×98; 59.8×60.2;运用平方差公式计算:完全平方公式探索:一块边长为a 米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种。
平方差公式与完全平方公式
平方差公式:2
2
)
)(
(b
a
b
a
b
a-
=
-
+
说明:相乘的两个二项式中,a表示的是完全相同的项,+b和-b表示的是互为相反数的两项。
所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。
熟悉公式:
(5+6x)(5-6x)中是公式中的a,是公式中的b
(5+6x)(-5+6x)中是公式中的a,是公式中的b
(x-2y)(x+2y)中是公式中的a,是公式中的b
(-m+n)(-m-n)中是公式中的a,是公式中的b
(a+b+c)(a+b-c)中是公式中的a,是公式中的b
(a-b+c)(a-b-c)中是公式中的a,是公式中的b
将下列各式转化成平方差形式
(1) 36-x2 (2)a2-
9
1b2(3) x2-16y2 (4) x2y2-z2(5) (x+2)2-9 (6)(x+a)2-(y+b)2(7) 25(a+b)2-4(a-b)2
例1:计算下列各题
1.(a+3)(a-3)
2..( 2a+3b)(2a-3b)
3. (1+2c)(1-2c)
4. (-x+2)(-x-2)
5. (a+2b)(a-2b)
6. (2x+1
2)(2x-1
2
)
例2:计算下列各题:
1、1998×2002
2、1.01×0.99 3.(20-1
9)×(19-8
9
)
例3::计算下列各题
1、(a+b)(a-b)(a2+b2)
2、(a+2)(a-2)(a2+4)
3、(x- 1
2)(x2+ 1
4
)(x+ 1
2
)
例4:计算下列各题
1、(-2x-y)(2x-y)
2、(y-x)(-x-y) 3.(-2x+y)(2x+y)
4.(4a-1)(-4a-1)
5.(b+2a)(2a-b)
6.(a+b)(-b+a)
例5;计算下列各题
1.(a+2b+c)(a+2b-c)
2.(a+b-3)(a-b+3)
3.(m-n+p)(m-n-p)
完全平方公式
完全平方公式:2222)(b ab a b a +±=± 注意不要漏掉2ab 项 熟悉公式
1、a 2+b 2=(a+b)2 =(a-b)2
2、(a-b )2=(a+b)2 ; (a+b)2=(a-b)2
3、(a+b)2 +(a-b )2=
4、(a+b)2 --(a-b )2= 5.将下列各式转化成完全平方式形式
(1)a 2-4a +4 (2)a 2-12ab +36b 2 (3)25x 2+10xy +y 2
(4)16a 4+8a 2+1 (5) (m +n)2-4(m +n)+4 (6) 16a 4-8a 2+1
(7)249114x x --
例1:计算下列各题
1、2)(y x +
2、2)23(y x -
3、2)2
1
(b a + 4、2)12(--t
5、2)313(c ab +-
6、2)2332(y x +
7、2)12
1(-x 8、(0.02x+0.1y)2
例2:利用完全平方公式计算:
(1)1022 (2)1972 (3)982 (4)2032
例3:(1)若22)2(4+=++x k x x ,求k 值。
(2)若k x x ++22是完全平方式,求k 值
(3)已知1
3a a
+=,求22
1
a a +的值。