最新人教版六年级数学下册知识点归纳:统计与概率
- 格式:doc
- 大小:673.50 KB
- 文档页数:3
六年级数学统计与概率知识点和例题统计和概率是我们学习到高中都还需要学习的,今天小编就给大家分享一下六年级数学,有机会的来阅读一下统计与概率知识点:1、三种统计图:条形统计图(表示各个量的多少)、折线统计图(表示数量多少、反映增减变化)扇形统计图(表示部分与整体的关系)。
2、平均数:几个数量的和除以数量的个数;中位数:数据从大到小或从小到大排列,最中间的一个或最中间的两个的平均数。
众数:在一组数据中出现次数最多的数。
3、事情的发生有三种情况:第一种是必然事件:一定会发生的事件,概率是1第二种是不可能事件:一定不会发生的事件,概率为0第三种是随机事件(也叫可能事件):可能发生也可能不发生的事件,概率是大于0小于1统计与概率练习题1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.【答案】解:(1)画树状图得:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。
(2)这个游戏不公平。
理由如下:∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,∴甲胜的概率为,乙胜的概率为。
∵甲胜的概率≠乙胜的概率,∴这个游戏不公平。
【考点】树状图法,概率,游戏的公平性。
【分析】(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。
(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。
3. (2012山东东营9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计(图中信息不完整). 已知A、B两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.(1) a= ,本次调查样本的容量是 ;(2) 先求出C组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?【答案】解:(1)20,500。
一、统计学的基本概念1.统计学的定义:统计学是研究数据的收集、整理、分析和解释的一门科学。
2.数据的定义:数据是对事物或现象的观察结果或实验结果的记录。
3.总体和样本:总体是指研究对象的全部个体或事物;样本是指从总体中选取出来的一部分个体或事物。
4.数据的分类:数据可以分为定量数据和定性数据两种类型。
定量数据是可以用数值表示的数据,例如身高、体重等;定性数据是无法用数值表示的数据,例如颜色、性别等。
5.调查和实验:调查是收集统计资料的一种方法,通过观察或访问来获得数据;实验是通过人为干预,观察事件的变化来获得数据。
二、统计图1.条形图:用矩形的高度表示数据的大小,横轴表示数据的类别。
适用于比较不同类别数据的大小。
2.折线图:用折线连接各数据点,横轴表示时间或其他连续变量。
适用于展示随时间变化的数据。
3.饼图:用扇形的面积表示数据的比例关系。
适用于展示各个部分在整体中的占比情况。
4.散点图:用坐标点表示数据的分布情况,横纵坐标分别表示两个变量。
适用于研究两个变量之间的关系。
5.帕累托图:用累计曲线表示数据的累计百分比,纵轴表示数据的累计百分比,横轴表示数据的类别。
适用于查找主要原因。
三、统计的描述与分析1.集中趋势:平均数、中位数、众数是常用的描述一个数据集中趋势的指标。
平均数是所有数据的和除以数据的个数,中位数是将数据从小到大排列后的中间值,众数是数据中出现次数最多的值。
2.离散程度:极差是最大值和最小值的差,标准差是各数据与平均数差值的平方平均数的算术平方根,方差是标准差的平方。
3.概率:概率是事件发生的可能性。
事件是指一个或多个基本结果的集合。
概率的计算方法包括频率法、古典概率法和几何概率法。
四、统计调查的步骤1.制定调查目标:明确研究目标和问题。
2.设计问卷或实验方案:构建问题和实验的具体方案。
3.选择调查样本:根据总体选择适当的样本。
4.数据收集:实施调查或实验,收集数据。
5.数据整理:对收集到的数据进行整理和清洗。
六年级概率统计知识点概率统计是数学中的一个重要分支,它广泛地应用于各个领域,如经济学、社会学、医学等。
六年级的学生也开始接触概率统计的基础知识,下面将介绍几个六年级概率统计的知识点。
知识点一:样本空间与事件在概率统计中,我们首先需要了解样本空间和事件的概念。
样本空间是指一个随机试验中所有可能结果的集合。
例如,掷一颗骰子的样本空间为{1, 2, 3, 4, 5, 6}。
事件是样本空间的子集,表示我们感兴趣的一部分结果。
比如,掷一颗骰子出现奇数的事件为{1, 3, 5}。
知识点二:概率的定义和性质概率是事件发生的可能性大小的度量,通常用一个介于0和1之间的数表示。
概率的定义是:事件发生的次数与试验总次数的比值。
在数学中,我们用P(A)表示事件A发生的概率。
概率具有以下性质:1. 非负性:概率永远是非负数,即P(A) ≥ 0。
2. 规范性:对于样本空间中所有可能的结果,它们的概率和为1,即P(样本空间) = 1。
3. 加法性:对于两个互不相容的事件A和B,它们的概率之和等于它们的并事件(即A或B发生)的概率,即P(A ∪ B) = P(A) + P(B)。
知识点三:互斥事件和独立事件互斥事件是指两个事件不可能同时发生,也就是说它们的交集为空集。
例如,掷一颗骰子出现奇数和出现偶数就是互斥事件。
独立事件是指一个事件的发生不会影响另一个事件的发生。
例如,掷一颗骰子两次,第一次出现奇数与第二次出现偶数就是独立事件。
知识点四:排列与组合排列是指从一组对象中按照一定的顺序选取若干个对象的方式。
例如,在一副扑克牌中选取3张牌的排列数是52 × 51 × 50。
组合是指从一组对象中选取若干个对象的方式,与排列不同,组合中选取的对象不考虑顺序。
例如,在一副扑克牌中选取3张牌的组合数是52 × 51 × 50 / (3 × 2 × 1)。
知识点五:频率和概率频率是指在多次独立重复试验中,某个事件发生的次数与试验总次数之比。
统计与概率
一统计表
(一)意义
* 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
(二)组成部分
* 一般分为表格外和表格内两部分。
表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。
(三)种类
* 单式统计表:只含有一个项目的统计表。
* 复式统计表:含有两个或两个以上统计项目的统计表。
* 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。
(四)制作步骤
1搜集数据
2整理数据:
要根据制表的目的和统计的内容,对数据进行分类。
3设计草表:
要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。
4 正式制表:
把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。
二统计图
(一)意义
* 用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
(二)分类
1 条形统计图
用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。
优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同。
取一个单位长度表示数量的多少要根据具体情况而确定;
复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
制作条形统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小画出长短不同的直条,并注明数量。
2 折线统计图
用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。
制作折线统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
3扇形统计图
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系。
制扇形统计图的一般步骤:(1)先算出各部分数量占总量的百分之几。
(2)再算出表示各部分数量的扇形的圆心角度数。
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
第五章简单的统计
一统计表
(一)意义
* 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
(二)组成部分
* 一般分为表格外和表格内两部分。
表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。
(三)种类
* 单式统计表:只含有一个项目的统计表。
* 复式统计表:含有两个或两个以上统计项目的统计表。
* 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。
(四)制作步骤
1搜集数据
2整理数据:
要根据制表的目的和统计的内容,对数据进行分类。
3设计草表:
要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长
度。
4 正式制表:
把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。
二统计图
(一)意义
* 用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
(二)分类
1 条形统计图
用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。
优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同。
取一个单位长度表示数量的多少要根据具体情况而确定;
复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
制作条形统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小画出长短不同的直条,并注明数量。
2 折线统计图
用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。
制作折线统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
3扇形统计图
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系。
制扇形统计图的一般步骤:(1)先算出各部分数量占总量的百分之几。
(2)再算出表示各部分数量的扇形的圆心角度数。
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。