5-5 焓熵图
- 格式:pdf
- 大小:671.78 KB
- 文档页数:5
电子焓熵图中符号及单位整理路学军计算时减去熵值压力:符号P. 单位MPa. 温度:符号t. 单位℃过热蒸汽区比容符号υ 单位m3/kg 焓(比焓)符号h单位kj/kg. 比熵符号S. 单位kj/kg.K饱和状态(蒸汽,水)压力符号Ps 单位MPa饱和温度(饱和水=饱和蒸汽)符号t s单位℃比容υ1饱和水单位m3/kg比容υ11饱和蒸汽单位m3/kg比焓符号h1饱和水单位kj/kg比焓符号h11饱和蒸汽单位kj/kg汽化潜热符号г 单位kj/kg饱和水的比熵S1单位kj/kg.k饱和蒸汽的比熵S11单位kj/kg.k注:过冷水(未饱和水)的焓熵在过热蒸汽区《发电厂热力设备》中的纸质焓熵图流动速度V换算成为焓差V单位为m/S △h单位为j/kg时用式V=√2△h如取值计算中V单位为m/S,△h单位为kj/kg,侧V=44.72√△h等压热Qp及热焓H(推导过程)《物理、化学》54页Qp=△H=△U+p△υ=(U2+p2υ2)(U1+p1υ1)H=m Cp T 其中Cp为等压比热单位kj/kg.KH≡U+pυH为技术功U为内能(物质温度的热能)pυ为膨胀功(工质的流动能,产生位移,具有压力势能)膨胀功产生位移的推动功能量传递做功→△w=p △υ(比容)传热→△q=T △S(比熵)dq R(功)=T ds(熵)绝热过程本式都为零熵是体系混乱程度的量度。
没有熵就没有热功的传递和转换H=ST(绝热熵)+F(功函)+pυ(膨胀功)H=ST(绝热熵)+G(自由能)功函的定义F≡U-TS(热温熵)自由能的定义G=U+pυ-TS(热温熵)功函、自由能具有方向和限度(矢量)功函是电子要脱离原子,必须从费米能级跃进到真空静止电子(自由电子)能级这一跃进所需要的能量,叫功函。
这一定义和电子的逸出功一样,只是从不同的角度讲的而已。
焓= +㶲(自己认为)。
工程上用的气态工质可以分为两类,即气体和蒸气,两者之间并无严格的界限。
蒸气泛指刚刚脱离液态或比较接近液态的气态物质,在被冷却或被压缩时,很容易变回液态。
一般地说,蒸气分子间的距离较小,分子间的作用力及分子本身的体积不能忽略,因此,蒸气一般不能作为理想气体处理。
工程上常用的蒸气有水蒸气、氨蒸气、氟利昂蒸气等。
由于水蒸气来源丰富,耗资少,无毒无味,比热容大,传热好,有良好的膨胀和载热性能,是热工技术上应用最广泛的一种工质。
各种物质的蒸气虽然各有特点,但其热力性质及物态变化规律都有许多类似之处。
这里仅以水蒸气(简称蒸汽)为例,对它的产生、状态的确定及其基本热力过程进行分析。
1. 蒸气是由液体汽化而产生的。
液体汽化有两种形式:蒸发和沸腾。
蒸发是在液体表面进行的汽化现象。
由于液体分子处于无规则的热运动状态,每个分子的动能大小不等,在液体表面总会有一些动能大的分子克服邻近分子的引力而逸出液面,形成蒸气,这就是蒸发。
蒸发可以在任何温度下进行,但温度愈高,能量较大的分子愈多,蒸发愈强烈。
与蒸发不同,在给定的压力下,沸腾是在某一特定温度下发生、在液体内部和表面同时进行并且伴随着大量汽泡产生的剧烈的汽化现象。
实验证明,液体沸腾时,尽管对其继续加热,但液体的温度保持不变。
无论蒸发还是沸腾,如果液面上方是和大气相连的自由空间,那么一般情况下汽化过程可以一直进行到液体全部变为蒸气为止。
当液体在有限的密闭空间内汽化时,则不仅有分子逸出液体表面而进入蒸气空间,而且也会有分子从蒸气空间落到液体表面,回到液体中。
开始时,单位时间从液面逸出的分子多于返回液面的分子,蒸气空间中的分子数不断增加。
但当蒸气空间中蒸气的密度达到一定程度时,在同一时间内逸出液面的分子就会与回到液面的分子数目相等,气、液两相达到了动态平衡,这种状态称为饱和状态。
饱和状态下的液体和蒸气分别称为饱和液体和饱和蒸气。
饱和蒸气的压力和温度分别称为饱和压力(用p s表示)和饱和温度(用t s表示),二者一一对应,且饱和压力愈高,饱和温度也愈高,例如:对于水蒸气,当p s=0.10325MPa 时,t s=100℃;当p s=1MPa 时,t s=179.916℃。
压焓图解读在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3、六组等参数线制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP),等焓线(Enthalpy),饱和液体线(Saturated Liquid),等熵线(Entropy),等容线(Volume),干饱和蒸汽线(Saturated Vapor),等干度线(Quality),等温线(Temperature) (1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
第五章气体的热力性质5.1 理想气体性质 (1)5.1.1 理想气体状态方程 (2)5.1.2 理想气体热系数 (3)5.1.3 理想气体热力学能和焓的特性 (4)5.1.4 理想气体熵方程 (4)5.2 理想气体比热容及参数计算 (5)5.2.1 比热容的单位及其换算 (5)5.2.2 理想气体比热容与温度的关系 (5)5.2.3 平均比热容 (6)5.2.4 理想气体性质特点 (11)5.3 实际气体状态方程 (11)5.3.1 范德瓦尔斯状态方程 (12)5.3.2 其它状态方程 (14)5.3.3 维里(Virial) 状态方程 (16)5.3.4 对比态状态方程 (17)5.4 实际气体比热容及焓、熵函数 (20)5.4.1 实际气体状态函数的推导方法 (20)5.4.2 计算气体热力性质的三种方法 (22)思考题及答案 (22)5.1 理想气体性质工质在通常的参数范围内可呈现为气、液、固三种聚集状态,或称三种相。
这里所谓的气体是指在其工作的参数范围内总是呈现为气态的工质。
例如空气、气体燃料、燃气(燃料燃烧生成的气体),以及组成它们的单元气体氮、氢、氧、二氧化碳等等。
本节主要讲述理想气体性质。
理想气体性质是指当压力减小到趋于零时,气体热力性质趋近的极限情况。
这时,表达气体热力性质的各状态函数有最简单的形式。
在压力很低时,气体的比体积大而内部分子自身占有的体积相对极小;分子间的平均距离大,使分子间的相互作用力很小,以致可以忽略分子自身占有的体积和分子间的相互作用力对气体宏观热力性质的影响。
因此,常将分子自身不占有体积和分子之间无相互作用力作为理想气体的微观模型。
这也是理想气体性质有简单表达形式的内在原因。
尽管理想气体性质不能很精确地表达气体,特别是较高压力下气体的热力性质,但它在工程中还是具有很重要的实用价值和理论意义。
这是因为:第一,在通常的工作参数范围内,按理想气体性质来计算气体工质的热力性质具有足够的精确度,其误差在工程上往往是允许的。
压焓图解读原创压焓图(p,h)一、压焓图的用途相变制冷是利用制冷剂的状态变化实现的,制冷剂在不同的状态时具有不同的特性,为方便科学研究以及工程计算,将工质的状态参数绘制在一张曲线图上,p,h图是比较常用的一种。
二、压焓图介绍名词解释:焓的定义:把制冷剂的内能与制冷剂流动过程中所传递能量之和定义为制冷剂的焓。
表达式:h,u,pvh:表示1kg制冷剂的焓(比焓);u:表示1kg制冷剂的内能;pv:表示1kg制冷剂流动过程中传递的能量。
(p-压力,v-比体积)。
从焓的表达式中可以看出u代表1kg工质的内能,是储存于工质的内部的能量,pv 是1kg工质移动时传递的能量。
也就是说,当1kg工质通过一定的界面流入系统时储存在其内部的内能随工质进入系统,同时还把从外部功源获得能量带进系统,因此,系统中因为引进1kg工质所获得的总能量是内能与传递的能量之和。
熵的定义:表示工质温度变化时,热量传递的程度,用S表示,单位kJ/kg•K。
表达式:dQ/dT (dQ-表示热量的变化,dT表示温度的变化)。
目前熵这个参数在空调系统热力计算或参数确定时用的很少。
干度x:表示系统中制冷剂蒸汽与液体的变化关系(数值范围0~1)。
当干度x=1时,说明制冷剂均以饱和蒸汽的形式存在,当干度x=0时,说明制冷剂均以液态形式存在。
干度在0与1之间变化,表示制冷剂蒸汽与液体的变化过程。
等压线:在压焓图上即为水平线。
等焓线:在压焓图上即为垂直线。
等温线:在两相区为水平线,在过冷液体区为略向左上方延伸的上凹曲线,接近于垂直,在过热蒸汽区等温线是向右下方延伸的下凹曲线。
等比容线:在过热蒸汽区为向右上方延伸的下凹曲线。
等比熵线:在过热蒸汽区为向右上方延伸的下凹曲线,斜率大于等比容线。
过热蒸汽区:等干度线x=1的右侧区域为过热蒸汽区(不存在液态制冷剂)。
过冷液体区:等干度线x=0左侧区域为过冷液体区(不存在液态制冷剂)。
两相区:在等干度线x=0与x=1之间的区域为两相区,在两相区内制冷剂液体与制冷剂蒸汽共存。
3.1 单级蒸气压缩式制冷的理论循环3.1.1 制冷系统与循环过程单级蒸气压缩式制冷系统主要由压缩机、冷凝器、膨胀阀和蒸发器四大部件组成,如图3-1所示。
对制冷剂蒸气只进行一次压缩,称为蒸气单级压缩。
整个循环过程主要由压缩过程、冷凝过程、节流过程以及蒸发过程四个过程组成,每个过程在不同的部件中完成,制冷剂在每个过程中的状态又各不相同,具体情况如下。
图3-1 单级蒸气压缩式制冷系统1 压缩机2 冷凝器3 膨胀阀4 蒸发器压缩过程:整个循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中低压和冷凝器中高压的作用,是整个系统的心脏。
制冷循环的压缩过程是在压缩机中完成的:压缩机不断抽吸从蒸发器中产生的压力为p o、温度为t o的制冷剂蒸气,将它压缩成压力为p k、温度为t k的过热蒸气,并输送到冷凝器中。
在这个过程中,压缩机需要做功。
冷凝过程:冷凝器是制冷系统中输出热量的设备,冷凝过程是在该部件中完成的.在压力p k下,来自于压缩机的制冷剂过热蒸气在冷凝器中首先被冷却成饱和蒸气,然后再逐渐被冷凝成液体,制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气)。
在冷凝过程中,与冷凝压力p k相对应的冷凝温度t k一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其它节流元件进入蒸发器。
节流过程:节流过程是在膨胀阀中完成的。
当制冷剂液体经过膨胀阀时,压力由p k降至p o,温度由t k降至t o,部分液体气化。
所以离开膨胀阀的制冷剂为温度为t o的两相混合物,该两相混合物进入蒸发器。
蒸发过程:蒸发器是制冷系统中冷量输出设备,蒸发过程是在蒸发器中完成的。
在蒸发器中,来自膨胀阀的两相混合物在压力p0和温度t0下蒸发,从被冷却介质中吸取它所需要的气化潜热,从而达到制取冷量的目的。
在蒸发过程中,与蒸发压力p0相对应的蒸发温度t0一定要低于被冷却介质的温度。
3.1.2 压焓图和温熵图在制冷循环的分析和计算中,通常要用到两种工具,即压焓图和温熵图.1.压焓图压焓图以绝对压力(MPa)为纵坐标,以焓值(KJ/Kg)为横坐标,如图3-2所示。
压焓图基本知识在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3、六组等参数线(1)等压线:图上与横座标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
与等熵线比较,等比容线要平坦些。
制冷机中常用等比容线查取制冷压缩机吸气点的比容值。
(6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。
它只存在与湿蒸气区。
上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。
在lgp-h图上确定其状态点,可查取该点的其余四个状态参数。
第四讲压焓图压力:垂直于物体表面的作用力,单位牛顿(N)。
压强:单位面积所受到的作用力,单位帕(Pa)。
焓:物体内能与压力能之和。
单位焦(J)。
等压过程中,系统从外界所吸收的热量等于系统焓值的增加。
比焓:1kg某物质的焓值。
单位kj/kg。
在压焓图上,X轴所表示的单位为比焓。
Y轴所表示的单位为压强。
为缩小尺寸,提高低压表示的精度,故取对数。
熵:能与绝对温度的比值,表示热量转换成功的程度。
在绝热过程中系统的熵不变。
单位J/K。
系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。
这就是熵增加原理。
由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。
它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。
熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。
温度:表征物体冷热程度的物理量。
标志着物体内部无规则运动的剧烈程度。
一切相互热平衡的系统,温度一定相同。
温标:表示温度数值的方法称为温标。
常用为摄氏温标与理想气体温标。
等温线:在气体区,液体区,都随压力下降温度直线下降,只有在饱和区内,与等压线重合,平行于X轴。
为此,通过压力与库温比较,可以知道蒸发温度是否正常(要加减系数),以判断故障。
干度:气液共存区域中,气态含量所占百分比称为干度。
当制冷剂在有限密闭空间内气液共存时,称为饱和状态。
饱和状态下的液体和蒸汽称为饱和液体与饱和蒸汽。
相态:物质所呈现的状态。
物质的三种形态又称为三种物相。
物态变化,简称相变。
三相点:物质三种物相同时存在,并达到平衡时的温度压力点。
每种物质,只有唯一的一个点。
水的三相点为0℃,610.5帕(绝对压力)。
是温标的校正点。
临界点:物质相态变化所达到的温度,压力状态点。
比容:单位质量的物质所占有的容积称为比容,用符号"V"表示。
其数值是密度的倒数。
压焓图详解压焓图,又被称为压力-焓图或电力-焓图,是一种研究物质的性质的重要工具,是热力学的主要工具之一。
它可以帮助我们研究物质在各种状态下的变化,并且可以定量地表示物质的性质。
压焓图是一个独特的二维图形,它可以表明一种物质在不同压力下的熵改变量和焓变量之间的关系。
压焓图利用压力与焓之间的关系,可以表示形成某种物体所必需的能量,以及产生物体时所释放的能量。
它也可以表明其他相关性质,比如物质的温度、密度、比热容等。
通常,在压焓图上,气体的温度以毫米和华氏度表示,压力以牛顿或磅力表示。
压焓图是分析物质性质的重要工具。
它可以帮助我们更好地了解某种物质在不同压力下的变化,也可以用来预测物质的属性,如温度、密度、比热容等。
此外,压焓图还可以用来理解物质的变形、溶解度和反应过程等,从而对物质进行更系统的研究。
压焓图有多种形式,其中最常用的形式是标准压焓图和常压压焓图。
标准压焓图是一种用水构成的压力-焓图,它可以用来表示水在标准压力下的压力-焓变化分布。
在标准压焓图中,水的压力是一个常量,而水的焓值会随着温度的变化而变化。
常压压焓图是一种在常压下进行的压力-焓图,它可以用来表示水的温度-焓变化分布。
在常压压焓图中,水的温度是一个常量,而水的焓值会随着压力的变化而变化。
压焓图是热学研究的重要工具,压焓图可以用来表示物质在不同初始状态之间的能量转换,以及物质的其他特性,如温度、密度、比热容等。
此外,压焓图还可以用来表示物质的变形、溶解度和反应过程等,以及物质的进化变化。
在现实应用中,压焓图有广泛的应用,比如用来研究物质结构、制造精细的加工工艺、进行蒸发和凝结等。
此外,它还可以用来研究物质的气相反应,比如室温下的苯乙烯固体-液态变化等。
压焓图还可以用于滤液及结晶作用的计算,用来控制锅炉操作。
总之,压焓图是一种重要的工具,它可以用来研究物质在不同压力下的变化,探索物质的特性,研究物质的构型,估算物质的变形、溶解度和反应过程等。
压焓图解读在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3、六组等参数线制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP),等焓线(Enthalpy),饱和液体线(Saturated Liquid),等熵线(Entropy),等容线(Volume),干饱和蒸汽线(Saturated Vapor),等干度线(Quality),等温线(Temperature)(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。