热力学总复习
- 格式:pptx
- 大小:507.18 KB
- 文档页数:35
名称含义说明体积功(或膨胀功)W 系统体积发生变化所完成的功。
2①当过程可逆时,W = ∫ pdV 。
1②膨胀功往往对应闭口系所求的功。
轴功W系统通过轴与外界交换的功。
①开口系,系统与外界交换的功为轴功Ws。
②当工质的进出口间的动位能差被忽略时,Wt=Ws,所以此时开口系所求的轴功也是技术功。
《工程热力学》期末总结一、闭口系能量方程的表达式有以下几种形式:1kg 工质经过有限过程:q = ∆u + w(2-1)1kg 工质经过微元过程:δq = du+δw(2-2)mkg 工质经过有限过程:Q = ∆U +W(2-3)mkg 工质经过微元过程:δQ = dU +δW(2-4)以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。
在应用以上各式时,如果是可逆过程的话,体积功可以表达为:2δw =pdv(2-5)w= ∫1 pdv2(2-6)δW = pdV(2-7)W = ∫1 pdV(2-8)闭口系经历一个循环时,由于U 是状态参数,∫dU = 0 ,所以∫δQ = ∫δW(2-9)式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。
二、稳定流动能量方程q = ∆h + 1∆c 2 2= ∆h + wt + g∆z + ws(2-10)(适用于稳定流动系的任何工质、任何过程)2q = ∆h −∫vdp(2-11)1(适用于稳定流动系的任何工质、可逆过程)三、几种功及相互之间的关系(见表一)表一几种功及相互之间的关系s1名称 质量比热容c体积比热容 c '摩尔比热容 M c 三者之间的关系单位 J/(k g ·K )J/(m 3·K )J/ (kmol ·K )M cc ' = c ρ 0 =22.4ρ 0 − 气体在标准状况下的密度定压 c'c pM c p定容c V'c VM c V推 动功W push开口系因工质流动而传 递的功。
概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U 是一个态函数:A B U U W -=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。
13.定压热容比:pp T H C ⎪⎭⎫ ⎝⎛∂∂=;定容热容比:V V T U C ⎪⎭⎫ ⎝⎛∂∂= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。
高等工程热力学总复习题高等工程热力学总复习题高等工程热力学总复习题一、简答题1. 与外界只有一种功量交换的单相简单系统的状态参数都可以两个独立的状态参数确定是否正确?答:不正确,对简单可压缩系统的物理变化过程,确定系统平衡状态的独立状态参数只需两个。
但是对于化学反应的物系,不仅存在热与力两种不平衡势差,而且存在驱动化学反应的化学势差,并使参与反应的物质成分或者浓度发生变化,故确定其平衡状态往往需要两个以上的独立参数。
2. 阐述膨胀功、技术功、轴功与推动功之间的联系与区别?答:膨胀功:气体容积变化所引起的能量的变化;技术功:工程中可以直接利用的那部分能量,包括动能、势能和轴功。
轴功:通过进出口截面以外的边界所传递的功;推进功:在进出口截面上,为推动工质出入系统所传递的功量;稳定流动中,工质受热膨胀而得到的膨胀功一部分用于补偿系统输出的净推动功,一部分用于增加流动工质的流动动能及重力势能,其余部分作为开口系统的轴功输出。
即:膨胀功=技术功+推动功,技术功=轴功+动能+势能。
3. 刚性容器绝热放气,试证明过程中容器内发生的是可逆绝式,所以整个放气过程是可逆的。
在这一放气过程中,可以假象成又一个活塞把剩余气体与放出的气体分割开来进行的,但并不表示容积的总熵不变,因为有质量的流出,不是孤立系统,所以容积内的总熵是减少的。
如果把所有气体以及外界看做是一个系统,考虑放出的气体在容积外的不可逆膨胀过程,所以系统的总熵是增加的。
如果把剩余气体和放出的气体看做是一个整体,则系统是孤立系统,又因为是可逆绝热过程,系统的总熵是不变的。
所以这一过程与熵增原理不违背。
4. 稳定气流对刚性容器绝热充气是可逆过程吗?若不是不可逆损失如何计算?答:不是可逆过程。
存在不可逆损失,熵产ΔSg>0。
取此刚性绝热容器为系统,绝热过程,所以熵流ΔSf=0,故ΔS=ΔSf+ΔSg=ΔSg,所以ΔSg=∫12Cv·dT/T +R·lnV2/V1,又V1=V2,所以ΔSg=Cv·lnT2/T1。
《热力学与传热学》课程综合复习资料一、判断题:1、理想气体吸热后,温度一定升高。
2、对于顺流换热器,冷流体的出口温度可以大于热流体的出口温度。
3、工程上常用的空气的导热系数随温度的升高而降低。
4、工质进行膨胀时必须对工质加热。
5、工质的熵增就意味着工质经历一个吸热过程。
6、已知湿蒸汽的压力和温度,就可以确定其状态。
7、同一温度场中两条等温线可以相交。
二、简答题:1、夏天,有两个完全相同的储存液态氮的容器放置在一起,一个表面上已结霜,另一个没有。
请问哪一个容器的隔热性能更好?为什么?2、有人将一碗热稀饭置于一盆凉水中进行冷却。
为使稀饭凉的更快一些,你认为他应该搅拌碗中的稀饭还是盆中的凉水?为什么?3、一卡诺热机工作于500 ℃和200 ℃的两个恒温热源之间。
已知该卡诺热机每秒中从高温热源吸收100 kJ,求该卡诺热机的热效率及输出功率。
4、辐射换热与对流换热、导热相比,有什么特点?hl的形式,二者有何区别?5、Nu数和Bi数均可写成λ三、计算题:1、将氧气压送到容积为2m3的储气罐内,初始时表压力为0.3bar,终态时表压力为3bar,温度由t1=45℃升高到t2=80℃。
试求压入的氧气质量。
当地大气压为P b=760mmHg,氧气R g=260J/(kg⋅K)。
2、2kg温度为25 ℃,压力为2 bar的空气经过一个可逆定压过程后,温度升为200 ℃。
已知空气的比定压热容c p=1.0 kJ/(kg⋅K),比定容热容c V=0.71 kJ/(kg⋅K)。
试计算:(1)该过程的膨胀功;(2)过程热量。
3、流体受迫地流过一根内直径为25 mm的直长管,实验测得管内壁面温度为120℃,流体平均温度为60 ℃,流体与管壁间的对流换热系数为350 W/(m2⋅K)。
试计算单位管长上流体与管壁间的换热量。
4、在一根外直径为120mm的蒸汽管道外包一厚度为25mm的石棉保温层,保温层的导热系数为0.10 W/(m⋅K)。
化工热力学总复习一.绪论1.化工热力学的研究内容:①测量关联与推算不同条件下物质的平衡性质熵焓,温度压强(纯物质),组成(混合物)②能量的计算建立在热力学第一,第二定律基础上③单元操作相应的相平衡组分逸度④物性及热力学性质状态方程2.热力学的研究方法:①微观热力学(统计热力学)②宏观热力学(经典热力学)研究体系达到平衡时的热力学性质,物系从一个状态到另一状态中间的变化。
无法研究速率问题二.流体的P-V-T关系1.几个概念①状态方程:描述流体P-V-T关系的函数式f(P.V.T)=0 称为状态方程②临界点:表示气液两相能共存的最高压力和温度的汽化线的另一个端点,称为临界点③超临界流体:高于临界压力和温度的区域内的流体车称为超临界流体(既不同于液体,又不同于气体,它的密度可以接近液体,但具有类似气体的体积可变性和传递性质。
可作为特殊的萃取溶剂和反应介质)2..状态方程的比较①.Van der Waals 方程:可用于气液两相,但是精度不高,实际应用较少。
常数随物质而异,由临界参数计算而得②.RK方程:适用于非极性和弱极性化合物,对多数强极性化合物的计算偏差较大。
能较成功的应用于气相,但对液相效果较差,不能用于气液相平衡的计算。
常数于流体特性有关,可由物质的临界参数计算③.SRK方程:计算精度比RK方程高,用于气液相平衡计算时精度较高,工程上应用广泛。
方程常数b与RK方程一致,但认为a不再是常数而是温度的函数④.PR方程:从SRK方程改进而来,精度更高,也是气液平衡工程计算的常用方程,预测液体摩尔体积的准确度较SRK明显提高。
方程参数利用纯物质的临界参数和偏心因子计算⑤.Virial方程:用于液相计算误差较大,不能用于气液相平衡计算。
其系数仅是温度的函数。
一般用普遍化方法估算。
目前尚未全部解决维里系数的数值⑥.M-H方程:方程准确度高,适用范围广,能用于包括非极性至强极性的化合物。
方程常数只需使用纯物质的临界参数及一点蒸汽压数据便可求得,是能从较少输入信息便可获得多种热力学性质的最优秀的状态方程之一3.Virial方程与virial系数①.从什么角度导出的维里方程?分子之间相互作用的受力②.维里方程为什么是纯理论方程?维里方程系用统计力学的方法推导而来,故而具有坚实的理论基础③.维里系数的确切的物理意义:第二维里系数是考虑到两个分子碰撞或相互作用导致的与理想行为的偏差,第三则是反映了三个分子碰撞所导致的非理想行为④.为什么维里方程可以截断?∵维里方程是无穷级数的形式,而实际应用时由于维里系数数据的缺乏,常使用近似成立的舍项形式,而多分子相互作用的概率很低,对Z的贡献逐项减小,∴可以截断⑤.什么时候截断误差大?什么时候使用二项截断式?压力越高,多分子碰撞的几率越大,引起的误差也越大;通常中,低压时取二项截断式⑥.维里系数取决于什么?对于一定物质而言,纯物质中维里系数仅取决于温度(混合物中取决于温度和各相组成)4.对比态原理及其应用①.对比态原理的对比态参数是什么意思?②.对比态有几个参数?哪几个?有三个;是对比温度Tr,对比压力Pr,和偏心因子ω③.偏心因子的概念?任一流体在Tr=0.7处的纵坐标lgP rS值与氩氪氙在同一条件下的lgPrS的差值④.什么时候ω=0?当流体是简单流体时,ω=0⑤.什么是简单流体?是惰性气体系球形分子的流体是简单流体5普遍化状态方程(由对比态原理推出的方程)①.状态方程的三个参数Tr Pr Vr②.两种普遍化计算方法维里系数法,普遍化压缩因子法③.Z0 Z1是谁的函数?是Pr ,Tr的复杂函数6.真实气体混合物的P-V-T关系①.混合物的P-V-T关系的状态方程的基本思路:利用纯物质的状态方程,推广应用到混合物,将A B等常数用混合物的常数代入(利用混合规则,即纯物质的性质及其组成来转化)②.混合维里系数中交叉项维里系数为什么会存在?不同的分子之间相互作用的影响③.维里系数下标的意义:B11,B22:纯物质的第二维里系数B12=B21:交叉第二维里系数,反映不同组分分子1,2之间的相互作用④.给出Σ公式进行展开,合并:B=ΣiΣjYiYjBij=y1y1B11+y1y2B12+y2y1B21+y2y2B227.液体的P-V-T性质①. 了解两个名词:修正的Rackett方程三.纯流体的热力学性质1.热力学性质间的关系①.两个概念:体积膨胀系数β等温压缩系数k②.剩余性质的定义:气体在真实状态下的热力学性质在同一温度,压力下当气体处于理想状态下热力学性质之间的差额③.计算剩余性质的目的:为了计算实际流体的热力学性质2.气体热力学性质的普遍化关系法①.计算剩余性质使用普遍化法时,把剩余性质变成谁的函数?Tr Pr Z PV=ZRT [Z:普遍化压缩因子]3.逸度和逸度系数①.为什么要引入逸度?为了修正什么?为了便于表达真实气体的自由焓,为了表征体系的逃逸趋势;为了修正压力②.什么是逸度系数?什么时候逸度系数=1?逸度系数是物质的逸度与其压力之比;[低压]理想气体时φi=1③.逸度系数的计算普遍化方法-----三参数(P V T)4.液体的逸度①.液体的逸度怎么定义?②.怎么计算液体逸度?通过液体饱和蒸汽压进行两次修正③.什么是Poynting因子?什么时候需要它?指数校正项称为Poynting因子;在高压下需要四.流体混合物的热力学性质1.化学位和偏摩尔性质①.偏摩尔体积的下标:(T,P,Nj) 混合后的偏摩尔体积与组成有关②.M Mi Mi 与Mt的名称③.摩尔与偏摩尔体积&性质之间的关系:M=Σ(XiMi)2.Gibbs-Duhem 方程x1dM1+x2dM2=0 从一个组分的偏摩尔性质推算另一个组分①.Gibbs-Duhem方程表示了谁与谁的关系:混合物性质M与混合物中各组分的偏摩尔性质Mi之间的依赖关系3.混合物的逸度和逸度系数①.两个区别:混合物的逸度-----混合物总压的修正混合物的组分逸度------对分压的修正②.混合物的组分逸度的定义:通过给出纯物质的逸度公式改写4.理想溶液和标准态①.什么是理想溶液?组成结构相似(同系物)②.如何计算理想溶液的逸度?(为了考试方便) Lewis-Randall定则5.活度与活度系数①.二者用来修正什么?用来修正摩尔浓度②.运用活度与活度系数可以说明什么?可以说明理想溶液(与真实溶液的区别?)6.超额性质①.超额性质的概念在相同的温度,压力和组成条件下真实溶液和理想溶液性质之差②.为什么只讲超额自由焓? ∵超额自由焓与活度系数一一对应③.引入超额性质的目的?为了计算活度系数④.超额自由焓的建模中为什么取消了压强?∵其研究对象是非理想液体溶液,而压强对液体的作用影响小,故而忽略了。