§3.2.2 分式不等式与高次不等式的解法
- 格式:ppt
- 大小:910.00 KB
- 文档页数:27
复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。
复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。
(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。
2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。
易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。
如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。
3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。
4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。
<2>注:g(x)=0为孤立点,易遗漏。
5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。
<2>形如的基本解法:<i>分段讨论;<ii>数形结合。
6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。
易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。
解不等式问题重点注意:i.等价变形;ii.数形结合的方法。
第2课时一元二次不等式及其解法(二)学习目标1.会解可化为一元二次不等式(组)的简单分式不等式.2.会对含参数的一元二次不等式分类讨论.3.掌握与一元二次不等式有关的恒成立问题的解法.知识点一 分式不等式的解法 一般的分式不等式的同解变形法则: (1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0;g (x )≠0; (3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 知识点二 一元二次不等式恒成立问题一般地,“不等式f (x )>0在区间[a ,b ]上恒成立”的几何意义是函数y =f (x )在区间[a ,b ]上的图象全部在x 轴上方.区间[a ,b ] 是不等式f (x )>0的解集的子集. 恒成立的不等式问题通常转化为求最值问题,即: k ≥f (x )恒成立⇔k ≥f (x )max ; k ≤f (x )恒成立⇔k ≤f (x )min .知识点三 含参数的一元二次不等式的解法解含参数的一元二次不等式,仍可按以前的步骤,即第一步先处理二次项系数,第二步通过分解因式或求判别式来确定一元二次方程有没有根,第三步若有根,区分根的大小写出解集,若无根,结合图象确定解集是R 还是∅.在此过程中,因为参数的存在导致二次函数开口方向、判别式正负、两根大小不确定时,为了确定展开讨论.1.由于x -5x +3>0等价于(x -5)(x +3)>0,故y =x -5x +3与y =(x -5)(x +3)图象也相同.( × )2.x 2+1≥2x 等价于(x 2+1)min ≥2x .( × )3.对于ax 2+3x +2>0,当a =1时与a =-1时,对应的不等式解集不能求并集.( √ ) 4.(ax +1)(x +1)>0⇔⎝⎛⎭⎫x +1a (x +1)>0.( × )题型一 分式不等式的解法 例1 解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,⎩⎭(2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0, 解得x <32或x ≥4,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. 反思感悟 分式不等式的解法:先通过移项、通分整理成标准型f (x )g (x )>0(<0)或f (x )g (x )≥0(≤0),再化成整式不等式来解.如果能判断出分母的正负,直接去分母即可. 跟踪训练1 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 解 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12,∴-3<x <-12, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.⎩⎭题型二 不等式恒成立问题 例2 设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求实数m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求实数m 的取值范围. 解 (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0.∴-4<m ≤0.(2)方法一 要使f (x )<-m +5在x ∈[1,3]上恒成立, 就要使m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, ∴g (x )max =g (1)=m -6<0,得m <6,∴m <0. 综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 方法二 当x ∈[1,3]时,f (x )<-m +5恒成立, 即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立. ∵x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又m (x 2-x +1)-6<0,∴m <6x 2-x +1.∵函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,∴只需m <67即可.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 引申探究把例2(2)改为:对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解 f (x )<-m +5,即mx 2-mx -1<-m +5, m (x 2-x +1)-6<0. 设g (m )=m (x 2-x +1)-6.则g (m )是关于m 的一次函数且斜率 x 2-x +1=⎝⎛⎭⎫x -122+34>0. ∴g (m )在[1,3]上为增函数,要使g (m )<0在[1,3]上恒成立,只需g (m )max =g (3)<0, 即3(x 2-x +1)-6<0,x 2-x -1<0,方程x 2-x -1=0的两根为x 1=1-52,x 2=1+52,∴x 2-x -1<0的解集为⎝⎛⎭⎪⎫1-52,1+52,即x 的取值范围为⎝ ⎛⎭⎪⎫1-52,1+52.反思感悟 有关不等式恒成立求参数的取值范围,通常处理方法有两种(1)考虑能否进行参变量分离,若能,则构造关于变量的函数,转化为求函数的最大(小)值,从而建立参变量的不等式.(2)若参变量不能分离,则应构造关于变量的函数(如一次函数、二次函数),并结合图象建立参变量的不等式求解.跟踪训练2 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,求实数m 的取值范围. 解 构造函数f (x )=x 2+mx +4,x ∈[1,2], 则f (x )在[1,2]上的最大值为f (1)或f (2).由于当x ∈(1,2)时,不等式x 2+mx +4<0恒成立.则有⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0,可得⎩⎪⎨⎪⎧m ≤-5,m ≤-4,所以m ≤-5.题型三 含参数的一元二次不等式例3 解关于x 的不等式ax 2-(a +1)x +1<0. 解 当a <0时,不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, ∵a <0,∴1a <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1. 当a =0时,不等式可化为-x +1<0,解集为{x |x >1}. 当a >0时,不等式可化为⎝⎛⎭⎫x -1a (x -1)<0. 当0<a <1时,1a >1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a . 当a =1时,不等式的解集为∅.当a >1时,1a <1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 综上,当a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 反思感悟 解含参数的一元二次不等式,可以按常规思路进行:先考虑开口方向,再考虑判别式的正负,最后考虑两根的大小关系,当遇到不确定因素时再讨论. 跟踪训练3 解关于x 的不等式(x -a )(x -a 2)<0.解 当a <0或a >1时,有a <a 2,此时,不等式的解集为{x |a <x <a 2}; 当0<a <1时,有a 2<a ,此时,不等式的解集为{x |a 2<x <a }; 当a =0或a =1时,原不等式无解.综上,当a<0或a>1时,原不等式的解集为{x|a<x<a2};当0<a<1时,原不等式的解集为{x|a2<x<a};当a=0或a=1时,解集为∅.穿针引线解高次不等式观察下列不等式解集与图象的关系.猜想第三个不等式的解集.对于函数f(x)=(x-x1)(x-x2)(x-x3)…(x-x n),不妨设x1<x2<x3<…<x n.其图象有两个特点:①当x>x n时,x-x1>0,x-x2>0,…,x-x n>0,∴f(x)>0.该区间内f(x)图象在x轴上方.②从x轴右上方开始,f(x)的图象每穿过一个零点,就从x轴一侧到另一侧变化一次.根据这个原理,只要画出f(x)示意图(穿针引线),即可得到f(x)>0(或f(x)<0)的解集.如第三个不等式解集为(0,1)∪(2,+∞).在此过程中,y轴可省略不画.典例解不等式x-1x(x+1)>0.解x-1x(x+1)>0即x(x-1)(x+1)>0,穿针引线:解集为(-1,0)∪(1,+∞).[素养评析]穿针引线法的发现归功于从简单到复杂,从具体到一般的观察,发现问题,提出命题,这就是逻辑推理素养中的归纳.1.若不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2答案 D解析 由题意,得Δ=m 2-4≤0,∴-2≤m ≤2. 2.不等式x -1x -2≥0的解集为( )A .[1,2]B .(-∞,1]∪[2,+∞)C .[1,2)D .(-∞,1]∪(2,+∞) 答案 D解析 由题意可知,不等式等价于⎩⎪⎨⎪⎧(x -1)(x -2)≥0,x -2≠0,∴x >2或x ≤1.3.不等式3x +1≥1的解集是( )A .(-∞,-1)∪(-1,2]B .[-1,2]C .(-∞,2]D .(-1,2]答案 D解析 ∵3x +1≥1,∴3x +1-1≥0,∴3-x -1x +1≥0,即x-2x+1≤0,等价于(x-2)(x+1)<0或x-2=0,故-1<x≤2.4.若不等式x2+x+k<0在区间[-1,1]上恒成立,则实数k的取值范围是.答案(-∞,-2)解析x2+x+k<0,即k<-(x2+x)在区间[-1,1]上恒成立,即k<[-(x2+x)]min.当x=1时,[-(x2+x)]min=-2.∴k<-2.5.解关于x的不等式:x2+(1-a)x-a<0.解方程x2+(1-a)x-a=0的解为x1=-1,x2=a.因为函数y=x2+(1-a)x-a的图象开口向上,所以①当a<-1时,原不等式的解集为{x|a<x<-1};②当a=-1时,原不等式的解集为∅;③当a>-1时,原不等式的解集为{x|-1<x<a}.1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.当不等式含有等号时,分母不为零.2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然,这必须以参数容易分离作为前提.分离参数时,经常要用到以下简单结论(1)若f (x )有最大值f (x )max ,则a >f (x )恒成立⇔a >f (x )max ;(2)若f (x )有最小值f (x )min ,则a <f (x )恒成立⇔a <f (x )min . 3.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑(1)关于不等式类型的讨论:二次项系数a >0,a <0,a =0.(2)关于不等式对应的方程根的讨论:两不等根(Δ>0),两相等实根(Δ=0),无根(Δ<0). (3)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2.一、选择题1.不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 答案 A解析 原不等式等价于⎩⎪⎨⎪⎧2x +1≠0,(x -1)(2x +1)≤0,解得-12<x ≤1.∴原不等式的解集为⎝⎛⎦⎤-12,1.2.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( ) A .1 B .-1 C .-3 D .3 答案 C解析 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数, ∴f (x )min =f (1)=-3,∴m ≤-3, ∴m 的最大值为-3.3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4] D .[0,4]答案 D解析 当a =0时,ax 2-ax +1<0无解,符合题意. 当a <0时,ax 2-ax +1<0解集不可能为空集. 当a >0时,要使ax 2-ax +1<0解集为空集,需⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4.综上,a ∈[0,4].4.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎫x -1a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <a 或x >1a B.{}x | x >aC.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >a 或x <1a D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 答案 A 解析 ∵a <-1,∴a (x -a )⎝⎛⎭⎫x -1a <0⇔(x -a )·⎝⎛⎭⎫x -1a >0. 又a <-1,∴1a >a ,∴x >1a或x <a .∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 或x >1a . 5.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .RC.⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32 D .∅ 答案 A解析 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点, 又m >0,所以原不等式的解集不可能是B ,C ,D ,故选A.6.若关于x 的方程x 2+(a 2-1)x +a -2=0的一根比1小且另一根比1大,则实数a 的取值范围是( ) A .(-1,1) B .(-∞,-1)∪(1,+∞) C .(-2,1) D .(-∞,-2)∪(1,+∞)答案 C解析 令f (x )=x 2+(a 2-1)x +a -2, 依题意得f (1)<0,即1+a 2-1+a -2<0, ∴a 2+a -2<0,∴-2<a <1.7.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则实数x 的取值范围是( ) A .1<x <3 B .x <1或x >3 C .1<x <2 D .x <1或x >2答案 B解析 设g (a )=(x -2)a +(x 2-4x +4), g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧g (1)=x 2-3x +2>0,g (-1)=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 8.若方程x 2+(m -3)x +m =0有两个正实根,则m 的取值范围是( ) A .(0,1] B .(0,2) C .(-3,0) D .(-1,3) 考点 “三个二次”间对应关系的应用 题点 由“三个二次”的对应关系求参数值 答案 A解析 由题意得⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m >0,x 1x 2=m >0,解得0<m ≤1.二、填空题9.不等式5-xx +4≥1的解集为 .答案 ⎝⎛⎦⎤-4,12 解析 因为5-x x +4≥1等价于1-2xx +4≥0,所以2x -1x +4≤0,等价于⎩⎪⎨⎪⎧(2x -1)(x +4)≤0,x +4≠0,解得-4<x ≤12.10.若不等式ax 2+2ax -(a +2)≥0的解集是∅,则实数a 的取值范围是 . 答案 (-1,0]解析 当a =0时,-2≥0,解集为∅,满足题意;当a ≠0时,a 满足条件⎩⎪⎨⎪⎧a <0,Δ=4a 2+4a (a +2)<0,解得-1<a <0.综上可知,a 的取值范围是(-1,0].11.(2018·上饶模拟)当x >0时,若不等式x 2+ax +1≥0恒成立,则实数a 的最小值为 . 答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0时,有f (0)=1>0,若要原不等式恒成立,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2. 三、解答题12.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,求实数a 的取值范围. 解 当a -2≠0时,⎩⎪⎨⎪⎧ a -2<0,4(a -2)2-4(a -2)·(-4)<0,即⎩⎪⎨⎪⎧a <2,a 2<4,解得-2<a <2.当a -2=0时,-4<0恒成立, 综上所述,-2<a ≤2.13.已知一元二次不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.解 方法一 由题意可得a <0,且α,β为方程ax 2+bx +c =0的两根,∴由根与系数的关系得⎩⎨⎧ba=-(α+β)<0, ①ca =αβ>0, ②∵a <0,0<α<β, ∴由②得c <0,则cx 2+bx +a <0可化为x 2+b c x +ac >0.①÷②,得b c =-(α+β)αβ=-⎝⎛⎭⎫1α+1β<0. 由②得a c =1αβ=1α·1β>0.∴1α,1β为方程x 2+b c x +ac =0的两根. 又∵0<α<β, ∴0<1β<1α,∴不等式x 2+b c x +ac >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1β或x >1α, 即不等式cx 2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1β或x >1α. 方法二 由题意知a <0,∴由cx 2+bx +a <0,得c a x 2+ba x +1>0.将方法一中的①②代入, 得αβx 2-(α+β)x +1>0, 即(αx -1)(βx -1)>0. 又∵0<α<β, ∴0<1β<1α.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1β或x >1α.14.关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解的集合为{-2},则实数k 的取值范围为 . 答案 [-3,2)解析 ∵-2是2x 2+(2k +5)x +5k <0的解,∴2(-2)2+(2k +5)(-2)+5k =k -2<0.∴k <2,-k >-2>-52,∴2x 2+(2k +5)x +5k =(x +k )(2x +5)<0的解集为⎝⎛⎭⎫-52,-k , 又x 2-x -2>0的解集为{x |x <-1或x >2}, ∴-2<-k ≤3,∴k 的取值范围为[-3,2). 15.解关于x 的不等式ax 2-2(a +1)x +4>0. 解 (1)当a =0时,原不等式可化为-2x +4>0, 解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2.①当0<a <1时,2a>2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a 或x <2; ②当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};③当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a <x <2. 综上,当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; 当a =0时,原不等式的解集为{x |x <2};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a 或x <2; 当a =1时,原不等式的解集为{x |x ≠2};当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x <2a .。
高中数学第三章不等式3.2 简单的分式不等式与高次不等式解法教学设计新人教A版必修5(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章不等式3.2 简单的分式不等式与高次不等式解法教学设计新人教A版必修5(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章不等式3.2 简单的分式不等式与高次不等式解法教学设计新人教A版必修5(1)的全部内容。
简单的分式不等式与高次不等式解法一、教学目标:掌握简单的分式不等式和高次不等式的解法; 二、教学重点:简单的分式不等式和高次不等式的解法三、教学难点:简单分式不等式与高次不等式的等价变形. 四、 教学过程: 1.分式不等式的解法 例1 解不等式:073<+-x x . 解法1:化为两个不等式组来解: ∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或⇔x ∈φ或37<<-x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x 。
解法2:化为二次不等式来解: ∵073<+-x x ⇔0)7)(3(<+-x x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x 变式1:解不等式073≤+-x x 解:073≤+-x x ⇔70)7)(3(-≠≤+-x x x 且⇔37≤<-x 原不等式∴的解集是{x| —7〈x ≤3}变式2:解不等式173<+-x x 解:}7{707100173173->∴->∴<+-⇔<-+-⇔<+-x x x x x x x x 原不等式的解集是归纳分式不等式的解法:(1) 化分式不等式为标准型:方法:移项,通分,右边化为0,左边化为)()(x g x f 的形式 (2) 将分式不等式转化为整式不等式求解如:()0()f x g x >⇔ 0)()(>x g x f ()0()f x g x <⇔0)()(<x g x f ()0()f xg x ≥⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ()0()f x g x ≤⇔⎩⎨⎧≠≤0)(0)()(x g x g x f 练习: 1.不等式0121>+-x x的解集是 。
二次不等式、分式不等式的解法(二)示标——知识归纳1、不等式的结构()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧指数、对数不等式等超越不等式绝对值不等式无理不等式分式不等式高次一次、二次、整式不等式有理不等式代数不等式不等式 2、这些不等式解法的化归思路主要是:⎪⎪⎪⎭⎪⎪⎪⎬⎫化去绝对值超越化为代数无理化为有理分式化为整式高次化为低次)5()4()3()2()1(最后化为⎩⎨⎧二次不等式一次不等式组 施标——应用举例例1 解关于x 的不等式:(1)).(03222R a a ax x ∈>--(2)).0(0)1(22≠<++-a a x a ax解(1).,30322122a x a x a ax x -===--有二根当0=a 时,021==x x ,解集为);,0()0,(+∞-∞当0<a 时,,21x x < 解集为);,()3,(+∞--∞a a当0>a 时,,21x x > 解集为).,3(),(+∞--∞a a(2)0)1(22=++-a x a ax 有二根 .1,21a x a x == 当0>a 时,原不等式化为,0)1)((<--ax a x 当1=a 时,解集为φ; 当10<<a 时,解集为)1,(a a ;当1>a 时,解集为).,1(a a当0<a 时,原不等式化为,0)1)((>--ax a x 当1-=a 时,解集为);,1()1,(+∞---∞当1-<a 时,解集为);,1(),(+∞-∞aa 当01<<-a 时,解集为).,()1,(+∞-∞a a固标:1.解含字母系数的不等式,要分类讨论。
这里要注意:分类的标准是比较两根的大小,当然还要注意分类不重不漏。
本例是分类思想的范例。
2.本题之(2)是难题,其难点是对“0>a 与0<a ”的分类,它化归为两类不等式:)0(0)1)((><--a a x a x , )0(0)1)((<>--a ax a x 。
不等式的解法高中数学高中数学:不等式与不等式组的解法1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。
例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a<2时,其解集为(-∞,b+2a-2)③当a=2,b≥-2时,其解集为φ④当a=2且b<-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△<0,其解集为R②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.例3:解不等式组m2+4m-5>0(1)m2+4m-12<0(2)解:由①得m<-5或m>1由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)4.分式不等式的解法任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.例4:解不等式x2-x-6-x2-1>2解:原不等式化为:3x2-x-4-x2-1>0它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0解(I)得解集空集,解(II)得解集(-1,43).故原不等式的解集为(-1,43).5.含有绝对值不等式的解法去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。
一元二次不等式、分式、绝对值、简单高次不等式的解法本文介绍了高次不等式、分式、绝对值、一元二次不等式的解法。
对于可分解的高次不等式,可以使用奇穿偶回的方法进行求解。
具体步骤为:检查各因式中x的符号均为正;求得相应方程的根;在数轴上表示各根并穿线;最后得出原不等式的解集。
对于含参数的高次不等式,需要对参数的位置进行讨论。
以解关于x的不等式x-x+12(x+a)<0为例,将二次项系数化为正,分解因式后得到相应方程的根为-3,4,-a。
讨论a的位置,得出不等式的解集。
对于分式不等式,可以使用等价转化法进行求解。
例如,解不等式x^2-2x-1/(2x^2+3x-2)>=0,将其等价转化为不等式3x-1/(x+2)<2.绝对值不等式的解法与一元二次不等式类似,需要将其等价转化为一元二次不等式进行求解。
例如,解不等式|2x-1|<3,将其等价转化为-3<2x-1<3,再解出一元二次不等式的解集。
在解不等式时,需要注意格式的正确性和删除明显有问题的段落,同时可以适当改写每段话,使其更加清晰易懂。
练1:解不等式:1、$\frac{x-3}{2x-1}\geq 0$ (首项系数化为正,空实心)2、$\frac{2-x}{x+3}>1$ (移项通分,右侧化为)3、$\frac{x^2-3x+2}{x^2-2x-1}\leq 0$ (因式分解)4、$\frac{x^2-3x+2}{x^2+x+6}<0$ (求根公式法因式分解)5、$\frac{2(x+3)}{3}\geq x$ (恒正式,重根问题)6、$\frac{x(x-3)}{1}\leq 0$ (不能随便约分)7、$|x|-|1|<x-|1|$ (取交集)练2:解不等式:1.求不等式的解集:$\frac{(x+2)^4}{(x-1)^3}\cdot\frac{1}{(3x+2)^3}\cdot\frac{1}{(x^2-x+2)}>0$2.$x^2-9x+11<0$3.解不等式:$\frac{2}{x}\geq\frac{7}{2}$4.解不等式:$\frac{2x+1}{2x-1}-\frac{x+7}{x-1}$5.解不等式:$\frac{2}{x-3}>\frac{3x-2}{x^2+x+1}$6.解绝对值不等式:$|2x-1|>|2x-3|$7.解关于x的不等式:$\frac{x}{x+2}>1$练4:解不等式:1.$|8-2x|>3$2.$|6-2x|<4$3.$x^2-3x+2<10$4.$x^2-3x+2\leq 0$5.$(2x-1)^2\leq 9$练5:1.解关于x的不等式:1) $2x-1<x+2$2) $3\leq 5-2x<9$3) $1<|x+1|<3$2.求方程$\frac{x+2}{x^2+3x}=\frac{1}{x+2}$的解集;3.不等式$x(1-2x)>0$的解集是()A。
不等式专题:分式不等式、高次不等式、绝对值不等式的解法一、分式不等式的解法解分式不等式的实质就是讲分式不等式转化为整式不等式。
设A 、B 均为含x 的多项式(1)00>⇔>AAB B(2)00<⇔<AAB B(3)000≥⎧≥⇔⎨≠⎩AB AB B (4)000≤⎧≤⇔⎨≠⎩AB AB B 【注意】当分式右侧不为0时,可过移项、通分合并的手段将右侧变为0;当分母符号确定时,可利用不等式的形式直接去分母。
二、高次不等式的解法如果将分式不等式转化为正式不等式后,未知数的次数大于2,一般采用“穿针引线法”,步骤如下:1、标准化:通过移项、通分等方法将不等式左侧化为未知数的正式,右侧化为0的形式;2、分解因式:将标准化的不等式左侧化为若干个因式(一次因式或高次因式不可约因式)的乘积,如()()()120--->…n x x x x x x 的形式,其中各因式中未知数的系数为正;3、求根:求如()()()120---=…n x x x x x x 的根,并在数轴上表示出来(按照从小到大的顺序标注)4、穿线:从右上方穿线,经过数轴上表示各根的点,(奇穿偶回:经过偶次根时应从数轴的一侧仍回到这一侧,经过奇数次根时应从数轴的一侧穿过到达数轴的另一侧)5、得解集:若不等式“>0”,则找“线”在数轴上方的区间;若不等式“<0”,则找“线”在数轴下方的区间三、含绝对值不等式1、绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义b a -表示在数轴上,数a 和数b 之间的距离.4、绝对值不等式:(1)(0)<>x a a 的解集是{|}-<<x a x a ,如图1.(2)(0)>>x a a 的解集是{|}<->或x x a x a ,如图2.(3)(0)+<>⇔-<+<ax b c c c ax b c .(4)(0)+>>⇔+>ax b c c ax b c 或ax b c+<-题型一解分式不等式【例1】不等式02xx ≤-的解集为()A .[0,2]B .(0,2)C .(,0)[2,)-∞+∞ D .[0,2)【答案】D【解析】原不等式可化为()2020⎧-≤⎨-≠⎩x x x ,解得02≤<x .故选:D .【变式1-1】不等式2112x x +≥-的解集为()A .[3,2]-B .[3,2)-C .(,3][2,)-∞-⋃+∞D .(,3](2,)-∞-+∞U 【答案】D【解析】∵21310022++-⇒--x x x x ,解得:2>x 或3-x ,∴不等式的解集为(,3](2,)-∞-+∞U ,故选:D.【变式1-2】解下列分式不等式:(1)123x x +-≤1;(2)211x x+-<0.【答案】(1){3|2x x <或4x ≥};(2){1|2x x <-或1x >}.【解析】(1)∵123x x +-≤1,∴123x x +--1≤0,∴423x x -+-≤0,即432x x --≥0.此不等式等价于(x -4)32x ⎛⎫- ⎪⎝⎭≥0且x -32≠0,解得x <32或x ≥4.∴原不等式的解集为{3|2x x <或4x ≥}(2)由211x x +-<0得121x x +->0,此不等式等价于12x ⎛⎫+ ⎪⎝⎭(x -1)>0,解得x <-12或x >1,∴原不等式的解集为1{|2x x <-或1x >}.【变式1-3】解不等式:2121332x x x x ++≥--【答案】21332⎧⎫><≠-⎨⎬⎩⎭或且x x x x 【解析】通分整理,原不等式化为:2(12)0(3)(32)+>--x x x ,它等价于:(3)(32)0210-->⎧⎨+≠⎩x x x ,得到:3>x 或23<x 且12≠-x 【变式1-4】不等式()2131x x +≥-的解集是()A .1,23⎡⎤⎢⎥⎣⎦B .1,23⎡⎤-⎢⎥⎣⎦C .(]1,11,23⎡⎫⎪⎢⎣⎭U D .(]1,11,23⎡⎫-⎪⎢⎣⎭【答案】C 【解析】因为()2131x x +≥-,所以213(1)x x +≥-且10x -≠,所以23720x x -+≤且10x -≠,所以123x ≤≤且1x ≠,所以不等式的解集为(]1,11,23⎡⎫⋃⎪⎢⎣⎭,故选:C题型二解高次不等式【例2】不等式()()()21350x x x ++->的解集为___________.【答案】1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭【解析】不等式()()()()()()2135021350++->⇔++-<x x x x x x ,由穿针引线法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.【变式2-1】解不等式(x +2)(x -1)9(x +1)12(x -3)≥0.【答案】[][)-213⋃+∞,,.【解析】根据不等式标根所以原不等式的解为[][)-213⋃+∞,,.故答案为:[][)-213⋃+∞,,.【变式2-2】不等式()()1203x x x +-≥-的解集为()A .{1x x ≤-或}23x ≤<B .{1x x ≤-或}23x ≤≤C .{3x x ≥或}12x -≤≤D .{3x x >或}12x -≤≤【答案】A【解析】不等式(1)(2)03x x x +-≥-,化为:(1)(2)0330x x x x +-⎧≤⎪-⎨⎪-≠⎩,由穿根法可知:不等式的解集为:{1x x ≤-或}23x ≤<.故选:A.【变式2-3】解下列分式不等式:(1)23221x x x -+≥-;(2)22520(32)(11)x x x x -+≥-+;(3)2256034x x x x ++≤--;(4)222232x x x x x +-<+-.【答案】(1)[4,)+∞;(2)12(,11)[,)[2,)23-∞-+∞ ;(3)4[3,2](1,)3--- ;(4)(1,2)(3,)-⋃+∞.【解析】(1)23221x x x -+≥-,所以232201x x x -+-≥-,所以()2322101x x x x -+--≥-,即()()24154011x x x x x x ---+=≥--,解得4x ≥,故原不等式的解集为[4,)+∞;(2)22520(32)(11)x x x x -+≥-+,所以()()2120(32)(11)x x x x --≥-+等价于()()()()()()2123211032110x x x x x x ⎧---+≥⎪⎨-+≠⎪⎩,解得2x ≥或1223x ≤<或11x <-,故原不等式的解集为12(,11)[,[2,)23-∞-+∞ (3)2256034x x x x ++≤--,所以()()()()230341x x x x ++≤-+,等价于()()()()()()2334103410x x x x x x ⎧++-+≤⎪⎨-+≠⎪⎩,解得32x --≤≤或413x -<<,故原不等式的解集为4[3,2](1,)3--- ;(4)222232x x x x x +-<+-,所以2222032x x x x x +--<+-,即()2222232032x x x x x x x +--+-<+-,即()()()()201231x x x x x -+++>-,因为210x x ++>恒成立,所以原不等式等价于()()2031x x x ->-+,即()()()2310x x x --+>,解得12x -<<或3x >,故原不等式的解集为(1,2)(3,)-⋃+∞【变式2-4】关于x 的不等式0ax b +>的解集为{|1}x x >,则关于x 的不等式2056ax bx x +>--的解集为()A .{|11x x -<<或6}x >B .{|1x x <-或16}x <<C .{|1x x <-或23}x <<D .{|12x x -<<或3}x >【答案】A【解析】因为关于x 的不等式0ax b +>的解集为{|1}x x >00a a b >⎧∴⎨+=⎩,则原式化为:()()()()()()()10061106161-->⇔>⇔-+->-+-+ax a x x x x x x x x 所以不等式的解为11x -<<或6x >.故选:A.题型三解绝对值不等式【例3】解不等式:(1)3<x ;(2)3>x (3)2≤x 【答案】(1){|33}-<<x x (2){|33}<->或x x x (3){|22}-≤≤x x 【变式3-1】解不等式:(1)103-<x ;(2)252->x ;(3)325-≤x ;【答案】(1){|713}<<x x ;(2)73{|}22><或x x x ;(3){|14}-≤<x x 【解析】(1)由题意,3103-<-<x ,解得713<<x ,所以原不等式的解集为{|713}<<x x .(2)由题意,252->x 或252-<-x ,解得72>x 或32<x ,所以原不等式的解集为73{|}22><或x x x .(3)由题意,5325-<-≤x ,解得14-≤<x ,所以原不等式的解集为{|14}-≤<x x .【变式3-2】不等式1123x <-≤的解集是___________【答案】[)(]1,01,2- 【解析】不等式可化为1213x <-≤,∴1213x <-≤,或3211x --<-≤;解之得:12x <≤或10x -≤<,即不等式1123x <-≤的解集是[)(]1,01,2- .故答案为:[)(]1,01,2- .【变式3-3】不等式111x x +<-的解集为()A .{}{}011x x x x <<⋃>B .{}01x x <<C .{}10x x -<<D .{}0x x <【答案】D 【解析】不等式()()221111111101+<⇔+<-≠⇔+<-≠⇔<-x x x x x x x x x .故选:D.【变式3-4】解不等式:4321->+x x 【答案】1{|2}3<>或x x x 【解析】方法一:(零点分段法)(1)当34≤x 时,原不等式变为:(43)21-->+x x ,解得13<x ,所以13<x ;(2)当34>x 时,原不等式变为:4321->+x x ,解得2>x ,所以2>x ;综上所述,原不等式的解集为1{|2}3<>或x x x .方法二:43214321->+⇔->+x x x x 或43(21)-<-+x x ,解得13<x 或2>x ,所以原不等式的解集为1{|2}3<>或x x x .【变式3-5】不等式125-+-<x x 的解集为【答案】(1,4)-【解析】当1x ≤时,1251x x x -+-<⇒>-,故11x -<≤;当12x <<时,12515x x -+-<⇒<恒成立,故12x <<;当2x ≥时,1254x x x -+-<⇒<,故24x ≤<综上:14x -<<故不等式的解集为:(1,4)-。