定积分的简单应用_求体积
- 格式:doc
- 大小:435.00 KB
- 文档页数:6
数学积分求体积方法概述摘要:定积分在大学数学学习及应用中起着非常重要的作用,一直以来定积分问题就是大学数学学习的重点,也是本科及研究生入学考试重点考察的内容之一,在我们的生活中起着很重要的作用!空间立体体积的计算在日常生活和学习中是十分重要的,对于规则的立体,中学里已有一些求解公式,对于不规则的立体,则需要用高等数学积分法加以解决。
本文总结了几种常见的利用积分求立体体积的方法及案例,通过所学积分学知识建立了更为普遍的立体体积的求解方法和计算公式,同时也介绍了相关的物理方法,并从具体的例题入手充分挖掘了空间立体体积计算的一些思想和方法。
关键词:积分; 空间立体体积; 积分区域; 被积函数引言空间立体体积的计算是生活中常见的问题,对于规则的空间立体体积的计算在中学时就有具体的计算公式,但对于不规则的空间立体体积则难以计算。
本文就主要针对各种形状的空间立体研究计算其体积的简便方法。
其实很多文献对空间立体体积的计算问题都进行了讨论,文献[1]就基本上包括了此问题的所有积分计算方法,并给出了相应的计算公式。
文献[2]-[9]分别从不同方面对各种方法进行了细致说明,并对个别特例进行了深入分析,给出了特殊的积分计算方法。
文献[10]则主要是对部分方法做出了总结,并列出了大量相关例题辅助理解。
以上文献充分体现出积分思想在解题中应用广泛,特别是在计算空间立体体积领域。
如果我们能够在积分学的基础上掌握空间立体体积的计算方法,则能使一些复杂的问题简单化,还易让人接受。
所以我们要分析掌握积分法,以便于解决与此相关的各种复杂问题,特别是各种空间立体体积的计算问题。
空间立体体积的计算是高等数学积分法在几何上的主要应用,其主要思想是将体积表示成定积分或重积分,研究空间立体,确定积分区域及被积函数,然后综合考虑立体特征、积分区域及被积函数特点,选择恰当的积分方法,使空间立体体积的计算简单明了。
本文在上述文献的基础上,总结了中学常见的空间立体体积的计算方法。
§定积分应⽤之简单旋转体的体积§3.2定积分应⽤之简单旋转体的体积【学习⽬标】1、利⽤定积分的意义和积分公式,求⼀些简单旋转⼏何体体积。
2、数学模型的建⽴及被积函数的确定。
【问题导学】1、复习求曲边梯形⾯积公式?定积分的⼏何意义?微积分基本定理?2、什么是旋转体?学过哪些旋转体?⼀个平⾯图形绕平⾯内的⼀条定直线旋转⼀周,所成的⽴体图形叫旋转体,这条定直线叫做旋转轴。
如:圆柱、圆锥、圆台、球体、球冠。
3、旋转体的体积(1)计算由区间[a 、b ]上的连续曲线y=f(x)、两直线x=a 与x=b及x 轴所围成的曲边梯形绕 x 轴旋转⼀周所成的旋转体的体积:v=π()b2a f x dx (2)类似地可得,由区间[c,d]上的连续曲线 y=f(x),两直线y=c 与y=d 及y 轴所围成的曲边梯形绕y 轴旋转⼀周所成的旋转体的体积:()d2c v y dy π?=?[]【⾃学检测】1、给定直⾓边为1的等腰直⾓三⾓形,绕⼀条直⾓边旋转⼀周,得到⼀个圆锥体. 利⽤定积分的⽅法求它的体积2、⼀个半径为1的球可以看成由曲线y=1-x 2(半圆)与x 轴所围成的区域绕x 轴旋转⼀周得到的,利⽤定积分的⽅法求球的体积3、求曲线y=e x 、x=0、x=12与x 轴围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积【当堂训练】4、求 y = x 2 与 y 2 = x 所围图形绕 x 轴旋转所成的旋转体体积5、将第⼀象限内由x 轴和曲线y 2=6x 与直线x=6所围成的平⾯图形绕x 轴旋转⼀周所得旋转体的体积等于6、求曲线x 轴、y 轴及直线x=1围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积7、求曲线y=1x、x=1、x=2 与x 轴围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积8、求曲线x=1与坐标轴围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积§3.2定积分应⽤之简单旋转体的体积1、3π2、43π3、(1)2e π-4、310π5、108π6、32π7、2π8、2π。
定积分在物理中的应用摘要:伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分.微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科.内容主要包括极限、微分学、积分学及其应用.微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分最重要的思想就是用"微元"与”无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分'就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一.在高中物理中,微积分思想多次发挥了作用.定义:设函数f(x)在[a,b]上有界,在[a,b ]中任意插入若干个分点 a=X0〈X1〈...〈Xn —1<Xn=b 把区间[a ,b ]分成n 个小区间 [X0,X1],..。
[Xn —1,Xn]。
在每个小区间[Xi —1,Xi ]上任取一点ξi(Xi -1≤ξi≤Xi ),作函数值f(ξi )与小区间长度的乘积f(ξi )△Xi ,并作出和()in i ix s ∆=∑=1ξ如果不论对[a,b]怎样分法,也不论在小区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x)在区间[a ,b]上的定积分, 记作: ()dx x f a b⎰即: ()()ini ia bx f I dx x f ∆==∑⎰==11lim ξλ变力沿直线所作的功设物体在连续变力F(x )作用下沿x 轴从x=a 移动到x=b ,力的方向与运动方向平行,求变力所作的功.在[a ,b]上任取子区间[x ,x+dx ],在其上所作的功元素为()dx x F dW =因此变力F (x )在区间[a,b ]上所作的功为()dx x F W b a⎰=例1.在一个带+q 电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a 处移动到b 处(a 〈b ),求电场力所做的功。
定积分法求体积
求解一个空间图形的体积,最常见的方法就是通过定积分来求解。
这种方法适用于复杂图形,可以把它们拆解成更简单的形状,从而通过数学计算得出它们的体积。
下面我们以一个例子来说明定积分法求解体积的过程。
假设我们要求解一个半径为4,高为8的圆柱体的体积。
首先,我们可以将这个圆柱体分成若干个无限小的棱柱体。
然后,我们就可以计算出棱柱体的体积,再将所有棱柱体的体积相加,就可以得到圆柱体的总体积。
由于圆柱体的底面形状为圆形,所以我们需要用到圆的面积公式:圆面积=πr²。
下面,我们用数学计算的方式来求解圆柱体的体积。
首先,我们可以找出棱柱体的高度h,由于圆柱体是等高的,所以棱柱体的高度h 也应该是8。
然后,我们再找出所有棱柱体的底面积。
由于圆柱体的半径为4,所以底面积应该为π×4²=16π。
接下来,我们就可以用定积分公式来计算圆柱体的总体积。
定积分公式为:∫ab S(x)dx,其中S(x)为x=a到x=b之间图形的面积。
我们可以把圆柱体分成若干个底面积为16π的棱柱体。
设其宽度为dx,长度为radius,则其体积为S(x)dx=16πdx。
那么,圆柱体的总体积为:
V=∫0^8 16πdx=16π∫0^8 dx=16π×(8-0)=128π
所以,圆柱体的体积为128π。
总之,通过定积分法可以方便地求解空间图形的体积,由于方法简单,精度高,因此广泛应用于科学、工程等领域的计算中。
4.2定积分的简单应用(二)
复习:
(1) 求曲边梯形面积的方法是什么?
(2) 定积分的几何意义是什么?
(3) 微积分基本定理是什么?
引入:
我们前面学习了定积分的简单应用——求面积。
求体积问题也是定积分的一个重要应用。
下面我们介绍一些简单旋转几何体体积的求法。
1. 简单几何体的体积计算
问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲)绕x 轴
旋转一周所得旋转体的体积为V ,如何求V ?
分析:
在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线
()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。
设第i 个“小长条”的宽是1i i i x x x -∆=-,1,2,,i n =。
这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ∆的小圆片,如图乙所示。
当i x ∆很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。
因
此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=∆
该几何体的体积V 等于所有小圆柱的体积和:
2221122[()()()]n n V f x x f x x f x x π≈∆+∆+
+∆
这个问题就是积分问题,则有: 2
2()()b b
a a V f x dx f x dx ππ==⎰⎰ 归纳:
设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π
=⎰
2. 利用定积分求旋转体的体积
(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数
(2) 分清端点
(3) 确定几何体的构造
(4) 利用定积分进行体积计算
3. 一个以y 轴为中心轴的旋转体的体积
若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为2()b
a V g y dy π=⎰ 类型一:求简单几何体的体积
例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路:
由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。
解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角坐标
系,如图:BC y a =。
则该旋转体即为圆柱的体积为:
22300|a
a V a dx a x a πππ=⨯==⎰
规律方法:
求旋转体的体积,应先建立平面直角坐标系,设旋转曲线函数为()f x 。
确定积分上、下限,a b ,则体积2()b
a V f x dx π=⎰ 练习1:如图所示,给定直角边为a 的等腰直角三角形,绕y 轴旋转一周,求形成的几何体
的体积。
解:形成的几何体的体积为一圆柱的体积减去一圆锥的体积。
22333001
2|33
a
a V a a y dy a y a πππππ∴=-=-=⎰ 类型二:求组合型几何体的体积
例2:如图,求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成的图形绕x 轴旋
转一周所得几何体的体积。
思路:
解答本题可先由解析式求出交点坐标。
再把组合体分开来求体积。
解:解方程组28(0)60
y x y x y ⎧=>⎨+-=⎩ 得:24x y =⎧⎨=⎩ 28y x ∴=与直线60x y +-=的交点坐标为(2,4)
所求几何体的体积为:
26220264112(6)1633
V dx x dx πππππ=+-=+=⎰⎰ 规律方法:
解决组合体的体积问题,关键是对其构造进行剖析,
分解成几个简单几何体体积的和或
差,然后,分别利用定积分求其体积。
练习2:求由直线2y x =,直线1x =与x 轴围成的平面图形绕x 轴旋转一周所得旋转体的体
积。
解:旋转体的体积:
1
204(2)3V x dx ππ==⎰ 类型三:有关体积的综合问题:
例3:求由曲线212
y x =与y =x 轴旋转一周所得旋转体的体积。
思路:解题的关键是把所求旋转体体积看作两个旋转体体积之差。
画出草图→确定被积函数的边界→确定积分上、下限
→用定积分表示体积→求定积分
解:曲线212
y x =与y =所围成的平面图形如图所示: 设所求旋转体的体积为V
根据图像可以看出V 等于曲线y =直线2x =与x 轴围成的平面图形绕x 轴旋转一周所得的旋转体的体积(设为1V )减去曲线212
y x =
直线2x =与x 轴围成的平面图形绕x 轴旋转一周所得的旋转体的体积(设为2V ) 22
2221000122|42
V dx xdx x ππππ====⎰⎰ 2
2224522000118|24455V x dx x dx x ππππ⎛⎫===⨯= ⎪⎝⎭⎰⎰ 12812455
V V V πππ=-=-
= 反思:
结合图形正确地把求旋转体体积问题转化为求定积分问题是解决此类问题的一般方法。
练习3:
求由y =229
y x =以及y 轴围成的图形绕x 轴旋转一周所得旋转体的体积。
解:
由229y y x ⎧=⎪⎨=⎪⎩
得:32x y =⎧⎨=⎩ 33400451(1)8110
V x dx x dx πππ=+-=⎰⎰
误区警示:忽略了对变量的讨论而致错
例:已知曲线2y x =,1y x
=和直线0y =,(0)x a a =>。
试用a 表示该四条曲线围成的平面图形绕x 轴旋转一周所形成的几何体的体积。
思路:掌握对定积分的几何意义,不要忽视了对变量a 的讨论。
解:由2
1y x y x ⎧=⎪⎨=⎪⎩
得11x y =⎧⎨=⎩ 由示意图可知:要对a 与1的关系进行讨论:
① 当01a <≤时,224500()5a a V x dx x dx a πππ=
==⎰⎰ ② 当1a >时,2
1220116()5a V x dx dx x a ππππ⎛⎫=+=- ⎪⎝⎭⎰⎰ ∴所得旋转体的体积为5
(01)56(1)5a a V a a
πππ⎧<≤⎪⎪∴=
⎨⎪
->⎪⎩
追本溯源:
利用定积分求旋转体的体积问题的关键在于:
(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数
(2)分清端点
(3)确定几何体的构造(4)利用定积分进行体积计算。