存储器管理实验报告
- 格式:docx
- 大小:128.66 KB
- 文档页数:10
实验三、存储管理一、实验目的:? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。
当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。
当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。
主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。
在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。
用这种办法扩充的主存储器称为虚拟存储器。
通过本实验理解在分页式存储管理中怎样实现虚拟存储器。
在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。
熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二、实验题目:设计一个可变式分区分配的存储管理方案。
并模拟实现分区的分配和回收过程。
对分区的管理法可以是下面三种算法之一:(任选一种算法实现)首次适应算法循环首次适应算法最佳适应算法三.实验源程序文件名:cunchuguanli.c执行文件名:cunchuguanli.exe四、实验分析:1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并且分区个数是可以调整的。
当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。
随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。
为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表? 空闲区说明表格式如下:?第一栏第二栏其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。
存储器管理实验实验报告一、实验目的存储器管理是操作系统的重要组成部分,本次实验的目的在于深入理解存储器管理的基本原理和方法,通过实际操作和观察,掌握存储器分配与回收的算法,以及页面置换算法的实现和性能评估。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容与步骤(一)存储器分配与回收算法实现1、首次适应算法(1)原理:从空闲分区链的首地址开始查找,找到第一个满足需求的空闲分区进行分配。
(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态(已分配或空闲)。
当有分配请求时,从链表头部开始遍历,找到第一个大小满足需求的空闲分区。
将该分区进行分割,一部分分配给请求,剩余部分仍作为空闲分区留在链表中。
若找不到满足需求的空闲分区,则返回分配失败。
2、最佳适应算法(1)原理:从空闲分区链中选择与需求大小最接近的空闲分区进行分配。
(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。
当有分配请求时,遍历整个链表,计算每个空闲分区与需求大小的差值。
选择差值最小的空闲分区进行分配,若有多个差值相同且最小的分区,选择其中起始地址最小的分区。
对选中的分区进行分割和处理,与首次适应算法类似。
3、最坏适应算法(1)原理:选择空闲分区链中最大的空闲分区进行分配。
(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。
当有分配请求时,遍历链表,找到最大的空闲分区。
对该分区进行分配和处理。
(二)页面置换算法实现1、先进先出(FIFO)页面置换算法(1)原理:选择在内存中驻留时间最久的页面进行置换。
(2)实现步骤:建立页面访问序列。
为每个页面设置一个进入内存的时间戳。
当发生缺页中断时,选择时间戳最早的页面进行置换。
2、最近最久未使用(LRU)页面置换算法(1)原理:选择最近一段时间内最长时间未被访问的页面进行置换。
一目的与要求(1) 请求页式虚存管理是常用的虚拟存储管理方案之一。
(2) 通过请求页式虚存管理中对页面置换算法的模拟,加深理解虚拟存储技术的特点。
(3) 模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断.二实验内容或题目(1)本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
(2)虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
(3)要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
(4)程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
三实验步骤与源程序(1)实验步骤1、理解好相关实验说明。
2、根据实验说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
(2)流程图如下:①虚页和实页结构在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
②程序流程图如下:(3)源程序如下:#include<iostream.h>#define M 40int N;struct Pro{int num,time;};int Input(int m,Pro p[M]){cout<<"请输入实际页数:";do{cin>>m;if(m>M)cout<<"数目太多,请重试"<<endl;else break;}while(1);//cout<<"请输入各页面号:";for(int i=0;i<m;i++){cout<<"第"<<i<<"个页面号为:";cin>>p[i].num;p[i].time=0;}return m;}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i; return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;i++;}for( i=0;i<N;i++)if(e==page[i].time)return i;return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]){Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){cout<<"可用内存页面数:";cin>>N;Pro p[M];Pro *page=new Pro[N];char c;int m=0,t=0;float n=0;m=Input(m,p);do{for(int i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=2-i;}i=0;cout<<"************************"<<endl;cout<<"*****f:FIFO页面置换*****"<<endl;cout<<"*****l:LRU页面置换******"<<endl;cout<<"*****o:OPT页面置换******"<<endl;cout<<"*****按其它键结束*******"<<endl;cout<<"************************"<<endl;cout<<"请选择操作类型(f,l,o):";cin>>c;if(c=='f')//FIFO页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<m){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }if(c=='l')//LRU页面置换{ n=0;cout<<"页面置换情况: "<<endl;while(i<m){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page); i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl;}if(c=='o')//OPT页面置换{n=0;while(i<m){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p); cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;});四测试数据与实验结果五结果分析与实验体会通过上机,我了解了许多关于操作系统的专业知识。
存储管理实验报告存储管理实验报告引言:存储管理是计算机系统中非常重要的一部分,它负责管理计算机系统中的存储资源,包括内存和外存。
合理的存储管理能够提高计算机系统的性能和效率,保证系统的稳定运行。
本次实验旨在通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。
一、实验目的本次实验的主要目的是通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。
具体目标如下:1. 了解存储管理的基本概念和原理;2. 掌握存储管理的常用方法和技术;3. 分析实验结果,探讨存储管理的优化策略。
二、实验环境本次实验使用了一台配置较高的计算机,具备较大的内存和高速的硬盘。
实验环境如下:1. 操作系统:Windows 10;2. 内存:16GB;3. 硬盘:1TB。
三、实验过程1. 内存管理实验在内存管理实验中,我们使用了一段较大的程序代码进行测试。
首先,我们通过编程语言将程序代码写入内存中,然后通过内存管理技术将程序代码加载到内存的合适位置。
在加载过程中,我们使用了分页和分段两种常用的内存管理技术,并比较了它们的性能差异。
实验结果显示,分页技术相对来说更加高效,能够更好地利用内存资源,提高系统的运行速度。
2. 外存管理实验在外存管理实验中,我们模拟了大文件的读写操作。
首先,我们将一个较大的文件写入硬盘中,然后通过外存管理技术将文件加载到内存中进行读取。
在加载过程中,我们使用了磁盘调度算法和文件系统管理技术,并比较了它们的性能差异。
实验结果显示,磁盘调度算法的选择对系统的读写速度有较大的影响,而文件系统的合理管理能够提高文件的存取效率。
四、实验结果分析通过对实验结果的分析,我们可以得出以下结论:1. 内存管理中,分页技术相对于分段技术更加高效,能够更好地利用内存资源,提高系统的运行速度;2. 外存管理中,磁盘调度算法的选择对系统的读写速度有较大的影响,合理选择磁盘调度算法能够提高系统的性能;3. 文件系统的合理管理能够提高文件的存取效率,减少文件的碎片化,提高系统的整体性能。
存储管理实验报告存储管理实验报告一、引言存储管理是计算机系统中一个非常重要的组成部分,它负责管理计算机内存的分配、回收和保护。
本次实验旨在通过实际操作,深入理解存储管理的原理和技术,并探索不同的存储管理策略对系统性能的影响。
二、实验目的1. 理解存储管理的基本概念和原理;2. 掌握常见的存储管理算法和策略;3. 分析不同存储管理策略对系统性能的影响。
三、实验环境本次实验使用了一台配置较低的个人电脑,操作系统为Windows 10,内存容量为4GB。
四、实验内容1. 静态分区分配算法静态分区分配算法是最简单的存储管理算法之一。
在实验中,我们使用了最先适应算法(First Fit)和最佳适应算法(Best Fit)进行静态分区分配。
通过对比两种算法的分配效果,我们发现最佳适应算法在减少内存碎片方面表现更好。
2. 动态分区分配算法动态分区分配算法是一种更加灵活的存储管理策略。
在实验中,我们实现了首次适应算法(First Fit)和最佳适应算法(Best Fit)两种动态分区分配算法。
通过观察不同算法的分配效果,我们发现首次适应算法在处理大量小内存块时效率较高,而最佳适应算法在处理大内存块时表现更好。
3. 页面置换算法页面置换算法是虚拟内存管理中的重要组成部分。
在实验中,我们实现了最近最少使用(LRU)算法和先进先出(FIFO)算法两种页面置换算法。
通过模拟内存不足的情况,我们观察了不同算法对系统性能的影响。
结果显示,LRU算法在减少页面置换次数方面比FIFO算法更为优秀。
五、实验结果与分析通过本次实验,我们对不同的存储管理算法和策略进行了实际操作,并观察了它们对系统性能的影响。
实验结果显示,最佳适应算法在静态分区分配中表现更好,而首次适应算法在动态分区分配中效率更高。
在页面置换算法中,LRU 算法在减少页面置换次数方面更为出色。
六、实验总结本次实验通过实际操作,深入理解了存储管理的原理和技术,并探索了不同的存储管理策略对系统性能的影响。
操作系统实验报告存储器管理学院电信学院专业计算机科学与技术班级14级计科一班实验题目动态分区分配实验组别第三组指导老师曹华了解动态分区分配方式中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。
二、实验内容用C语言分别实现采用首次适应算法和最佳适应算法的动态分区分配过程 alloc() 和回收过程 free()。
其中,空闲分区通过分区链来管理,在进行内存分配时,系统优先使用空闲区低端的空间。
请分别用首次适应算法和最佳适应算法进行内存块的分配和回收,要求每次分配和回收后显示出空闲内存分区链的情况。
三、实验主要仪器设备软件环境:VC++6编程环境四、实验原理及设计方案1.实验原理:可变分区调度算法有:最先适应分配算法,循环首次适应算法,最佳适应算法,最坏适应算法。
首次适应算法(First-fit):当要分配内存空间时,就查表,在各空闲区中查找满足大小要求的可用块。
只要找到第一个足以满足要求的空闲块就停止查找,并把它分配出去;如果该空闲空间与所需空间大小一样,则从空闲表中取消该项;如果还有剩余,则余下的部分仍留在空闲表中,但应修改区分大小和分区始址。
用户提出内存空间的申请:系统根据申请者的要求,按照一定的分配策略分析内存空间的使用情况,找出能满足请求的空闲区,分给申请者;当程序执行完毕或主动归还内存资源时,系统要收回它所占用的内存空间或它归还的部分内存空间。
最佳适应算法(Best-fit):当要分配内存空间时,就查找空闲表中满足要求的空闲块,并使得剩余块是最小的。
然后把它分配出去,若大小恰好合适,则直按分配;若有剩余块,则仍保留该余下的空闲分区,并修改分区大小的起始地址。
内存回收:将释放作业所在内存块的状态改为空闲状态,删除其作业名,设置为空,并判断该空闲块是否与其他空闲块相连,若释放的内存空间与空闲块相连时,则合并为同一个空闲块,同时修改分区大小及起始地址。
每当一个进程被创建时,内存分配程序首先要查找空闲内存分区链,从中寻找一个合适的空闲块进行划分,并修改空闲内存分区链,系统根据回收区的首址,从空闲区链中找到相应的插入点,此时出现如下四种情况:(1) 回收区与插入点的前一个空闲区F1相邻接,此时可将回收区直接与F1合并,并修改F1的大小;(2) 回收区与插入点的后一个空闲分区F2相邻接,此时可将回收区直接与F2合并,并用回收区的首址作为新空闲区的首址,大小为二者之和;(3) 回收区同时与插入点的前后两个空闲分区邻接,此时需将三者合并;(4) 回收区不与任何一个空闲区邻接,此时应建一新的表项2.主要数据结构的说明定义一个空闲区说明表结构struct freearea {int ID; //分区号long size;//分区大小long address;//分区地址int state; //状态}ElemType;线性表的双向链表存储结构Struct DuLNode//double linked list{ElemType data;struct DuLNode *prior; //前趋指针struct DuLNode *next; //后继指针}DuLNode,*DuLinkList;算法;首次适应算法:是在分配内存时,从链首开始顺序查找,直到找到一个大小能够满足要求的分区,即进行分配。
存储器管理实验报告#include //首次适应算法#include#includeusing namespace std;typedef struct JOB{char JobName[10];int needTime;int needMemorrizes;int status;JOB *next;} JobProgram;JobProgram *head,*Program,*p;typedef struct memorrizesElement1{int memorrizes;}memorrizesElement;memorrizesElement element[3];void initMemorry(){for (int i = 0; i<3; i++)element[i].memorrizes = 5;}int searchAndJudge(JobProgram *JP){for (int i = 0; i<3; i++){if (element[i].memorrizes >= JP->needMemorrizes)return i;}return -1;}void intput(){Program = new JobProgram; cout<<"请输入作业名称: "; cin>>Program->JobName;cout<<"请输入作业需要时间: "; cin>>Program->needTime;cout<<"请输入作业需要内存数: "; cin>>Program->needMemorrizes; Program->status = -1;if (head == NULL){p = head;head = Program;p = Program;head->next = NULL;}else{p->next = Program;p = Program;p->next = NULL;}}void MoveMemorryManaging() {// JobProgram *q;JobProgram *ppp = head;JobProgram *pre;while (ppp!=NULL){int k = searchAndJudge(ppp);if (ppp->status ==-1){if (k!=-1){if (ppp->needMemorrizes <= 5){//element[k].flag = 1;element[k].memorrizes -= ppp->needMemorrizes;ppp->status = k;cout<<"作业正在运行: "<<endl;< p="">cout<<"作业名字: "<JobName<<endl<<"作业需要时间: "<needTime<<endl<<"作业状态: "<status<<endl;< p=""> ppp->needTime--;if (ppp->needTime==0){if (ppp == head){JobProgram *s = head;head = head->next;element[s->status].memorrizes += s->needMemorrizes;delete s;}else{JobProgram *s = ppp;pre->next = ppp->next;element[s->status].memorrizes += s->needMemorrizes;delete s;ppp = pre;}}}else{cout<<"你输入的内存需要大小超过了固定分区每个块的大小,无法装入运行"<<="">exit(1);}}else{cout<<"作业就绪: "<<endl;< p="">cout<<"作业名字: "<JobName<<endl<<"作业需要时间: "<needTime<<endl<<"作业状态: "<status<<endl;< p=""> }}else{cout<<"作业正在运行: "<<endl;< p="">cout<<"作业名字: "<JobName<<endl<<"作业需要时间: "<needTime<<endl<<"作业状态: "<status<<endl;< p=""> ppp->needTime--;if (ppp->needTime==0){if (ppp == head){JobProgram *s = head;head = head->next;element[s->status].memorrizes += s->needMemorrizes; delete s;}else{JobProgram *s = ppp;pre->next = ppp->next;element[s->status].memorrizes += s->needMemorrizes; delete s;ppp = pre;}}}pre = ppp;ppp = ppp->next;}}int main(){int n;cout<<"请输入要执行的作业的个数: ";cin >> n;initMemorry();for (int i = 0; i<="" p="">intput();while(head)MoveMemorryManaging();return 0;}</endl;<></endl<<"作业状态:></endl<<"作业需要时间:> </endl;<></endl;<></endl<<"作业状态:></endl<<"作业需要时间:> </endl;<></endl;<></endl<<"作业状态:></endl<<"作业需要时间:> </endl;<>。
存储器管理实验报告1. 实验目的本实验旨在通过实际操作,学习和理解存储器管理的基本概念和原理,并通过编写代码来实现常见的存储器管理算法。
2. 实验背景存储器管理是计算机系统中的重要组成部分,它负责管理和分配计算机的内存资源。
在计算机系统中,内存分为多个不同的区域,每个区域用于存储不同类型的数据。
存储器管理的主要任务是有效地管理和分配这些内存资源,以满足程序的需求,并保证系统的稳定性和高效性。
3. 实验步骤本实验共分为以下几个步骤:步骤一:了解存储器管理的基本概念在开始实验之前,我们首先需要了解存储器管理的基本概念。
包括内存分区、内存分配算法、内存回收算法等。
步骤二:设计实验代码根据实验要求,我们需要编写代码来实现常见的存储器管理算法。
可以选择使用C、C++等编程语言来实现。
步骤三:实验代码测试完成代码编写后,我们需要对代码进行测试,以验证其正确性和可行性。
可以编写一些测试样例来测试不同的存储器管理算法。
步骤四:实验结果分析根据实验的结果,我们可以对不同的存储器管理算法进行比较和分析,评估其优劣和适用性。
步骤五:实验总结在实验结束后,我们可以对实验过程和结果进行总结,总结实验中所学到的知识和经验,并提出改进的建议。
4. 实验总结通过本次实验,我深入了解了存储器管理的基本概念和原理,并通过编写代码实现了常见的存储器管理算法。
实验过程中,我遇到了一些问题,但通过查阅相关文献和资料,最终解决了这些问题。
通过实验,我不仅加深了对存储器管理的理解,还提高了编程能力和问题解决能力。
5. 改进建议在实验过程中,我发现代码实现的效率还有待提高,可以进一步优化算法的设计和实现。
此外,可以扩展实验内容,研究更多的存储器管理算法,并进行比较和分析。
参考文献•[1] 《操作系统教程》•[2] 《计算机体系结构》•[3] 《操作系统原理》。
存储管理实验报告一、实验目的1.了解存储管理的概念及作用;2.掌握存储管理的基本操作和技术;3.熟悉常见的存储管理工具和方法;4.分析存储管理对系统性能的影响。
二、实验内容1.了解存储管理的基本概念:存储管理是指对计算机中的存储器进行有效管理和利用的一种技术手段。
主要包括内存管理和外存管理两个方面。
2.学习常见的存储管理工具和方法:(1)内存管理方案:连续内存管理、非连续内存管理和虚存管理;(2)外存管理方案:磁盘存储管理、文件系统管理和缓存管理等。
3.实际操作存储管理工具:(1)使用操作系统的内存管理工具,如Windows的任务管理器和Linux的top命令等,查看内存使用情况和进程占用的内存大小;(2)使用磁盘管理工具,如Windows的磁盘管理器和Linux的fdisk命令等,查看磁盘的分区情况和使用状况;(3)使用文件系统管理工具,如Windows的资源管理器和Linux的ls命令等,查看文件和目录的存储和管理状态。
4.分析存储管理对系统性能的影响:(1)使用性能监控工具,如Windows的性能监视器和Linux的sar 命令等,实时监测系统的内存、磁盘和文件系统等性能指标;(2)对比不同存储管理方案的优缺点,分析其对系统性能的影响;(3)根据实验结果提出优化存储管理的建议。
三、实验步骤1.阅读相关文献和资料,了解存储管理的基本概念和原理;2.使用操作系统的内存管理工具,查看当前系统内存的使用情况;3.使用操作系统的磁盘管理工具,查看当前系统磁盘的分区情况;4.使用操作系统的文件系统管理工具,查看当前系统文件和目录的存储和管理状态;5.使用性能监控工具,实时监测系统的内存、磁盘和文件系统等性能指标;6.根据实验结果,分析存储管理对系统性能的影响;7.结合实验结果,提出优化存储管理的建议。
四、实验结果1.使用内存管理工具查看系统内存使用情况,发现部分进程占用内存过高,导致系统运行缓慢;2.使用磁盘管理工具查看系统磁盘分区情况,发现磁盘分区不合理,造成磁盘空间利用率较低;3.使用文件系统管理工具查看文件和目录的存储和管理状态,发现有大量重复和冗余的文件,需要进行清理和整理;4.使用性能监控工具实时监测系统的性能指标,发现内存和磁盘的利用率较高,需要优化存储管理。
操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。
本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。
二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。
三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。
分区的大小可以相等,也可以不等。
2、实现创建一个固定大小的内存空间数组,模拟内存分区。
为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。
3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。
分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。
(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。
2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。
实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。
3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。
观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。
(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。
2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。
模拟页面的调入和调出过程,处理缺页中断。
3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。
探讨页大小的选择对存储管理的影响。
(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。
实验四操作系统存储管理实验报告一、实验目的1.了解存储管理的概念和意义;2.掌握内存管理的基本原理和技术;3.了解常见的存储管理策略。
二、实验内容1.使用C/C++编程语言,设计并实现一个模拟内存管理的程序;2.实现内存的分配和回收算法,模拟内存的分配和释放过程;3.实现不同的内存管理策略,并通过实验比较它们的效果。
三、实验过程1.阅读相关的参考资料,了解存储管理的概念和意义,以及常用的内存管理策略;2.使用C/C++编程语言,设计并实现一个模拟内存管理的程序;3.设计并实现内存的分配和回收算法,模拟内存的分配和释放过程;4.设计并实现不同的内存管理策略,如首次适应算法、最佳适应算法和最坏适应算法;5.运行程序,测试不同的内存管理策略,比较它们的效果。
四、实验结果与分析在模拟的内存管理程序中,我们实现了三种常见的内存管理策略:首次适应算法、最佳适应算法和最坏适应算法。
这些策略在进行内存分配时,从空闲内存块列表中选择合适的内存块进行分配,并在内存回收时对已使用的内存块进行释放。
我们通过对不同策略的测试,得到了以下的实验结果。
首次适应算法:该算法会从空闲内存块列表中选择第一个满足要求的内存块进行分配。
该算法的优点是速度较快,但容易出现内存碎片的问题。
在实验中,我们发现该算法的分配速度相对较快,但在长时间运行后,可能会出现大量的内存碎片,导致无法分配较大的连续内存块。
最佳适应算法:该算法会遍历空闲内存块列表,选择大小最合适的内存块进行分配。
该算法的优点是能够更好地利用内存空间,减少内存碎片的发生。
在实验中,我们发现该算法的分配效果较好,但需要遍历整个空闲内存块列表,所以速度较慢。
最坏适应算法:该算法会选择大小最大的内存块进行分配。
该算法的优点是可以防止内存碎片的发生,但由于每次选择的内存块较大,可能会导致较多的内存浪费。
在实验中,我们发现该算法的分配效果较好,但会造成较多的内存浪费。
根据实验结果和分析,我们可以根据具体的需求选择合适的内存管理策略。
存储器管理实验报告存储器管理实验报告一、引言存储器管理是计算机操作系统中至关重要的一部分,它负责管理计算机的内存资源。
在本次实验中,我们将通过模拟实验来深入了解存储器管理的原理和实践操作。
二、实验目的1. 理解存储器管理的基本概念和原理;2. 学习并掌握存储器分配和回收的算法;3. 实践操作,加深对存储器管理的理解。
三、实验环境本次实验使用了一款名为“MemSim”的模拟器,它能够模拟计算机的内存分配和回收过程,并提供了一系列操作和指令供我们使用。
四、实验步骤1. 启动模拟器并加载测试程序;2. 观察内存分配过程,了解不同算法的工作原理;3. 进行内存回收操作,观察回收算法的效果;4. 分析实验结果,总结不同算法的优缺点。
五、实验结果与分析在本次实验中,我们使用了三种常见的内存分配算法:首次适应算法、最佳适应算法和最坏适应算法。
分别对应了不同的内存分配策略。
首次适应算法是最简单的一种算法,它从内存的起始位置开始查找可用的内存块,并将程序加载到第一个合适的位置。
这种算法的优点是简单易实现,但缺点是容易产生外碎片。
最佳适应算法则是从所有可用内存块中选择最小的一个来加载程序。
这样可以最大程度地减少外碎片的产生,但同时也增加了内存分配的开销。
最坏适应算法则是选择最大的可用内存块来加载程序。
这样可以减少内存碎片的产生,但会导致更多的内存浪费。
通过对比实验结果,我们可以发现不同算法在内存利用率、外碎片和内存开销等方面存在差异。
在实际应用中,我们需要根据具体情况选择合适的算法。
六、实验心得通过本次实验,我对存储器管理有了更深入的了解。
在实践操作中,我发现不同的算法在内存分配和回收过程中有不同的优缺点,需要根据具体需求进行选择。
同时,我也意识到了内存管理对计算机性能的重要性,合理的存储器管理可以提高计算机的运行效率。
在今后的学习和工作中,我将进一步深入研究存储器管理的原理和算法,并将其应用于实际项目中。
通过不断的实践和总结,我相信我能够在存储器管理方面取得更好的成果。
操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。
最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。
最坏适应算法:选择空闲分区中最大的分区进行分配。
2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。
最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。
时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。
五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。
2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。
实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。
编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。
实验四存储器管理1、目的与要求本实验的目的是让学生熟悉存储器管理的方法,加深对所学各种存储器管理方案的了解;要求采用一些常用的存储器分配算法,设计一个存储器管理模拟系统,模拟内存空间的分配和释放。
2、实验内容①设计一个存放空闲块的自由链和一个内存作业分配表,存放内存中已经存在的作业。
②编制一个按照首次适应法分配内存的算法,进行内存分配。
③同时设计内存的回收以及内存清理(如果要分配的作业块大于任何一个空闲块,但小于总的空闲分区,则需要进行内存的清理,空出大块的空闲分区)的算法。
3.实验环境①PC兼容机②Windows、DOS系统、Turbo c 2。
0③C语言4.实验提示一、数据结构1、自由链内存空区采用自由链结构,链首由指针freep指向,链中各空区按地址递增次序排列.初启动时整个用户内存区为一个大空区,每个空区首部设置一个区头(freearea)结构,区头信息包括:Size 空区大小Next 前向指针,指向下一个空区Back 反向指针,指向上一个空区Adderss 本空区首地址2、内存分配表JOBMA T系统设置一个MA T,每个运行的作业都在MAT中占有一个表目,回收分区时清除相应表目,表目信息包括:Name 用户作业名Length 作业区大小Addr 作业区首地址二、算法存储分配算法采用首次适应法,根据指针freep查找自由链,当找到第一块可满足分配请求的空区便分配,当某空区被分配后的剩余空闲空间大于所规定的碎片最小量mini时,则形成一个较小的空区留在自由链中。
回收时,根据MAT将制定分区链入自由链,若该分区有前邻或后邻分区,则将他们拼成一个较大的空区。
当某个分配请求不能被满足,但此时系统中所有碎片总容量满足分配请求的容量时,系统立即进行内存搬家,消除碎片.即将各作业占用区集中下移到用户内存区的下部(高地址部分),形成一片连续的作业区,而在用户内存区的上部形成一块较大的空闲,然后再进行分配。
实验3 存储器实验报告一、实验目的本次实验的主要目的是深入了解存储器的工作原理和性能特点,通过实际操作和观察,掌握存储器的读写操作、存储容量计算以及不同类型存储器的区别和应用。
二、实验设备1、计算机一台2、存储器实验装置一套3、相关测试软件三、实验原理存储器是计算机系统中用于存储数据和程序的重要部件。
按照存储介质和工作方式的不同,存储器可以分为随机存取存储器(RAM)和只读存储器(ROM)。
RAM 可以随机地进行读写操作,但断电后数据会丢失。
ROM 在正常工作时只能读取数据,且断电后数据不会丢失。
存储器的存储容量通常以字节(Byte)为单位,常见的存储容量有1GB、2GB、4GB 等。
存储容量的计算方法是:存储容量=存储单元个数 ×每个存储单元的位数。
四、实验内容与步骤1、熟悉实验设备首先,仔细观察存储器实验装置的结构和接口,了解各个部分的功能和作用。
2、连接实验设备将计算机与存储器实验装置通过数据线正确连接,并确保连接稳定。
3、启动测试软件打开相关的测试软件,进行初始化设置,选择合适的实验模式和参数。
4、进行存储器读写操作(1)随机写入数据:在测试软件中指定存储单元地址,输入要写入的数据,并确认写入操作。
(2)随机读取数据:指定已写入数据的存储单元地址,进行读取操作,将读取到的数据与之前写入的数据进行对比,验证读写的准确性。
5、计算存储容量通过读取存储器的相关参数和标识,结合存储单元的个数和每个存储单元的位数,计算出存储器的实际存储容量。
6、比较不同类型存储器的性能(1)分别对 RAM 和 ROM 进行读写操作,记录操作的时间和速度。
(2)观察在断电和重新上电后,RAM 和ROM 中数据的变化情况。
五、实验结果与分析1、读写操作结果经过多次的读写操作验证,存储器的读写功能正常,读取到的数据与写入的数据一致,表明存储器的读写操作准确无误。
2、存储容量计算结果根据实验中获取的存储器参数,计算得出的存储容量与标称容量相符,验证了存储容量计算方法的正确性。
实验3 存储器实验报告一、实验目的:1、了解RAM、ROM存储器的基本原理和工作特点;3、锻炼学生实验动手操作能力;4、培养学生动手实践能力和综合实践能力。
二、实验器材:1、实验箱一台2、万用表一只3、示波器一台4、电源一台5、电缆若干。
三、实验步骤:1、RAM存储器的读写实验(1) 在实验箱面板上取下RAM存储器的锁孔垫片。
(2) 把读输出线、写输出线、地址线和读写控制信号线依次通过实验箱面板相应的接口引出。
(3) 接通电源,调整数据总线和地址总线的电位为0。
(4) 将读写控制信号线设置为0,地址信号线设置为读取需要存储的地址,读输出线高电平表示RAM存储器中对应地址的数据。
(3) 输入ROM存储器的地址信号线。
(5) 将读输出线接入示波器,观察输出波形,并记录读取数据的值。
四、实验原理在RAM存储器中,每个存储单元都有独立的地址(A)和数据(D)输入输出端,以及读/写控制端(R/W)。
地址(A)对应每个存储单元的物理位置,是用来选中存储单元的。
地址线上的二进制状态就表示选中哪个存储单元。
数据线输入/输出的数据信号(D)就是存储在RAM单元中的数据。
读/写控制信号(R/W)控制读/写操作进行的时刻。
当R/W为高(写状态)时,数据D将被装入被选择的RAM单元;当R/W为低(读状态)时,被选RAM单元中的数据将被送到数据输出线上。
RAM存储器仅有一组共用地址线和数据线,但相邻地址所在RAM单元不仅具有物理上的相邻,相邻单元的地址与其中一个单元的地址只有最后一位不同,故相邻单元的装入和取出数据时间相等。
ROM存储器是一种只读存储器。
在ROM芯片中,存储的数据是在生产过程中被制成常数并固定在芯片中的。
一般情况下,ROM内单元的存储内容不能被修改。
ROM存储器主要的工作就是读取存储在ROM内的信息内容。
ROM存储器的读取输入信息只有地址信号,它的电信号SON每个ROM单元接受地址信号时(即选中时),ROM单元需要将存储在其中的信息送到ROM芯片上的输出线上。
一、实验目的1. 理解存储器管理的概念和作用。
2. 掌握虚拟存储器的实现原理。
3. 熟悉存储器分配策略和页面置换算法。
4. 提高动手实践能力,加深对存储器管理知识的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发环境:GCC编译器三、实验内容1. 虚拟存储器实现原理(1)分页式存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页。
内存与外存之间通过页表进行映射,实现虚拟存储器。
(2)页表管理:包括页表建立、修改和删除等操作。
(3)页面置换算法:包括FIFO、LRU、LRU时钟等算法。
2. 存储器分配策略(1)固定分区分配:将内存划分为若干个固定大小的分区,每个分区只能分配给一个进程。
(2)可变分区分配:根据进程需求动态分配内存,分为首次适应、最佳适应和最坏适应等策略。
(3)分页存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页,通过页表进行映射。
3. 页面置换算法(1)FIFO算法:根据进程进入内存的顺序进行页面置换,最早进入内存的页面将被淘汰。
(2)LRU算法:淘汰最近最少使用的页面。
(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,通过一个时钟指针实现页面置换。
四、实验步骤1. 编写程序实现虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。
2. 编写测试程序,模拟进程在虚拟存储器中的运行过程,观察不同页面置换算法的效果。
3. 分析实验结果,比较不同页面置换算法的性能差异。
五、实验结果与分析1. 实验结果通过模拟实验,验证了虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。
实验结果显示,不同页面置换算法对系统性能的影响较大。
2. 实验分析(1)FIFO算法:实现简单,但可能导致频繁的页面置换,影响系统性能。
(2)LRU算法:性能较好,但实现复杂,需要额外的硬件支持。
(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,在性能和实现复杂度之间取得平衡。
一、实验目的1. 理解操作系统存储管理的概念和作用。
2. 掌握存储管理的基本算法和策略。
3. 通过实验,加深对存储管理原理的理解,提高实际操作能力。
二、实验环境1. 操作系统:Windows 102. 软件环境:虚拟机软件VMware Workstation 153. 实验平台:Linux系统三、实验内容1. 存储管理概述2. 页式存储管理3. 段式存储管理4. 分段分页存储管理5. 存储管理算法四、实验步骤1. 页式存储管理实验(1)设置虚拟内存:在Linux系统中,使用`cat /proc/meminfo`命令查看内存信息,然后使用`vmstat`命令查看虚拟内存的使用情况。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟页式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中页面的分配、置换和回收过程。
2. 段式存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟段式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
3. 分段分页存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟分段分页存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
4. 存储管理算法实验(1)编写实验程序:使用C语言编写一个简单的程序,模拟不同的存储管理算法(如FIFO、LRU、LFU等)。
(2)运行实验程序:编译并运行实验程序,观察不同算法在页面分配、置换和回收过程中的表现。
五、实验结果与分析1. 页式存储管理实验实验结果表明,页式存储管理可以将大程序离散地存储在内存中,提高内存利用率。
但页式存储管理也存在页面碎片问题,导致内存碎片化。
2. 段式存储管理实验实验结果表明,段式存储管理可以将程序按照逻辑结构划分为多个段,提高了内存的利用率。
操作系统实验报告存储器管理学院电信学院专业计算机科学与技术班级 14级计科一班实验题目动态分区分配实验组别第三组指导老师曹华一、实验目的了解动态分区分配方式中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。
二、实验内容用C语言分别实现采用首次适应算法和最佳适应算法的动态分区分配过程alloc()和回收过程free()。
其中,空闲分区通过分区链来管理,在进行内存分配时,系统优先使用空闲区低端的空间。
请分别用首次适应算法和最佳适应算法进行内存块的分配和回收,要求每次分配和回收后显示出空闲内存分区链的情况。
三、实验主要仪器设备软件环境:VC++6编程环境四、实验原理及设计方案1.实验原理:可变分区调度算法有:最先适应分配算法,循环首次适应算法,最佳适应算法,最坏适应算法。
首次适应算法(First-fit):当要分配内存空间时,就查表,在各空闲区中查找满足大小要求的可用块。
只要找到第一个足以满足要求的空闲块就停止查找,并把它分配出去;如果该空闲空间与所需空间大小一样,则从空闲表中取消该项;如果还有剩余,则余下的部分仍留在空闲表中,但应修改区分大小和分区始址。
用户提出内存空间的申请:系统根据申请者的要求,按照一定的分配策略分析内存空间的使用情况,找出能满足请求的空闲区,分给申请者;当程序执行完毕或主动归还内存资源时,系统要收回它所占用的内存空间或它归还的部分内存空间。
最佳适应算法(Best-fit):当要分配内存空间时,就查找空闲表中满足要求的空闲块,并使得剩余块是最小的。
然后把它分配出去,若大小恰好合适,则直按分配;若有剩余块,则仍保留该余下的空闲分区,并修改分区大小的起始地址。
内存回收:将释放作业所在内存块的状态改为空闲状态,删除其作业名,设置为空,并判断该空闲块是否与其他空闲块相连,若释放的内存空间与空闲块相连时,则合并为同一个空闲块,同时修改分区大小及起始地址。
每当一个进程被创建时,内存分配程序首先要查找空闲内存分区链,从中寻找一个合适的空闲块进行划分,并修改空闲内存分区链,系统根据回收区的首址,从空闲区链中找到相应的插入点,此时出现如下四种情况:(1)回收区与插入点的前一个空闲区F1相邻接,此时可将回收区直接与F1合并,并修改F1的大小;(2)回收区与插入点的后一个空闲分区F2相邻接,此时可将回收区直接与F2合并,并用回收区的首址作为新空闲区的首址,大小为二者之和;(3)回收区同时与插入点的前后两个空闲分区邻接,此时需将三者合并;(4)回收区不与任何一个空闲区邻接,此时应建一新的表项2.主要数据结构的说明定义一个空闲区说明表结构struct freearea {int ID; //分区号long size; //分区大小long address; //分区地址int state; //状态}ElemType;线性表的双向链表存储结构Struct DuLNode//double linked list{ElemType data;struct DuLNode *prior; //前趋指针struct DuLNode *next; //后继指针}DuLNode,*DuLinkList;算法;首次适应算法:是在分配内存时,从链首开始顺序查找,直到找到一个大小能够满足要求的分区,即进行分配。
最佳适应算法:是在分配内存时,从链首开始顺序查表,查找到链尾,并记录一个大小不小于要求的分区的最小分区,在查找完毕后进行分配。
3.程序流程图首次适应算法最佳适应算法4.实验程序首次适应算法#include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #define N 10000 int n1;//空闲分区的个数int n2;//作业区的个数struct kongxian{int start; //起址int end; //结束int length; //长度}kongxian[N];struct zuoye{int start; //起址int end; //结束int length; //长度}zuoye[N];int cmp1(const void *a,const void *b){return (*(struct kongxian *)a).start-(*(struct kongxian *)b).start;}int cmp2(const void *a,const void *b){return (*(struct zuoye *)a).start-(*(struct zuoye *)b).start;}void init(){n1=1; //初始时只有一个空闲区n2=0; //初始没有作业kongxian[0].start=0;kongxian[0].end=1023;kongxian[0].length=1024;}void print1() //打印空闲分区{int i;for(i=0;i<n1;i++)printf("空闲分区ID:%d 起止:%d 结束:%d 长度:%d\n",i,kongxian[i].start,kongxian[i].end,k ongxian[i].length);}void print2() //打印作业分区{int i;for(i=0;i<n2;i++)printf("作业分区ID:%d 起止:%d 结束:%d 长度:%d\n",i,zuoye[i].start,zuoye[i].end,zuoye[i] .length);}int main(){int i,j,t,len,flag,id;int front,middle, behind;int t1,t2;init();print1();printf("输入1装入新作业,输入0回收作业,输入-1结束\n");while(scanf("%d",&t)!=EOF){if(t==1) //装入新作业{printf("请输入作业的占用空间的长度");scanf("%d",&len);flag=0;for(i=0;i<n1;i++){if(kongxian[i].length>=len) //首次适应算法{flag=1;break;}}if(!flag){printf("内存分配失败\n");}else{zuoye[n2].start=kongxian[i].start;zuoye[n2].end=zuoye[n2].start+len;zuoye[n2].length=len;n2++; //作业数加1if(kongxian[i].length==len) //该分区全部用于分配,删除该空闲分区{for(j=i;j<n1-1;j++){kongxian[j].start=kongxian[j+1].start; kongxian[j].end=kongxian[j+1].end; kongxian[j].length=kongxian[j+1].length;}n1--;}else //该空闲分区部分用于分配,剩余的留在空闲分区中{kongxian[i].start+=len;kongxian[i].length-=len;}}}else if(t==0){printf("输入要回收的作业ID ");scanf("%d",&id);front=middle=behind=0;for(i=0;i<n1;i++){if(kongxian[i].start>zuoye[id].end)break;if(kongxian[i].end==zuoye[id].start) //待回收的作业上面有空闲分区{front=1;t1=i;}if(kongxian[i].start>zuoye[id].end){behind=1;t2=i;}}if(!front&&!behind){kongxian[n1].start=zuoye[id].start;kongxian[n1].end=zuoye[id].end;kongxian[n1].length=zuoye[id].length;n1++;qsort(kongxian,n1,sizeof(struct kongxian),cmp1);for(j=id;j<n2-1;j++){zuoye[j].start=kongxian[j+1].start;zuoye[j].end=zuoye[j+1].end;zuoye[j].length=zuoye[j+1].length;}n2--;}if(front&&behind)middle=1;if(front&&!behind){kongxian[t1].end+=zuoye[id].length;kongxian[t1].length+=zuoye[id].length;for(j=id;j<n2-1;j++){zuoye[j].start=zuoye[j+1].start;zuoye[j].end=zuoye[j+1].end;zuoye[j].length=zuoye[j+1].length;}n2--;}if(middle){kongxian[t1].end=kongxian[t2].end;kongxian[t1].length+=(zuoye[id].length+ko ngxian[t2].length);for(j=t2;j<n1-1;j++){kongxian[j].start=kongxian[j+1].start;kongxian[j].end=kongxian[j+1].end;kongxian[j].length=kongxian[j+1].length;}n1--;for(j=id;j<n2-1;j++){zuoye[j].start=kongxian[j+1].start;zuoye[j].end=zuoye[j+1].end;zuoye[j].length=zuoye[j+1].length;}n2--;}if(front&&!behind){kongxian[t1].end-=zuoye[id].length;kongxian[t1].length+=zuoye[id].length;for(j=id;j<n2-1;j++){zuoye[j].start=zuoye[j+1].start; zuoye[j].end=zuoye[j+1].end; zuoye[j].length=zuoye[j+1].length;}n2--;}}else{printf("操作结束\n");break;}print1();print2();}return 0;}最佳适应算法#include<stdio.h>#include<string.h>#include<stdlib.h>#include<math.h>struct kongkuai{ int startaddr;int size;int flag;}kongxq[6]={{10,30,1},{100,60,1},{200,80,1},{3 00,60,1},{400,180,1},{700,200,1}};int allocate(int jobsize){int i;int t=0;for(i=0;i<6;i++)if(kongxq[i].flag==1&&kongxq[i].size>job size){kongxq[i].startaddr+=jobsize;kongxq[i].size-=jobsize;t=1;returnkongxq[i].startaddr-jobsize;}elseif(kongxq[i].flag==1&&kongxq[i].size==jo bsize){kongxq[i].flag=0;t=1;returnkongxq[i].startaddr;}if(t==0)return 0;return 1;}void circle(){int i,j;struct kongkuai temp;for(i=0;i<6;i++)for(j=0;j<6;j++)if(kongxq[j].size>kongxq[j+1].size){temp.startaddr=kongxq[j].startaddr;temp.size=kongxq[j].size;temp.flag=kongxq[j].flag;kongxq[j].startaddr=kongxq[j+1].startadd r;kongxq[j].size=kongxq[j+1].size;kongxq[j].flag=kongxq[j+1].flag;kongxq[j+1].startaddr=temp.startaddr;kongxq[j+1].size=temp.size;kongxq[j+1].flag=temp.flag;}for(i=0;i<6;i++)for(j=0;j<6;j++)if(kongxq[j].flag==0&&kongxq[j+1].flag== 1){temp.startaddr=kongxq[j].startaddr;temp.size=kongxq[j].size;temp.flag=kongxq[j].flag;kongxq[j].startaddr=kongxq[j+1].startadd r;kongxq[j].size=kongxq[j+1].size;kongxq[j].flag=kongxq[j+1].flag;kongxq[j+1].startaddr=temp.startaddr;kongxq[j+1].size=temp.size;kongxq[j+1].flag=temp.flag;}}void callback(){int s,len,t1=0,t2=0,t3=0,i,j;printf("请输入回收区的起始地址:\n");scanf("%d",&s);printf("请输入回收区的大小:\n");scanf("%d",&len);for(i=0;i<6;i++){if((kongxq[i].startaddr==s+len)&&(kongxq[i].fl ag==1)){len+=kongxq[i].size;t1=1;for(j=0;j<6;j++)if((kongxq[j].startaddr+kongxq[j].size==s) &&(kongxq[j].flag==1)){kongxq[i].flag=0;kongxq[j].size=kongxq[j+1].size+len;t2=1;break;}if(t2==0){kongxq[i].startaddr=s;kongxq[i].size=len;break;}}}if(t1==0){for(i=0;i<6;i++){if((kongxq[i].startaddr+kongxq[i].size==s) &&(kongxq[i].flag==1)){kongxq[i].size+=len;t3=1;break;}if(t3==0)for(j=0;j<6;j++)if(kongxq[j].flag==0){kongxq[j].startaddr=s;kongxq[j].size=len;kongxq[j].flag=1;break;}}}}void print(){int i;printf("\n 起始地址| 大小|是否空闲\n\n");for(i=0;i<6;i++){printf(" %3d | %3d | %3d \n",kongxq[i].startaddr,kongxq[i].size,kongxq [i].flag);}printf("\n");}main(){int jobsize,start;char end;printf("\n是否有作业请求空闲区?Y or N:");while(end=getchar()=='y'){printf("初始空闲区状态:\n");circle();print();printf("请输入请求空闲区的作业大小:");scanf("%d",&jobsize);start=allocate(jobsize);circle();printf("分配后空闲区状态:\n");print();if(!start)printf("没有适合的空闲区大小!\n");elseprintf("作业起始地址: %d\n",start);printf("作业大小: %d\n",jobsize);callback();print();printf("是否有其他作业的请求? Y or N:");end=getchar();}return 0;}五、算法及运行结果及分析1.运行结果:首次适应算法最佳适应算法2.实验总结:通过运行内存分配和回收模拟的程序对内存管理理解加深了,在动态分区管理方式中,能灵活地根据作业需要,动态地为之分配内存空间,其中关键是分区分配算法,一旦内存块使用完毕,可以回收给系统以分配给其他的作业使用。