温度控制系统
- 格式:doc
- 大小:321.76 KB
- 文档页数:32
温度控制系统设计论文引言:温度是物体分子热运动的表现,是物体内部微观热量分布状态的体现,温度控制的目的是使温度维持在恒定的设定值附近,使物体处于稳定的温度环境中。
温度控制系统的设计对于许多工业和生活领域都至关重要,例如,空调系统、制冷系统、加热系统等等。
本文将介绍一个基于反馈控制的温度控制系统的设计。
一、系统分析1.温度分析:首先需要对温度的变化规律进行分析,例如,物体的温度变化的时间特性、传热过程等等,这些信息对于系统设计是非常重要的。
2.系统要求分析:基于应用领域对系统精度要求的不同,需要确定系统对温度的精度要求、响应速度要求以及稳定性要求等等。
3.传感器选择:根据系统要求分析的结果,选择合适的温度传感器,例如热电偶、热敏电阻等等。
二、系统设计1.控制器设计:根据系统要求分析的结果,选择合适的控制器,并设计反馈控制算法。
可以采用PID控制器、模糊控制器或者模型预测控制等等。
根据系统的特点,可以对控制器进行参数调整,以使系统达到良好的控制效果。
2.执行器选择:根据系统控制要求,选择合适的执行器。
如果需要制冷,可以选择压缩机、蒸发器等等;如果需要加热,可以选择加热元件等等。
执行器的响应速度与系统的控制性能密切相关,因此需要选择合适的执行器以提高系统的控制效果。
3.信号处理:由于传感器输出的信号可能存在噪声,需要进行信号处理以提高系统的稳定性和抗干扰能力。
可以使用滤波算法或者其他信号处理技术进行处理。
三、系统实现1.硬件设计:根据系统设计的要求,选择合适的硬件平台,例如单片机、PLC等等。
设计电路图和PCB布局,将硬件连接起来,并与传感器和执行器进行连接。
2.软件设计:根据系统设计的要求,编写系统控制程序。
程序需要实现温度数据的采集和处理、控制器的运算、执行器的控制等等。
3.系统调试:完成硬件和软件的设计之后,进行系统的调试,包括控制算法的调整、传感器和执行器的校准等等。
通过对系统的调试,可以验证系统设计的合理性和可行性。
温度控制系统要点在现代化的工业生产中,温度控制是至关重要的一部分。
从食品加工到化学反应,从塑料制造到微电子产业,都需要对温度进行精确和可靠的控制。
本文将探讨温度控制系统的要点和关键组成部分。
1、温度传感器温度传感器是温度控制系统的核心组成部分,它能够感知并测量被控对象的温度。
根据不同的应用场景和精度要求,可以选择不同类型的温度传感器,如热电阻、热电偶、红外传感器等。
2、控制器控制器是温度控制系统的中枢,它根据温度传感器的读数来决定如何调整被控对象的温度。
控制器可以是简单的机械式控制器,也可以是更复杂的数字控制器。
数字控制器可以配备PID(比例-积分-微分)算法,以提供更精确的温度控制。
3、执行器执行器是控制系统的末端,它根据控制器的指令来调整被控对象的温度。
执行器可以是加热器、冷却器、风扇等设备。
执行器的选择取决于被控对象的特性和控制要求。
4、被控对象被控对象是温度控制系统需要控制的设备或过程。
在选择执行器和控制器时,需要考虑被控对象的特性和要求。
例如,被控对象可能是塑料成型机、发酵罐、半导体生产线等。
5、反馈系统反馈系统是将控制系统的输出与设定值进行比较的系统。
它向控制器提供信息,使其了解其命令是否已使系统达到所需的温度。
如果需要调整温度,控制器将发送新的指令给执行器。
6、电源和安全设备温度控制系统需要稳定的电源供应以确保其正常工作。
同时,为了确保安全,系统应配备过载保护、短路保护等安全设备。
总结:温度控制系统需要精确和可靠地控制温度,以确保工业过程的稳定性和产品的质量。
在构建或维护温度控制系统时,应考虑温度传感器、控制器、执行器、被控对象、反馈系统和电源及安全设备等关键要素。
通过选择合适的设备并优化系统设计,可以实现对温度的精确控制,从而提高生产效率和质量。
随着科技的不断发展,智能化成为各行各业的主要趋势。
温度控制作为日常生活和工业生产中的重要环节,如何实现智能化以提高效率、节约能源以及提高生产质量,已成为业界的焦点。
温度控制系统工作原理温度控制系统工作原理温度控制系统是一种用于控制温度的自动化设备,它能够根据输入信号对环境温度进行调节,以实现期望的空间温度。
温度控制系统具有自动控制、节能、节约、方便等特点,可用于家庭、厂房、机房和其他场所的温度控制。
下面我们就一起来了解一下温度控制系统的工作原理及控制系统的结构与功能。
一、温度控制系统的工作原理1、环境温度检测:温度控制系统首先必须要到采集环境温度,一般使用温度传感器来采集环境温度值,经过温度控制系统的控制器处理,将采集到的温度值发送给控制系统以实现温度控制系统的控制。
2、控制输出:根据温度控制系统的设定值和环境温度值,温度控制系统的控制器能够做出正确的控制决策,控制系统控制器就会根据其决策通过开关来控制负载,实现对负载的控制,使得环境温度满足控制系统的设定值。
3、温度控制系统调节:温度控制系统的调节是持续进行的,当环境温度大于或小于控制系统设定的温度值时,控制器就会持续进行控制,以维持环境温度等于或接近控制系统的设定值。
二、温度控制系统的结构与功能1、温度控制系统的主要组成部分:温度控制系统由温度传感器、控制器、显示装置、开关、负载等部分组成。
2、温度传感器:温度传感器的作用是采集环境温度,然后将采集到的温度值发送给控制器。
3、控制器:控制器的功能是根据温度控制系统的设定值和环境温度值,做出控制输出决策,控制负载,以实现温度控制的目的。
4、显示装置:显示装置的作用是实时显示环境温度值和控制系统的设定值,以便于温度控制系统的调整和监控。
5、开关:温度控制系统的开关的作用是根据控制器的控制输出决策控制负载,以实现温度控制的目的。
6、负载:负载的作用是根据控制器的决策控制负载,以实现温度控制系统控制的目的。
以上就是温度控制系统的工作原理及控制系统的结构与功能介绍,温度控制系统的优点在于它具有自动控制、节能、节约、方便等特点,可用于家庭、厂房、机房和其他场所的温度控制,是大家非常理想的温度控制设备。
(完整版)温度控制系统设计温度控制系统的设计包括传感器、信号调理、控制器、执行元件和用户界面等多个部分,这些部分通过相互协调合作来达到稳定的温度控制。
本文将介绍温度控制系统设计的各个部分以及如何进行系统参数的选择和调整。
传感器是温度控制系统的重要组成部分,通常使用热敏电阻、热偶和红外线传感器等。
热敏电阻是一种电阻值随温度变化的材料,通过使用一个电桥来测量电阻值的变化,从而得到温度值。
热偶由两种不同的金属线构成,当温度变化时,热偶两端产生电势差,通过测量电势差值得到温度值。
红外线传感器通过测量物体辐射的红外线功率来得到物体的表面温度。
在选择传感器时,需要根据需要测量的温度范围、精度、响应时间和稳定性等参数进行选择。
信号调理是将传感器信号进行放大和校正的过程,包括滤波、增益、放大、线性化和校正等。
常用的信号调理手段有运算放大器、滤波器和模拟乘法器等。
运算放大器可以将传感器信号放大到合适的电平,同时可以进行信号的滤波、加减运算和比较等。
滤波器可以去除传感器信号中的杂波和干扰数据。
模拟乘法器可用于将两个信号相乘以进行补偿或校正。
在进行信号调理时,需要根据传感器的参数和目标控制参数进行调整。
控制器是温度控制系统的核心部分,其主要功能是根据信号调理后的温度值和设定值之间的差异进行相应的控制,使温度保持在设定范围内。
控制器通常通过对执行元件的控制来实现对温度的调节。
常见的控制算法有比例控制、积分控制和微分控制等。
比例控制是根据偏差的大小来进行控制,当偏差越大时,控制力度也越大;积分控制可以对偏差的累计值进行控制,从而提高控制的准确性;微分控制可以对偏差的变化率进行控制,从而使控制具有更好的响应速度和稳定性。
在选择控制算法时,需要根据系统对响应速度和稳定性的要求进行选择,并进行相关的参数调整。
执行元件是通过电机或气动元件来调节温度控制系统的温度的元件,例如调节阀门、电热器、压缩机和风扇等。
执行元件的选择需要根据需要调节的温度范围、响应速度和精度等参数进行选择,并根据控制算法和控制器参数进行调整。
温度控制系统原理一、温度控制系统概述温度控制系统是一种用于控制和调节温度的技术系统,广泛应用于工业生产、科研实验、家电家居等领域。
二、温度感知技术温度感知技术是温度控制系统的基础,用于实时监测当前温度值。
常见的温度感知技术包括热电阻、热敏电阻、铂电阻等,通过测量材料的电阻随温度变化的特性,可以得到温度值的反馈。
三、温度控制算法温度控制系统的关键是设计合理的控制算法,以实现温度的精确控制和稳定调节。
常用的温度控制算法有比例控制、比例-积分控制、比例-积分-微分控制等。
控制算法根据温度偏差与设定值的关系,调节控制执行器的输出信号,使温度保持在设定值附近。
四、温度调节执行器温度调节执行器是温度控制系统中的关键组成部分,用于根据控制算法的输出信号,调节恒温器、加热器、制冷器等设备。
温度调节执行器可通过控制阀门、电磁阀、电器元件等方式,实现温度的精确调节和控制。
五、温度控制系统的应用温度控制系统广泛应用于各个领域。
在工业生产中,温度控制系统用于控制炉温、温度梯度,保证工业生产的质量和效率。
在科研实验中,温度控制系统用于模拟实验环境、控制反应温度,以便于研究人员的实验操作和观察。
在家电家居中,温度控制系统用于家庭空调、恒温器、温度报警器等,提供舒适的居住环境和保障家庭安全。
六、温度控制系统的优势与发展趋势温度控制系统具有精准度高、稳定性好、可靠性强等优势。
随着科技的发展,温度控制系统的智能化程度不断提高,采用了先进的控制算法和感知技术,实现更加精确的温度控制和调节。
未来,温度控制系统有望在能源节约、环境保护等方面发挥更大的作用,为人们的生活和工作带来便利与舒适。
温度控制系统的设计与实现汇报人:2023-12-26•引言•温度控制系统基础知识•温度控制系统设计目录•温度控制系统实现•温度控制系统应用与优化01引言目的和背景研究温度控制系统的设计和实现方法,以满足特定应用场景的需求。
随着工业自动化和智能制造的快速发展,温度控制系统的性能和稳定性对于产品质量、生产效率和能源消耗等方面具有重要影响。
03高效、节能的温度控制系统有助于降低生产成本、减少能源浪费,并提高企业的竞争力。
01温度是工业生产过程中最常见的参数之一,对产品的质量和性能具有关键作用。
02温度控制系统的稳定性、准确性和可靠性直接关系到生产过程的稳定性和产品质量。
温度控制系统的重要性02温度控制系统基础知识温度控制系统的性能指标包括控制精度、响应速度、稳定性和可靠性等,这些指标直接影响着系统的性能和效果。
温度控制原理是利用温度传感器检测当前温度,并将该信号传输到控制器。
控制器根据预设的温度值与实际温度值的差异,通过调节加热元件的功率来控制温度。
温度控制系统通常由温度传感器、控制器和加热元件组成,其中温度传感器负责检测温度,控制器负责控制加热元件的开关和功率,加热元件则是实现温度升高的设备。
温度控制原理温度传感器是温度控制系统中非常重要的组成部分,其工作原理是将温度信号转换为电信号或数字信号,以便控制器能够接收和处理。
常见的温度传感器有热敏电阻、热电偶、集成温度传感器等,它们具有不同的特点和适用范围。
选择合适的温度传感器对于温度控制系统的性能和稳定性至关重要。
温度传感器的工作原理加热元件的工作原理加热元件是温度控制系统中实现温度升高的设备,其工作原理是通过电流或电阻加热产生热量,从而升高环境温度。
常见的加热元件有电热丝、红外线灯等,它们具有不同的特点和适用范围。
选择合适的加热元件对于温度控制系统的性能和安全性至关重要。
控制算法是温度控制系统的核心部分,其作用是根据预设的温度值和实际温度值的差异,计算出加热元件的功率调节量,以实现温度的精确控制。
温度控制系统发展现状
温度控制系统是一种用于精确控制和调节温度的装置,广泛应用于各个领域,例如工业、医疗、农业、交通等。
随着科技的不断进步和应用领域的不断扩大,温度控制系统也在不断发展与进步。
第一,传统温度控制系统已经有了较大的发展。
传统温度控制系统多采用PID控制算法,通过实时检测温度并反馈给控制器,根据PID算法计算出对应的控制信号,从而实现对温度
的精确控制。
目前,这种系统已经具有较高的稳定性和可靠性,广泛应用于各个领域。
第二,现代温度控制系统的发展趋势是数字化和智能化。
随着工业4.0和物联网的兴起,温度控制系统也逐渐向数字化和智
能化方向发展。
现代温度控制系统采用先进的传感器和通信技术,能够实现对温度的远程监控和控制,提高了系统的可操作性和便利性。
第三,新型温度控制技术的出现。
除了传统的PID控制算法外,还出现了新型的温度控制技术。
例如,模糊控制、神经网络控制和遗传算法等,这些技术能够更好地适应不确定性和非线性的温度控制过程,提高了系统的精度和响应速度。
第四,温度控制系统与其他智能系统的融合。
温度控制系统与其他智能系统的融合也成为了当前的发展趋势。
例如,将温度控制系统与能源管理系统相结合,能够实现对温度的精确控制的同时降低能源消耗;将温度控制系统与人工智能技术相结合,
能够自动学习和优化控制策略,提高系统的自适应能力。
总结来说,温度控制系统在传统控制算法、数字化和智能化、新型控制技术以及与其他智能系统的融合方面均有较大的发展。
随着科技的进步和应用领域的拓展,温度控制系统将更加高效、精确和智能,为各个领域的温度控制提供更好的解决方案。
简述温度控制系统和控制方式
简单叙述一下温度控制系统,可以分为几种控制方式,分别有什么特点和用于什么场合。
通过文字的叙述可以让你们简单的了解温度控制系统,学习到关于这方面的一点知识。
温度控制系统概述:
电加热系统中的温度控制是一个及其重要的部分,温度控制方式有很多种,我们选择控制方式必须从整个系统来考虑,质量好的电加热器如果配置了不合适的电气控制方式,那么这个系统会大大的缩减了寿命。
温度控制方式:
温度控制方式可以分为位式控制、比例控制、比例积分控制、比例微分控制、比例积分微分控制、PLC等计算机智能控制、在线非接触式温度控制等。
位式控制:
位式控制是当给定值温度高于设定值时,加热器关闭,下线温度低于设定值时,开启加热器,温度是始终在一定的范围内,位式控制系统简单可靠,一般用于传导型或对流型加热的场合。
串级控制:
位式控制和比例型控制当负载变化较大的时候,它的温度就很难维持在设置值,为达到这一目的,我们可以增加一个或者更多的传感器,在温度还未发生变化时就能及时的调整功率,保证温度的稳定。
在线非接触式温度控制:
这种控制方式主要应用于在线检测及控制运动物体的工艺温度(如在线控制滚动物体、位移物体的工作温度)等其他场合。
温度控制系统1.0 功能概述结合本设计的要求和技术指标,通过对系统大致程序量的估计和系统工作速度的估计,考虑价格因素。
选定at89s51单片机作为系统的主要控制芯片,8位数模转换器ad0809。
采用AD0809进行温度采集,温度设定范围为-10℃~ 45℃,通过温度采集系统,对温度进行采样并进行A、D转换,再输给单片机。
以空调为执行器件,通过单片机程序完成对室内温度控制。
1.1系统的主要要求(1)温度设定范围为,最小区分温度为,标定温差小于(2)用二位十进制数码显示当前温度(3)能根据设定的温度进行加热或降温处理。
(4)设计出系统控制单元1.2系统的工作原理在温度控制系统中,需要对温度的变换转换为对应的电信号的变化,选用89S51单片机为中央处理器,通过温度传感器对空气温度进行温度采集,将采集到的温度信号传输给单片机,再有单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温循环对空气进行处理,从而模拟实现空调温度控制单元的动作情况。
工作流程说明如下开始,先接通电源,三段数码显示器就自动显示当前温度,并且显示出设置温度的缺省值000.按下S1键,功能转换键,按此键则开始键盘控制。
此时通过键盘输入预设值的温度,按下S2加,按此键则温度设定加一度。
按下S3减,按此键则设定温度减一度。
S4复位键,使系统复位。
就这样通过温度芯片的反馈信息,实现温度保持在设定温度上,从而达到自动控制温度的功能。
1.3系统的主要技术指标测温范围:-55℃- +100℃温度分辨率:±0.5VLED显示位数:32 系统的结构框图系统的硬件电路有温度传感器、A/D转换、LED显示等部分组成,总体方案结构见下图所示图 2-1 空调温度控制单元结构图实现方案的技术路线为:用按钮输入标准温度值,用LED 实时显示环境温度,用驱动电路控制完成加热和制冷调节。
用汇编语言完成软件编程。
3 温度控制系统硬件单元方案设计与选择 硬件设计部分将先寻找电源电路最合适的设计方案,在进行单元电路设计。
最后介绍所用到的两个特殊元件。
3.1 温度传感部分温度控制要求对温度和与温度有关的参量进行检测,应考虑用热电阻传感器。
按照热电阻的性质可分为半导体热电阻和金属热电阻两大类,前者通常称为热敏电阻,后者称为热电阻。
方案1:采用热敏电阻,这种电阻是利用对温度敏感的半导体材料制成,其阻值随温度变化有明显的改变。
负温度系数热敏电阻器通常是由锰,钴的氧化物烧制成半导体陶瓷制成。
其特点是在工作温度范围内电阻阻值随温度的上升而降低。
可满足40℃~ 90℃测量范围,但热敏电阻精度、重复性、可靠性较差,不适用于检测小于1℃的信号;而且线性度很差,不能直接用于A/D 转换,应该用硬件或软件对其进行线性化补偿。
(加热)输入部分显示部分 驱动控制 驱动控制 (制冷)温度传感器空气89S51 A/D 转换器方案2:采用温度传感器铂电阻Pt1000.铂热电阻的物理化学性能在高温和氧化性介质中很稳定,他能用作工业测温元件,且此元件线性较好。
在0℃~100℃时最大非线性偏差小于0.5℃铂热电阻与温度的关系是,Rt=R0(1+At+Bt*t);其中Rt是温度为t摄氏度时的电阻;R0是温度为0℃时电阻;t为任意温度值,A、B为温度系数。
但其成本太贵,不适合做普通设计。
方案3:采用集成温度传感器,如常用的AD590和LM35。
AD590是电流型温度传感器。
这种器件是以电流作为输出量指示温度,其典型的电流温度敏感度是1µA/K.它是二端器件,使用非常方便,作为一种高阻电流源,他不需要严格考虑传输线上的电压信号损失噪声干扰问题,因此特别适合作为远距测量或控制用。
另外,AD590也特别适用于多点温度测量系统,而不必考虑选择开关或CMOS多路转换开关所引起的附加电阻造成的误差。
由于采用了一种独特的电路结构,并利用最新的薄膜电阻激光微调技术校准,使得AD590具有很高的精度。
并且应用电路简单,便于设计。
方案选择:选择方案3。
理由:电路简单稳定可靠,无需调试,与A/D连接方便。
3.2 A/D转换部分模/数转化器是一种将连续的模拟量转化成离散的数字量的一种电路或器件模拟信号转换为数字信号一般需要经过采样保持和量化编码两个过程。
针对不同的采样对象,有不同的A/D转换器(ADC)可供选择,其中有通用的也有专用的。
有些ADC还包含有其他功能,在选择ADC器件时需要考虑多种因素,除了关键参数、分辨率和转换速度以外,还应考虑其他因素,如静态与动态精度、数据接口类型、控制接口与定时、采样保持性能、基本要求、校准能力、通道数量、功耗、使用环境要求、封装形式以及与软件有关的问题。
ADC按功能划分,可分为直接转换和非直接转换两大类,其中非直接转换又有逐次分级转换、积分式转换等类型。
A/D转换器在实际应用时,除了要设计适当的采样/保持电路、基准电路和多路模拟开关等电路外,还应根据实际选择的具体芯片进行模拟信号极性转换等的设计。
方案1:采用分级式转换器,这种转换器采用两步或多步进行分辨率的闪烁式转换,进而快速地完成“模拟-数字”信号饿转换,同时可以实现较高的分辨率。
例如在利用两步分级完成n位转换的过程中,首先完成m位的粗转换,然后使用精度至少为m位的数/模转换器(ADC)将此结果转换达到1/2的精度并且与输入信号比较。
对此信号用一个k位转换器(k+m<=n)转换,最后将两个输出结果合并。
方案2:采用积分型A/D装换器,如ICL7135等。
双积分型A/D转换器转换精度高,但是转换速度不太快,若用于温度测量,不能及时地反应当前温度值,而且多数双击分型A/D转换器其输出端多不是而二进制码,而是直接驱动数码管的。
所以若直接将其输出端接I/O接口会给软件设计带来极大的不方便。
方案3:采用逐次逼近式转换器,对于这种转换方式,通常是用一个比较输入信号与作为基准的n位DAC输出进行比较,并进行n次1位转换。
这种方法类似于天平上用二进制砝码称量物质。
采用逐次逼近寄存器,输入信号仅与最高位(MSB)比较,确定DAC的最高位(DAC满量程的一半)。
确定后结果(0或1)被锁存,同时加到DAC上,以决定DAC的输出(0或1/2)。
逐次逼近式A/D转换器,如ADC0809、AD574等,其特点是转换速度快,精度也比较高,输出为二进制码,直接接I/O口,软件设计方便。
ADC0809芯片内包含8位模/数转换器、8通道多路转换器与微机控制兼容的控制逻辑。
8通道多路转换器能直接连通8个单端输入信号中的任何一个。
由于ADC0809设计时考虑到若干种模/数转换技术的优点,所以该芯片非常适合于过程控制、微控制器输入通道的结合口电路、智能仪器和机床控制等应用场合,并且价格低廉,降低设计成本。
方案选择:选择方案3。
理由:用ADC0809采样速度快,配合温度传感器应用方便,价格低廉,降低设计成本。
3.3数字显示部分通常用的LED显示器有7段或8段“米”字段之分。
这种显示器有共阳极和共阴极两种。
共阴极LED显示器的发光二极管的阴极连接在一起,通常此公共阴极接地。
当某个发光二极管的阳极为高电平时,发光二极管点亮,相应的段被显示。
同样,共阳极LED显示器的工作原理也一样。
方案1:采用静态显示方式。
在这种方式下,各位LED显示器的共阳极(或共阴极)连接在一起并接地(或电源正),每位的段选线分别与一8位的锁存器输出相连,各个LED的显示字符一旦确定,相应锁存器的输出将维持不变,直到显示另一个字符为止,正因为如此静态显示器的亮度都较高。
若用I/O口接口,这需要占用N*8位I/O口(LED显示器的个数N)。
这样的话,如果显示器的个数较多,那使用的I/O接口就更多,因此在显示位数较多的情况下,一般都不用静态显示。
方案2:采用动态显示方式。
当多位LED显示时通常将所有位的段选线相应的并联在一起,由一个8位I/O口控制,形成段选线的多路复用。
而各位的共阳极或共阴极分别有相应的I/O口线控制,实现各位的分时选通。
其中段选线占用一个8位I/O口,而位选线占用N个I/O口(N为LED显示器的个数)。
由于各位的段选线并联,段码的输出对各位来说都是相同的,因此,同一时刻,如果各位选线都处于选通状态的话,那LED显示器将显示相同的字符。
若要各位LED 能显示出与本为相同的字符,就必须采用扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其他各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的段码。
这种显示方式占用的I/O口个数为8+N(N为LED显示器的个数),相对静态显示少了很多,但需要占用大量的CPU资源,当CPU处理别的事情时,显示可能出现闪烁或者不显示的情况。
方案3:采用移位寄存器扩展I/O口,只需要占用3个I/O口即数据(DA TA)、时钟(CLOCK)、输出使能(OUTPUT ENABLE),从理论上讲就可以无限制地扩展I/O 口,而且显示数据为静态显示,几乎不占用CPU资源。
采用扩展口后,又能采用静态显示,这样,既解决了静态显示占用I/O口多的问题,也解决了动态显示不稳定、容易闪烁、占用CPU资源过多的问题。
方案选择:选择方案3。
理由:非常节约I/O口,又有静态显示的特点,亮度高,节约CPU的使用率。
3.4加热降温驱动控制电路采用光耦合双向可控硅驱动电路。
它能够达到加热效果,开关量控制容易,驱动简单,驱动系统的抗干扰能力强。
由于买不到元件,在该电路的实际焊接中用发光二极管代替。
这里就不做详细介绍。
3.5键盘输入部分常用的键盘接口分为独立式按键接口和矩阵式键盘接口。
方案1:采用4*4矩阵键盘输入,这种接口方式适用于按键数量较由行线和列线组成,按键位于行、列的交叉点上。
矩阵键盘的工作原理是按键设置在行、列交叉点上,行、列线分别连接到按键开关的两端。
行线通过上拉电阻接到+5V 上。
平时无按键按下时,行线处于高电平状态,而当有按键按下时,行线电平状态由与此电平相连的列线电平决定。
列线电平如果为低,则行线电平为低;列线电平为高,则行线电平为高。
这是识别矩阵键盘是否被按下的关键所在。
由于矩阵键盘中行、列线为多键共用,各按键均影响该键所在行和列的电平,因此,各按键彼此将相互发生影响,所以不必将行、列线信号配合起来并作适当处理,才能决定闭合键位置。
对于矩阵式键盘,矩阵的键盘由行号和列号唯一决定,所以分别对行号和列号进行二进制编码,然后将两值合成一个字节,高4位是行号,低4位是列号。
但这种编码对于不同行的键,离散性大,并且编码的复杂度与键盘的个数成正比,因此不适合在出入量较小的设计中。
方案2:采用独立式按键接口。
这种方式是各种键盘相互独立。
每个按键各接一根输入线,一根输入线上的按键工作状态不会影响其他输入线上的工作状态。