高中直线与方程知识点解析及经典例题
- 格式:doc
- 大小:361.00 KB
- 文档页数:11
直线与方程知识梳理、典型例题讲解与习题一、复习引入介绍斜率概念、两条直线平行与垂直的判断公式,直线方程的三种形式。
(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l(3)(1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++=两条直线的交点坐标就是方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解。
①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;②若方程组无解,则两条直线无公共点,此时两条直线平行.(4)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y 间的距离公式22122121||()()PP x x y y =-+-特别地,原点(0,0)O 与任一点(,)P x y 的距离22||OP x y =+点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离0022||Ax By C d A B ++=+两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离1222||C C d A B -=+二、课堂讲解讲解、.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。
.解:由4603560x y x y ++=⎧⎨--=⎩得两直线交于2418(,)2323-,记为2418(,)2323A -,则直线AP 垂直于所求直线l ,即43l k =,或245l k =43y x ∴=,或2415y x -=,即430x y -=,或24550x y -+=为所求。
直线的一般式方程及综合【学习目标】1.掌握直线的一般式方程;2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同样形式的方程在表示直线时的异同之处;3.能利用直线的一般式方程解决有关问题. 【要点梳理】要点一:直线方程的一般式关于 x 和 y 的一次方程都表示一条直线.我们把方程写为 Ax+By+C=0 ,这个方程 (其中 A 、B 不全为零 )叫做直线方程的一般式.要点讲解:1.A 、 B 不全为零才能表示一条直线,若 A 、 B 全为零则不能够表示一条直线 .当 B ≠0时,方程可变形为 yA x C ,它表示过点 0,C,斜率为A的直线.B BBB当 B=0 , A ≠0时,方程可变形为Ax+C=0 ,即 xCx 轴垂直的直线.,它表示一条与A由上可知,关于 x 、 y 的二元一次方程,它都表示一条直线.2.在平面直角坐标系中,一个关于x 、y 的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于 x 、y 的一次方程 (如斜率为 2,在 y 轴上的截距为 1 的直线,其方程能够是 2x ―y+1=0 ,也能够是 x 1 y 1 0 ,还可以够是 4x ― 2y+2=0等.)2 2要点二:直线方程的不同样形式间的关系 直线方程的五种形式的比较以下表:名称方程的形式 常数的几何意义适用范围 点斜式y ―y( x 1, y 1)是直线上必然点, k 是斜率 不垂直于 x 轴1=k(x ―x 1)斜截式y=kx+bk 是斜率, b 是直线在 y 轴上的截距不垂直于 x 轴 两点式y y 1 x x 1 ( x 1, y 1 ),(x 2 ,y 2)是直线上两定点不垂直于 x 轴和 y 轴y 2 y 1x 2x 1截距式x y a 是直线在 x 轴上的非零截距,b 是直不垂直于 x 轴和 y 轴,a1线在 y 轴上的非零截距b且但是原点 一般式Ax+By+C=0 ( A 2+B 2≠0) A 、B 、 C 为系数任何地址的直线要点讲解:在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求 直 线 存 在 斜 率 , 两 点 式 是 点 斜 式 的 特 例 , 其 限 制 条 件 更 多 ( x 1≠x 2, y 1 ≠y 2), 应 用 时 若 采 用 (y 2―y 1)(x ―x 1) ― (x 2―x 1)(y ―y 1)=0 的形式,即可除掉限制性.截距式是两点式的特例,在使用截距式时,第一要判断可否满足 “直线在两坐标轴上的截距存在且不为零 ”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同样,获取的 方程也不同样.要点三:直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.依照题目所给条件,选择合适的直线方程的形式,求出直线方程.关于两直线的平行与垂直,直线方程的形式不同样,考虑的方向也不同样.( 1)从斜截式考虑已知直线 l 1 : y k 1 x b 1 , l 2: y k 2 x b 2 ,l 1 // l 2 1 2k 1 k 2 (b 1 b 2 ) ;l 1 l 2tancot1 k 1k 211212k 12k 2于是与直线 y kx b 平行的直线能够设为 ykx b 1 ;垂直的直线能够设为y1 x b2 . ( 2)从一般式考虑:kl 1 : A 1x B 1 y C 1 0, l 2 : A 2 x B 2 y C 2l 1 l 2 A 1 A 2 B 1B 2l 1 // l 2A 1B 2 A 2B 1 0且 A 1C 2 A 2C 1 0 或 B 1C 2 B 2C 1 0 ,记忆式( A 1 B 1C1 )A 2B 2C 2l 1 与 l 2 重合, A 1B 2 A 2 B 1 0 , A 1C 2 A 2C 1 0 , B 1C 2 B 2C 1 0于 是 与 直 线 Ax By C 0 平 行 的 直 线 可 以 设 为 AxBy D 0 ; 垂 直 的 直 线 可 以 设 为Bx Ay D0 .【典型例题】种类一:直线的一般式方程例 1.依照以下条件分别写出直线的方程,并化为一般式方程.1 (1)斜率是,经过点 A ( 8, ―2);2(2)经过点 B ( 4, 2),平行于 x 轴;(3)在 x 轴和 y 轴上的截距分别是3,―3;2(4)经过两点 P 1( 3,―2), P 2( 5, ―4).【答案】( 1) x+2y ―4=0 ( 2) y ―2=0 ( 3) 2x ―y ―3=0 ( 4) x y 1 0【剖析】( 1)由点斜式方程得 y( 2)1( x 8) ,化成一般式得 x+2y ― 4=0.2(2)由斜截式得 y=2,化为一般式得 y ―2=0 .(3)由截距式得xy1 ,化成一般式得 2x ―y ―3=0 .3 32(4)由两点式得y 2x3,化成一般式方程为x y 1 0 .4 ( 2)5 3【总结升华】本题主若是让学生领悟直线方程的各种形式,以及各种形式向一般式的转变,关于直线方程的一般式,一般作以下约定: x 的系数为正, x ,y 的系数及常数项一般不出现分数,一般按含 x 项、 y 项、常数项序次排列.求直线方程的题目,无特别要求时,结果写成直线方程的一般式.贯穿交融:【变式 1】已知直线 l 经过点 B(3, 1) ,且倾斜角是 30 ,求直线的点斜式方程和一般式方程.【答案】 y 13(x3) 3x 3y3 3 3 03【剖析】由于直线倾斜角是30 ,所以直线的斜率 ktantan 303 ,所以直线的点斜式方程3为: y 13(x 3) ,化成一般式方程为:3x 3 y 3 3 30 .3例 2. ABC 的一个极点为 A( 1, 4) , B 、 C 的均分线在直线y 1 0和 x y 10 上,求直线 BC 的方程 .【答案】 x 2 y3 0【剖析】由角均分线的性质知,角均分线上的任意一点到角两边的距离相等,所以可得 A 点关于B 的均分线的对称点 A ' 在 BC 上, B 点关于C 的均分线的对称点 B ' 也在 BC 上.写出直线 A ' B ' 的方程,即为直线 BC 的方程 .例 3.求与直线 3x+4y+1=0 平行且过点( 1, 2)的直线 l 的方程.【答案】 3x+4y ―11=0 【剖析】解法一:设直线l 的斜率为 k ,∵ l 与直线 3x+4y+1=0 平行,∴ k3 .4又∵ l 经过点( 1, 2),可得所求直线方程为 y 23(x 1) ,即 3x+4y ― 11=0.4解法二:设与直线 3x+4y+1=0 平行的直线 l 的方程为 3x+4y+m=0 ,∵ l 经过点( 1, 2),∴ 3×1+4×2+m=0 ,解得 m=―11 .∴所求直线方程为 3x+4y ―11=0 .【总结升华】( 1)一般地, 直线 Ax+By+C=0 中系数 A 、B 确定直线的斜率, 所以,与直线 Ax+By+C=0平行的直线可设为 Ax+By+m=0 ,这是常采用的解题技巧.我们称 Ax+By+m=0 是与直线 Ax+By+C=0 平行的直线系方程.参数m 能够取 m ≠C 的任意实数,这样就获取无数条与直线Ax+By+C=0平行的直线.当m=C 时, Ax+By+m=0 与 Ax+By+C=0 重合.(2)一般地,经过点 A (x 0 ,y 0),且与直线 Ax+By+C=0 平行的直线方程为 A(x ―x )+B(y ―y )=0 .(3)近似地有:与直线 Ax+By+C=0 垂直的直线系方程为Bx ―Ay+m=0 ( A , B 不同样时为零) .贯穿交融:【变式 1】已知直线 l 1 : 3mx+8y+3m-10=0 和 l 2 :x+6my-4=0 . 问 m 为何值时 :(1) l 1 与 l 2 平行( 2) l 1 与 l 2 垂直 . 【答案】( 1) m2 ( 2) m3【剖析】当 m0 时, l 1 : 8y-10=0 ; l 2 : x-4=0 , l 1 l 2当 m 0 时, l 1 : y3m 10 3m: y 1x4x 8 ; l 2 6m86m由 3m1 ,得 m2 ,由 10 3m 4 得 m 2 或 886m38 6m 3 3 而 (3m ) ( 1 ) 1无解8 6m2综上所述( 1) m, l 1 与 l 2 平行.( 2) m 0 , l 1 与 l 2 垂直.3【变式 2】 求经过点 A ( 2, 1),且与直线 2x+y ―10=0 垂直的直线 l 的方程. 【答案】 x - 2y=0【剖析】由于直线 l 与直线 2x+y ―10=0 垂直,可设直线 l 的方程为 x 2y m 0 ,把点 A (2,1)代入直线 l 的方程得: m0 ,所以直线 l 的方程为: x -2y=0 .种类二:直线与坐标轴形成三角形问题例 4.已知直线 l 的倾斜角的正弦值为3,且它与坐标轴围成的三角形的面积为6,求直线 l 的方程.5【思路点拨】知道直线的倾斜角就能求出斜率,进而引进参数—— 直线在 y 轴上的截距 b ,再依照直线与坐标轴围成的三角形的面积为 6,即可求出 b .也能够依照直线与坐标轴围成的三角形的面积为6,设截距式直线方程,进而得出1| ab | 6 ,再依照它的斜率已知,进而获取关于a ,b 的方程组,解之即可.3 x23 x【答案】 y3 或 y 344【剖析】解法一:设 l 的倾斜角为,由 sin33,得 tan.3544设 l 的方程为yx b ,令 y=0,得 x4 b .3∴直线 l 与 x 轴、 y 轴的交点分别为 4 ,( 0,b ).b,03∴ S1 4b | b | 2b 2 6 ,即 b 2=9,∴ b=±3.23 3故所求的直线方程分别为y 3 x 3 或 y3 x 3 .44解法二:设直线l 的方程为xy 1,倾斜角为,由 sin3 ,得 tan3 .a b541| a | | b |6a 4∴2b3 ,解得.b 3a4故所求的直线方程为x y 1或 xy 1.4 3 4 3【总结升华】( 1)本例中,由于已知直线的倾斜角(与斜率有关)及直线与坐标轴围成的三角形的面积(与截距有关) ,所以可选择斜截式直线方程,也可采用截距式直线方程,故有“题目决定解法 ”之说.(2)在求直线方程时,要合适地选择方程的形式,每种形式都拥有特定的结论,所以依照已知条件恰 当地选择方程的种类经常有助于问题的解决.比方:已知一点的坐标,求过这点的直线方程,平时采用点 斜式,再由其他条件确定该直线在y 轴上的截距;已知截距或两点,选择截距式或两点式.在求直线方程的过程中,确定的种类后,一般采用待定系数法求解,但要注意对特别情况的谈论,省得遗漏.贯穿交融:【变式 1】( 2015 春 启东市期中)已知直线m : 2x ― y ―3=0 , n :x+y ―3=0 .( 1)求过两直线 m ,n 交点且与直线 l : x+2y ―1=0 平行的直线方程; (2)求过两直线 m , n 交点且与两坐标轴围成面积为4 的直线方程.【思路点拨】( 1)求过两直线 m , n 交点坐标,结合直线平行的斜率关系即可求与直线l : x+2y ―1=0平行的直线方程;( 2)设出直线方程,求出直线和坐标轴的交点坐标,结合三角形的面积公式进行求解即可.【答案】( 1) x+2y ―4=0 ;( 2)2x y 3 0 x 2 【剖析】( 1)由y3 ,解得y,x 01即两直线 m , n 交点坐标为( 2, 1),设与直线 l : x+2y ―1=0 平行的直线方程为 x+2y+c=0 ,则 2+2×1+c=0,解得 c=―4, 则对应的直线方程为 x+2y ―4=0 ;(2)设过( 2, 1)的直线斜率为 k ,( k ≠0),则对应的直线方程为 y ―1= k(x ―2) ,令 x=0, y=1―2k ,即与 y 轴的交点坐标为 A ( 0, 1―2k ) 令 y=0,则 x2 1 2k 1 ,即与 x 轴的交点坐标为 B(2k 1,0) ,k kk 则△AOB 的面积 S1 | 2k 1||1 2k | 4 ,2 k即 (2k 1)2 8 k ,即 4k 24k 8 k1 0 ,若 k > 0,则方程等价为 4k 212k1 0 ,解得 k3 2 2或 k 3 2 2 ,22若 k < 0,则方程等价为 4k 24k1 0 ,解得 k1 .2综上直线的方程为y 11( x 2) ,或 y 13 2 2 ( x 2) ,或 y 13 2 2( x 2)222即 y1 x2 ,或 y3 2 23 2 2x 2 2 22 x 2 2 2 ,或 y22种类三:直线方程的本质应用例 6.( 2015 春 湖北期末)光辉从点 A ( 2,3)射出,若镜面的地址在直线 l : x+y+1=0 上,反射光辉经过 B ( 1, 1),求入射光辉和反射光辉所在直线的方程,并求光辉从 A 到 B 所走过的路线长.【思路点拨】求出点 A 关于 l 的对称点,就可以求出反射光辉的方程,进一步求得入射点的坐标,从而可求入射光辉方程,可求光辉从A 到B 所走过的路线长.【答案】 41【剖析】设点 A 关于 l 的对称点 A '( x 0, y 0),x 0 2 y 0 3 1 0 x 04∵AA '被 l 垂直均分,∴2 2 ,解得y 0 3y 03x 0 12∵点 A '(―4, ―3), B (1, 1)在反射光辉所在直线上, ∴反射光辉的方程为y 3 x4,即 4x ―5y+1=0,1 3 1 44x 5y 1 0( 2 ,1) . 解方程组x y 10 得入射点的坐标为3 3y 1x 2由入射点及点 A 的坐标得入射光辉方程为3 3,即 5x ―4y+2=0 ,31 2 233光辉从 A 到 B 所走过的路线长为 | A' B |( 4 1)2 ( 3 1)241 .【总结升华】本题要点观察点关于直线的对称问题,观察入射光辉和反射光辉,解题的要点是利用对称点的连结被对称轴垂直均分.线 贯穿交融:【变式 1】( 2016 春 福建厦门期中)一条光辉从点 A (- 4,- 2)射出,到直线y=x 反射到 y 轴上的 C 点,又被 y 轴反射,这时反射光辉恰好过点 D (- 1,6).求 【答案】 10x - 3y+8=0【剖析】如图, A (- 4,- 2), D (- 1,6),y=x 上的 B 点后被直BC 所在直线的方程.由对称性求得 A (- 4,- 2)关于直线 y=x 的对称点 A '(- 2,- 4), D 关于 y 轴的对称点 D '( 1, 6),则由入射光辉和反射光辉的性质可得:过 A ' D '的直线方程即为 BC 所在直线的方程.由直线方程的两点式得: y 4 x 2 . 整理得: 10x - 3y+8=0 .64 1 2例 7.如图,某房地产公司要在荒地ABCDE 上划出一块长方形土地(不改变方向)建筑一幢8 层的公寓,如何设计才能使公寓占地面积最大?并求出最大面积.(精确到 1 m 2)【答案】 6017【剖析】建立坐标系,则 B ( 30, 0), A ( 0, 20).∴由直线的截距方程获取线段AB 的方程为x y 1 (0≤ x ≤ )30.30 202x . 设点 P 的坐标为( x , y ),则有 y203∴公寓的占地面积为S (100 x) (80y) (100 x) (80 20 2x)2 x 2 20 x 6000 (0≤ x ≤ )30.3 3 3 ∴当 x=5 , y50 时, S 取最大值,最大值为 S2 52 20 5 6000 6017(m 2 ) .333即当点 P 的坐标为 (5,50) 时,公寓占地面积最大,最大面积为6017 m 2.3P 的地址由两个条件确定,一是 A 、 P 、 B 三点共线,【总结升华】本题是用坐标法解决生活问题,点 二是矩形的面积最大.借三点共线追求x 与 y 的关系,利用二次函数知识研究最大值是办理这类问题常用的方法.。
辅导讲义――直线方程围是___________1、五种直线方程:名称已知条件 示意图方程使用范围点斜式 点P (x 0,y 0)和斜率k斜率存在斜截式 斜率k 和在y 轴上的截距b斜率存在两点式P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2斜率存在且不为0截距式在x ,y 轴上的截距分别为a ,b 且ab ≠0斜率存在且不为0,不过原点一般式在平面直角坐标系中,任何一条直线都可以用一般式方程表示2、直线的截距:(1)直线在y 轴上的截距:直线与y 轴的交点(0,b )的纵坐标.(2)直线在x 轴上的截距:直线与x 轴的交点(a ,0)的横坐标.注意:(1)截距不代表距离,它是可正可负的.(2) 每个关于x ,y 的二元一次方程都表示一条直线.[例1] 经过点(4,2)平行于x 轴的直线方程为__________.[巩固1] 一条直线过点(2,0),且与直线y=x+8在y 轴有相同的截距,则该直线的方程为____________________.[巩固2] 已知直线m 的倾斜角是直线0333=--y x 的倾斜角的2倍,且直线m 在x 轴上的截距为-3,则直线m 的知识模块2直线方程 精典例题透析题型一:求直线的倾斜角与斜率[例]如图,直线l1的倾斜角α1=30°,直线l1⊥l2,求l1,l2的斜率.[巩固]已知A(3,3),B(-4,2),C(0,-2),(1)求直线AB和AC的斜率;(2)若点D在线段BC上(包括端点)移动时,求直线AD的斜率的变化范围.题型二:三点共线问题[例]求证:A(1,1),B(4,7),C(-1,-3)三点共线.[巩固]已知三点A(0,a),B(2,3),C(4,5a)在一条直线上,求a的值,并求这条直线的倾斜角.题型三:求直线方程[例1]三角形的顶点A(-5,0),B(3,-3),C(0,2),求这个三角形三边所在直线的方程.[巩固]写出下列直线的斜截式方程.(1)斜率是3,在y轴上的截距是-3;(2)倾斜角是60°,在y轴上的截距是5;(3)倾斜角是150°,在y轴上的截距是0.[巩固]设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列条件分别确定实数m的值.(1)l在x轴上的截距为-3;(2)斜率为1.题型五:直线方程的综合应用[例]已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.[巩固]已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.1.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件__________.2.直线x sin π7+y cos π7=0的倾斜角α是_______.解析 ∵tan α=-sin π7cosπ7=-tan π7=tan 67π,∵α∈[0,π),∴α=67π.3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是_______________.解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎡⎭⎫3π4,π. 4.两条直线l 1:x a -yb =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )答案 A解析 化为截距式x a +y -b =1,x b +y-a=1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.5.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为__________.解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan 60°= 3.6.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是__________.答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1. 夯实基础训练当2π3≤α<π时,-3≤tan α<0. ∴k ∈⎣⎡⎭⎫33,1∪[-3,0).7.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________________.答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-a a +1,只要-a a +1>1或-a a +1<0即可,解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是(-∞,-12)∪(0,+∞).8.若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b =1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫-4k -3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是 y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1. ∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取最大值3.15.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时b 分别取得最小值和最大值. ∴b 的取值范围是[-2,2].。
数学必修2 第三章 直线与方程练习知识点(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特殊地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°性质:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合.当α=0°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大.(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 留意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1, P 2的依次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x留意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴, y 轴的截距分别为,a b 。
直线与方程专题复习【知识点一:倾斜角与斜率】 (1)直线的倾斜角①直线与x 轴平行或重合时,规定它的倾斜角为00;②倾斜角α的范围000180α≤<(2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在.记作tan k α=0(90)α≠⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k ==; ⑵当直线l 与x 轴垂直时, 090α=,k 不存在.②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是2121y y k x x -=-③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)利用斜率证明三点共线的方法:已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。
【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 【知识点三:直线的方程】 (1)直线方程的几种形式问题:过两点111222(,),(,)P x y P x y 的直线是否一定可用两点式方程表示?不一定】 (1)若1212x x y y =≠且,直线垂直于x 轴,方程为1x x =; (2)若1212x x y y ≠=且,直线垂直于y 轴,方程为12y y =; (3)若1212x x y y ≠≠且,直线方程可用两点式表示截距与距离的区别:截距的值有正、负、零。
距离的值是非负数。
截距是实数,不是“距离”,可正可负。
截距式方程的应用①与坐标轴围成的三角形的周长为: |a |+|b②直线与坐标轴围成的三角形面积为: S =1||2ab ; ③直线在两坐标轴上的截距相等,则1k =-或直线过原点,常设此方程为x y a y kx +==或 (2)线段的中点坐标公式121122,(,),(,)P P x y x y 若点的坐标分别是,1212122(,)2x x x PP M x y y y y +⎧=⎪⎪⎨+⎪=⎪⎩且线段的中点的坐标为 【知识点四 直线的交点坐标与距离】 (1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++= 两条直线的交点坐标就是方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩的解.①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; ②若方程组无解,则两条直线无公共点,此时两条直线平行. (2)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y间的距离公式12||PP =特别地,原点(0,0)O 与任一点(,)P x y的距离||OP =点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离d =两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离d =精讲精练:【例】已知(1A 直线l 过原点O 且与线段AB 有公共点,则直线l 的斜率的取值范围是( )ABCD【例】在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A 1条 B 2条 C 3条 D 4条 【例】方程1=+y x 所表示的图形的面积为_______.【例】一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________. 【例】已知直线(2)(31)1,a y a x -=--为使这条直线不经过第二象限,则实数a 的范围是___ _.【例】直线13y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值.【例】已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得最小值时P 点的坐标. 【例】在△ABC 中,已知BC 边上的高所在直线的方程为210,x y A -+=∠的平分线所在直线的方程为0y =.若点B 的坐标为(1,2),求点C 的坐标.【例】直线l 过点(2,1),P 且分别与,x y 轴的正半轴于,A B 两点,O 为原点. (1)求△AOB 面积最小值时l 的方程;(2)|PA|•|PB|取最小值时l 的方程. 【例】求倾角是直线1y =+的倾角的1,4且分别满足下列条件的直线方程: (1)经过点1)-;(2)在y 轴上的截距是-5. 【例】已知直线:120l kx y k -++=.(1)证明:直线l 过定点;(2)若直线l 交x 负半轴于,A 交y 正半轴于,B AOB ∆的面积为,S 试求S 的最小值并求出此时直线l 的方程. 练习:1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为 ; 2.如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是 ;3.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是 ; 4.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 ; 5.过点A(1,2)且与原点距离最大的直线方程是:6.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是:7.已知点(1,2),B(2,2),C(0,3),A --若点),(b a M )0(≠a 是线段AB 上一点,则直线CM k 的取值范围是: 8.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为:9过点(1,2)且在两坐标轴上的截距相等的直线的方程 ;10.已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________. 11.光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B ,则反射光线所在直线的方程 12.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为: 13.已知直线l :kx -y +1+2k =0(k ∈R).(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为4,求直线l 的方程. 14.(1)要使直线l 1:m y m m x m m 2)()32(22=-+-+与直线l 2:x -y=1平行,求m 的值. (2)直线l 1:a x +(1-a)y=3与直线l 2:(a -1)x +(2a+3)y=2互相垂直,求a 的值.15.已知∆A B C 中,A (1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=210 和y -=10,求∆A B C各边所在直线方程.16.△ABC 中,A (3,-1),AB 边上的中线CM 所在直线方程为:6x +10y -59=0, ∠B 的平分线方程B T 为:x -4y +10=0,求直线BC 的方程.17.已知函数(x)a f x x =+的定义域为(0,),+∞且(2)22f =+设点P 是函数图象上的任意一点,过点P 分别作直线y x =和y 轴的垂线,垂足分别为,M N .(1)求a 的值;(2)问:|PM ||PN |⋅是否为定值?若是,则求出该定值,若不是,则说明理由;(3)设O 为原点,若1OMPN S =求P 点的坐标.。
直线的方程重难点专题常考结论及公式结论一:两直线平行与垂直的充要条件若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2;①l 1∥l 2⇒k 1=k 2⇒≠b 2;②l 1⊥l 2⇔k 1k 2=-1.若l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,且A 1、A 2、B 1、B 2都不为零.①l 1∥l 2⇒A 1A 2=B 1B 2≠C 1C 2;l 1与l 2重合⇒A 1A 2=B 1B 2=C1C 2;②l 1⊥l 2⇔A 1A 2+B 1B 2=0.结论二:到角公式和夹角公式(1)l 1到l 2的角公式①tan α=k 2-k 11+k 2k 1.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)(2)夹角公式①tan α=k 2-k 11+k 1k 2.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2.(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)直线l 1⊥l 2时,直线l 1与l 2的夹角是π2.结论三:四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A 、B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为l 1:(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.结论四:与对称有关的一些结论(1)点P (u ,v )关于点Q (s ,t )的对称点的坐标为:(2s -u ,2t -v ),特别地,点P (u ,v )关于原点的对称点的坐标为:(2×0-u ,2×0-v ),即(-u ,-v ).(2)直线Ax +By +C =0关于点P (-u ,-v )对称的直线的方程为:(2u -x )+B (2v -y )+C =0.(3)直线Ax +By +C =0关于原点、x 轴、y 轴对称的直线的方程分别为:A (-x )+B (-y )+C =0,Ax +B (-y )+C =0,A (-x )+By +C =0.(4)直线Ax +By +C =0关于直线x =u ,y =v 对称的直线的方程分为:A (2u -x )+By +C =0,Ax +B (2v -y )+C =0.(5)曲线f (x ,y )=0关于点P (u ,v )对称的直线的方程为:f (2u -x ,2v -y )=0.(6)点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:s -2A ∙As +Bt +C A 2+B 2,t -2B ∙As +Bt +CA 2+B2.特别地,当A =B ≠0时,点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:-Bt +C A,-As +CB .点P (s ,t )关于x 轴、y 轴,直线x =u ,直线y =v 的对称点的坐标分别为(s ,-t ),(-s ,t ),(2u -s ),(s ,2v -t ).题型一直线的倾斜角与斜率关系问题例1.直线x cos θ+y sin θ=0,θ∈0,5π6的斜率的取值范围为()A.-∞,3B.2,+∞C.-∞,0 ∪0,3D.-∞,2【答案】A【分析】求出直线的斜率的表达式,通过角的范围求解斜率的范围即可.【详解】由x cos θ+y sin θ=0,θ∈0,5π6 可得直线的斜率为:k =-cos θsin θ=-1tan θ.因为θ∈0,5π6 ,所以tan θ∈-∞,-33 ∪0,+∞ ,所以k =-1tan θ∈-∞,0 ∪0,3 当θ=π2时,易得k =0。
第三章 直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率【知识点归纳】1.直线的倾斜角:2.直线的斜率:3.直线的斜率公式:【典型例题】题型 一 求直线的倾斜角例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ).A.60°B.30°C.60°或120°D.30°或150°变式训练:设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则1l 的倾斜角为( )。
A.45α+︒B.135α-︒C.135α︒-D.当0°≤α<135°时为45α+︒,当135°≤α<180°时,为135α-︒题型 二 求直线的斜率例 2如图所示菱形ABCD 中∠BAD =60°,求菱形ABCD 各边和两条对角线所在直线的倾斜角和斜率.变式训练: 已知过两点22(2,3)A m m +-,2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值.题型 三 直线的倾斜角与斜率的关系例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ).A .k 1<k 2<k 3 B.k 3<k 1<k 2 C.k 3<k 2<k 1 D.k 1<k 3<k 2拓展 一 三点共线问题例4 已知三点A (a ,2)、B (3,7)、C (-2,-9a )在一条直线上,求实数a 的值.变式训练:若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ).A .4,5a b ==B .1b a -=C .23a b -=D .23a b -=拓展 二 与参数有关问题例 5 已知两点A (-2,- 3) ,B (3,0) ,过点P (-1,2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围.变式训练:已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.拓展 三 利用斜率求最值例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求y x 的最大值与最小值。
高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
精心整理直线与直线方程一、知识梳理1.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2.斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:)(211212x x x x y y k ≠--=3.直线方程的五种形式直线形式 直线方程局限性选择条件 点斜式不能表示与x 轴垂直的直线①已知斜率 ②已知一点 斜截式不能表示与x 轴垂直的直线①已知斜率②已知在y 轴上的截距两点式不能表示与x 轴、y 轴垂直的直线①已知两个定点 ②已知两个截距 截距式(b a 、分别为直线在x 轴和y 轴上的截距)不能表示与x 轴垂直、与y 轴垂直、过原点的直线 已知两个截距(截距可以为负)一般式表示所有的直线求直线方程的结果均可化为一般式方程 7.斜率存在时两直线的平行:21//l l ⇔1k =2k 且21b b ≠. 8.斜率存在时两直线的垂直:⇔⊥21l l 121-=k k .9.特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 二、典例精析题型一:倾斜角与斜率【例1】下列说法正确的个数是() ①任何一条直线都有唯一的倾斜角;②倾斜角为030的直线有且仅有一条; ③若直线的斜率为θtan ,则倾斜角为θ; ④如果两直线平行,则它们的斜率相等 A.0个B.1个C.2个D.3个【练习】如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过() A.第一象限B.第二象限C.第三象限D.第四象限【例2】如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( ) A .k sin α>0 B .k cos α>0C .k sin α≤0 D .k cos α≤0【练习】图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则().A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【例3】经过点()2,1P 作直线l ,若直线l 与连接()10—,A ,()1,4B 的线段总有公共点,求直线l 的倾斜角α与斜率k 的取值范围。
第八章平面解析几何第一节直线的倾斜角与斜率、直线的方程[知识能否忆起]一、直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0,π)_.2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k==.二、直线方程的形式及适用条件[小题能否全取]1.(教材习题改编)直线x+y+m=0(m∈k)的倾斜角为( )A.30°B.60°C.150°D.120°解析:选C 由k=α=-,α∈[0,π)得α=150°.2.(教材习题改编)已知直线l过点P(-2,5),且斜率为-,则直线l的方程为( )A.3x+4y-14=0 B.3x-4y+14=0C.4x+3y-14=0 D.4x-3y+14=0解析:选A 由y-5=-(x+2),得3x+4y-14=0.3.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )A.1 B.4C.1或3 D.1或4解析:选A 由1=,得m+2=4-m,m=1.4.(2012·长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为.解析:==1,==a-3.由于A,B,C三点共线,所以a-3=1,即a=4.答案:45.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则直线l的方程为.解析:由已知得直线l的斜率为k=-.所以l的方程为y-2=-(x+1),即3x+2y-1=0.答案:3x+2y-1=01.求直线方程时要注意判断直线斜率是否存在,每条直线都有倾斜角,但不一定每条直线都存在斜率.2.由斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.用截距式写方程时,应先判断截距是否为0,若不确定,则需要分类讨论.典题导入[例1] (1)(2012·岳阳模拟)经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为,则y=( )A.-1 B.-3C.0 D.2(2)(2012·苏州模拟)直线θ+y+2=0的倾斜角的范围是.[自主解答] (1)===y+2,因此y+2=-1=-3.(2)由题知k=-θ,故k∈,结合正切函数的图象,当k ∈时,直线倾斜角α∈,当k∈时,直线倾斜角α∈,故直线的倾斜角的范围是∪.[答案] (1)B (2)∪由题悟法1.求倾斜角的取值范围的一般步骤:(1)求出斜率k=α的取值范围;(2)利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围.2.求倾斜角时要注意斜率是否存在.以题试法1.(2012·哈尔滨模拟)函数y=x-x的一条对称轴为x =,则直线l:-+c=0的倾斜角为( )A.45°B.60°C.120°D.135°解析:选D 由函数y=f(x)=x-x的一条对称轴为x=知,f(0)=,即-b=a,则直线l的斜率为-1,故倾斜角为135°.2.(2012·金华模拟)已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段相交,则k的取值范围是( )B.(-∞,-2]C.(-∞,-2]∪解析:选D 由题意知直线l恒过定点P(2,1),如右图.若l与线段相交,则≤k≤.∵=-2,=,∴-2≤k≤.典题导入[例2] (1)过点(1,0)且与直线x-2y-2=0平行的直线方程是.(2)(2012·东城模拟)若点P(1,1)为圆(x-3)2+y2=9的弦的中点,则弦所在直线的方程为.[自主解答] (1)设所求直线方程为x-2y+m=0,由直线经过点(1, 0),得1+m=0,m=-1.则所求直线方程为x-2y-1=0.(2)由题意得,×=-1,所以=2,故弦所在直线的方程为y-1=2(x-1),即2x-y-1=0.[答案] (1)x-2y-1=0 (2)2x-y-1=0由题悟法求直线方程的方法主要有以下两种:(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程;(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.以题试法3.(2012·龙岩调研)已知△中,A(1,-4),B(6,6),C(-2,0).求:(1)△中平行于边的中位线所在直线的一般式方程和截距式方程;(2)边的中线所在直线的一般式方程,并化为截距式方程.解:(1)平行于边的中位线就是,中点的连线.因为线段,中点坐标分别为,,所以这条直线的方程为=,整理一般式方程为得6x-8y-13=0,截距式方程为-=1.(2)因为边上的中点为(2,3),所以边上的中线所在直线的方程为=,即一般式方程为7x-y-11=0,截距式方程为-=1.典题导入[例3] (2012·开封模拟)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0与l2:x+y+3=0之间的线段恰被点P 平分,求此直线的方程.[自主解答] 法一:设点A(x,y)在l1上,点B(,)在l2上.由题意知错误!则点B(6-x,-y),解方程组错误!得错误!则k=错误!=8.故所求的直线方程为y=8(x-3),即8x-y-24=0.法二:设所求的直线方程为y=k(x-3),点A,B的坐标分别为(,),(,),由错误!解得错误!由错误!解得错误!∵P(3,0)是线段的中点,∴+=0,即+=0,∴k2-8k=0,解得k=0或k=8.若k=0,则=1,=-3,此时=≠3,∴k=0舍去,故所求的直线方程为y=8(x-3),即8x-y-24=0.由题悟法解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.以题试法4.(2012·东北三校联考)已知直线l过点M(2,1),且分别与x轴,y轴的正半轴交于A,B两点,O为原点.(1)当△面积最小时,求直线l的方程;(2)当·取得最小值时,求直线l的方程.解:(1)设直线l的方程为y-1=k(x-2)(k<0),,B(0,1-2k),△的面积S=(1-2k)=≥(4+4)=4.当且仅当-4k=-,即k=-时,等号成立.故直线l的方程为y-1=-(x-2),即x+2y-4=0.(2)∵=,=,∴·=·=2 ≥2×2=4,当且仅当k2=,即k=-1时取等号,故直线方程为x+y-3=0.[典例] (2012·西安模拟)设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.[尝试解题] (1)当直线过原点时,该直线在x轴和y轴上的截距为零,此时截距相等.故a=2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,得=a-2,即a+1=1,故a=0,方程即为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.(2)将l的方程化为y=-(a+1)x+a-2,则错误!或错误!∴a≤-1.综上可知,a的取值范围是(-∞,-1].——————[易错提醒]———————————————————————————1.与截距有关的直线方程求解时易忽视截距为零的情形.如本例中的截距相等,当直线在x轴与y轴上的截距为零时也满足.2.常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形.注意分类讨论思想的运用.——————————————————————————————————————针对训练过点M(3,-4)且在两坐标轴上的截距互为相反数的直线方程为.解析:①当过原点时,直线方程为y=-x;②当不过原点时,设直线方程为+=1,即x-y=a.代入点(3,-4),得a=7.即直线方程为x-y-7=0.答案:y=-x或x-y-7=01.若k,-1,b三个数成等差数列,则直线y=+b必经过定点( )A.(1,-2) B.(1,2)C.(-1,2) D.(-1,-2)解析:选A 因为k,-1,b三个数成等差数列,所以k+b =-2,即b=-2-k,于是直线方程化为y=-k-2,即y+2=k(x-1),故直线必过定点(1,-2).2.直线2x+11y+16=0关于点P(0,1)对称的直线方程是( )A.2x+11y+38=0 B.2x+11y-38=0C.2x-11y-38=0 D.2x-11y+16=0解析:选B 因为中心对称的两直线互相平行,并且对称中心到两直线的距离相等,故可设所求直线的方程为2x+11y+C =0,由点到直线的距离公式可得=,解得C=16(舍去)或C=-38.3.(2012·衡水模拟)直线l1的斜率为2,l1∥l2,直线l2过点(-1,1)且与y轴交于点P,则P点坐标为( ) A.(3,0) B.(-3,0)C.(0,-3) D.(0,3)解析:选D ∵l1∥l2,且l1斜率为2,∴l2的斜率为2.又l2过(-1,1),∴l2的方程为y-1=2(x+1),整理即得y=2x+3.令x=0,得P(0,3).4.(2013·佛山模拟)直线++c=0同时要经过第一、第二、第四象限,则a,b,c应满足( )A.>0,<0 B.>0,>0C.<0,>0 D.<0,<0解析:选A 由于直线++c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-x-,易知-<0且->0,故>0,<0.5.将直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )A.y=-x+B.y=-x+1C.y=3x-3 D.y=x+1解析:选A 将直线y=3x绕原点逆时针旋转90°得到直线y=-x,再向右平移1个单位,所得直线的方程为y=-(x-1),即y=-x+.6.已知点A(1,-2),B(m,2),且线段的垂直平分线的方程是x+2y-2=0,则实数m的值是( )A.-2 B.-7C.3 D.1解析:选C 线段的中点代入直线x+2y-2=0中,得m=3.7.(2013·贵阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是.解析:设直线l的斜率为k,则方程为y-2=k(x-1),在x轴上的截距为1-,令-3<1-<3,解得k<-1或k>.答案:(-∞,-1)∪8.(2012·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l的方程为.解析:直线l过原点时,l的斜率为-,直线方程为y=-x;l不过原点时,设方程为+=1,将点(-2,3)代入,得a=1,直线方程为x+y=1.综上,l的方程为x+y-1=0或2y+3x=0.答案:x+y-1=0或3x+2y=09.(2012·天津四校联考)不论m取何值,直线(m-1)x-y +2m+1=0恒过定点.解析:把直线方程(m-1)x-y+2m+1=0整理得(x+2)m-(x+y-1)=0,则错误!得错误!答案:(-2,3)10.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程.解:设所求直线方程为+=1,由已知可得错误!解得错误!或错误!故直线l的方程为2x+y+2=0或x+2y-2=0.11.(2012·莆田月考)已知两点A(-1,2),B(m,3).(1)求直线的方程;(2)已知实数m∈,求直线的倾斜角α的取值范围.解:(1)当m=-1时,直线的方程为x=-1;当m≠-1时,直线的方程为y-2=(x+1).(2)①当m=-1时,α=;②当m≠-1时,m+1∈∪(0, ],∴k=∈(-∞,- ]∪,∴α∈∪.综合①②知,直线的倾斜角α∈.12.如图,射线、分别与x轴正半轴成45°和30°角,过点P(1,0)作直线分别交、于A、B两点,当的中点C恰好落在直线y=x上时,求直线的方程.解:由题意可得=45°=1,=(180°-30°)=-,所以直线:y=x,:y=-x.设A(m,m),B(-n,n),所以的中点,由点C在y=x上,且A、P、B三点共线得错误!解得m=,所以A(, ).又P(1,0),所以===,所以:y=(x-1),即直线的方程为(3+)x-2y-3-=0.1.若直线l:y=-与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是( )解析:选B 由错误!解得错误!∵两直线交点在第一象限,∴错误!解得k>错误!.∴直线l的倾斜角的范围是.2.(2012·洛阳模拟)当过点P(1,2)的直线l被圆C:(x-2)2+(y-1)2=5截得的弦最短时,直线l的方程为.解析:易知圆心C的坐标为(2,1),由圆的几何性质可知,当圆心C与点P的连线与直线l垂直时,直线l被圆C截得的弦最短.由C(2,1),P(1,2)可知直线的斜率为=-1,设直线l的斜率为k,则k×(-1)=-1,得k=1,又直线l过点P,所以直线l的方程为x-y+1=0.答案:x-y+1=03.已知直线l:-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O 为坐标原点,设△的面积为S,求S的最小值及此时直线l的方程.解:(1)证明:法一:直线l的方程可化为y=k(x+2)+1,故无论k取何值,直线l总过定点(-2,1).法二:设直线过定点(x0,y0),则0-y0+1+2k=0对任意k ∈R恒成立,即(x0+2)k-y0+1=0恒成立,∴x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l总过定点(-2,1).(2)直线l的方程为y=+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则错误!解得k的取值范围是[0,+∞).(3)依题意,直线l在x轴上的截距为-,在y轴上的截距为1+2k,∴,B(0,1+2k).又-<0且1+2k>0,∴k>0.故S==×(1+2k)=≥(4+4)=4,当且仅当4k=,即k=时,取等号.故S的最小值为4,此时直线l的方程为x-2y+4=0.1.(2012·郑州模拟)已知直线l1的方向向量为a=(1,3),直线l2的方向向量为b=(-1,k).若直线l2经过点(0,5)且l1⊥l2,则直线l2的方程为( )A.x+3y-5=0 B.x+3y-15=0C.x-3y+5=0 D.x-3y+15=0解析:选B ∵1=3,2=-k,l1⊥l2,∴k=,l2的方程为y=-x+5,即x+3y-15=0.2.(2012·吴忠调研)若过点P(1-a,1+a)与Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围是.解析:k=α==.∵α为钝角,∴<0,即(a-1)(a+2)<0,故-2<a<1.答案:(-2,1)3.已知直线l过点P(3,2),且与x轴,y轴的正半轴分别交于A,B两点如图,求△的面积的最小值及此时直线l的方程.解:设A(a,0),B(0,b),(a>0,b>0),则直线l的方程为+=1,∵l过点P(3,2),∴+=1.∴1=+≥2,即≥24.∴S△=≥12.当且仅当=,即a=6,b=4时,△的面积最小,最小值为12.此时直线l的方程为+=1.即2x+3y-12=0.第二节两直线的位置关系[知识能否忆起]一、两条直线的位置关系二、两条直线的交点设两条直线的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,两条直线的交点坐标就是方程组错误!的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.三、几种距离1.两点间的距离平面上的两点A(x1,y1),B(x2,y2)间的距离公式:d(A,B)==.2.点到直线的距离点P(x1,y1)到直线l:++C=0的距离d=.3.两条平行线间的距离两条平行线++C1=0与++C2=0间的距离d=.[小题能否全取]1.(教材习题改编)已知l1的倾斜角为45°,l2经过点P(-2,-1),Q(3,m).若l1⊥l2,则实数m为( )A.6 B.-6C.5 D.-5解析:选B 由已知得k1=1,k2=.∵l1⊥l2,∴k1k2=-1,∴1×=-1,即m=-6.2.(教材习题改编)点(0,-1)到直线x+2y=3的距离为( )C.5解析:选B d==.3.点(a,b)关于直线x+y+1=0的对称点是( )A.(-a-1,-b-1) B.(-b-1,-a-1)C.(-a,-b) D.(-b,-a)解析:选B 设对称点为(x′,y′),则错误!解得x′=-b-1,y′=-a-1.4.l1:x-y=0与l2:2x-3y+1=0的交点在直线+3y+5=0上,则m的值为( )A.3 B.5C.-5 D.-8解析:选D 由错误!得l1与l2的交点坐标为(1,1).所以m+3+5=0,m=-8.5.与直线4x+3y-5=0平行,并且到它的距离等于3的直线方程是.解析:设所求直线方程为4x+3y+m=0,由3=,得m=10或-20.答案:4x+3y+10=0或4x+3y-20=01.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.2.在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为++C=0的形式,否则会出错.典题导入[例1] (2012·浙江高考)设a∈R,则“a=1”是“直线l1:+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答] 由a=1,可得l1∥l2;反之,由l1∥l2,可得a=1或a=-2.[答案] A在本例中若l1⊥l2,试求a.解:∵l1⊥l2,∴a×1+2×(a+1)=0,∴a=-.由题悟法1.充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.2.(1)若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y =k2x+b2,则直线l1⊥l2的充要条件是k1·k2=-1.(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则l1⊥l2⇔A1A2+B1B2=0.以题试法1.(2012·大同模拟)设a,b,c分别是△中角A,B,C所对的边,则直线A++c=0与-B+C=0的位置关系是( ) A.平行B.重合C.垂直D.相交但不垂直解析:选C 由已知得a≠0,B≠0,所以两直线的斜率分别为k1=-),k2=B),由正弦定理得k1·k2=-)·B)=-1,所以两条直线垂直.典题导入[例2] (2012·浙江高考)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.[自主解答] 因曲线C2:x2+(y+4)2=2到直线l:y=x的距离为-=2-=,所以曲线C1与直线l不能相交,故x2+a>x,即x2+a-x>0.设C1:y=x2+a上一点为(x0,y0),则点(x0,y0)到直线l的距离d===≥=,所以a=.[答案]由题悟法1.点到直线的距离问题可直接代入距离公式去求.注意直线方程为一般式.2.点到与坐标轴垂直的直线的距离,可用距离公式求解.也可用如下方法去求解:(1)点P(x0,y0)到与y轴垂直的直线y=a的距离d=0-.(2)点P(x0,y0)到与x轴垂直的直线x=b的距离d=0-.以题试法2.(2012·通化模拟)若两平行直线3x-2y-1=0,6x++c =0之间的距离为,则c的值是.解析:由题意得=≠,得a=-4,c≠-2,则6x++c=0可化为3x-2y+=0,则=,解得c=2或-6.答案:2或-6典题导入[例3] (2012·成都模拟)在直角坐标系中,A(4,0),B(0,4),从点P(2,0)射出的光线经直线反射后,再射到直线上,最后经直线反射后又回到P点,则光线所经过的路程是( ) A.2 B.6C.3 D.2[自主解答] 如图,设点P关于直线,y轴的对称点分别为D,C,易求得D(4,2),C(-2,0),由对称性知,D,M,N,C共线,则△的周长=++=++===2即为光线所经过的路程.[答案] A由题悟法对称问题主要包括中心对称和轴对称(1)中心对称①点P(x,y)关于O(a,b)的对称点P′(x′,y′)满足错误!②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A(a,b)关于直线++C=0(B≠0)的对称点A′(m,n),则有错误!②直线关于直线的对称可转化为点关于直线的对称问题来解决.以题试法3.(2012·南京调研)与直线3x-4y+5=0关于x轴对称的直线方程为( )A.3x+4y+5=0 B.3x+4y-5=0C.-3x+4y-5=0 D.-3x+4y+5=0解析:选A 与直线3x-4y+5=0关于x轴对称的直线方程是3x-4(-y)+5=0,即3x+4y+5=0.[典例] (2012·银川一中月考)求经过直线l1: 3x+2y-1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x-5y+6=0的直线l的方程.[常规解法] 解方程组错误!得l1,l2的交点坐标为(-1,2).由l3的斜率得l的斜率为-.则由点斜式方程可得l的方程为y-2=-(x+1)即5x+3y -1=0.——————[高手支招]———————————————————————————运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线++C=0平行的直线系方程是++m=0(m∈R且m≠C);(2)与直线++C=0垂直的直线系方程是-+m=0(m∈R);(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.——————————————————————————————————————[巧思妙解] 由于l过l1,l2的交点,故可设l的方程为3x +2y-1+λ(5x+2y+1)=0将其整理,得(3+5λ)x+(2+2λ)y+(-1+λ)=0,其斜率-=-,得λ=.代入直线系方程得l方程5x+3y-1=0.针对训练求与直线2x+6y-11=0平行,且与坐标轴围成的三角形面积为6的直线方程.解:由题意,设所求直线方程为2x+6y+b=0.令x=0,得y=-;令y=0,得x=-,则直线2x+6y+b=0与坐标轴的交点坐标分别为,.又所围成的三角形面积S=··=·=6,所以b2=144,所以b=±12.故所求直线方程为2x+6y+12=0或2x+6y-12=0.即为x+3y+6=0或x+3y-6=0.1.(2012·海淀区期末)已知直线l1:k1x+y+1=0与直线l2:k2x+y-1=0,那么“k1=k2”是“l1∥l2”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C 由k1=k2,1≠-1,得l1∥l2;由l1∥l2知k1×1-k2×1=0,所以k1=k2.故“k1=k2”是“l1∥l2”的充要条件.2.当0<k<时,直线l1:-y=k-1与直线l2:-x=2k 的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限解析:选B 解方程组错误!得两直线的交点坐标为错误!,因为0<k<,所以<0,>0,故交点在第二象限.3.(2012·长沙检测)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为( )C.4 D.8解析:选B ∵直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,即为3x+4y+=0,∴直线l1与直线l2的距离为=.4.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点( )A.(0,4) B.(0,2)C.(-2,4) D.(4,-2)解析:选B 由于直线l1:y=k(x-4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l1:y=k(x-4)与直线l2关于点(2,1)对称,故直线l2恒过定点(0,2).5.已知直线l1:y=2x+3,若直线l2与l1关于直线x+y =0对称,又直线l3⊥l2,则l3的斜率为( )A.-2 B.-D.2解析:选A 依题意得,直线l2的方程是-x=2(-y)+3,即y=x+,其斜率是,由l3⊥l2,得l3的斜率等于-2.6.(2012·岳阳模拟)直线l经过两直线7x+5y-24=0和x-y=0的交点,且过点(5,1).则l的方程是( ) A.3x+y+4=0 B.3x-y+4=0C.x+3y-8=0 D.x-3y-4=0解析:选C 设l的方程为7x+5y-24+λ(x-y)=0,即(7+λ)x+(5-λ)y-24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4的方程为x+3y-8=0.7.(2012·郑州模拟)若直线l1:+2y=0和直线l2:2x+(a+1)y+1=0垂直,则实数a的值为.解析:由2a+2(a+1)=0得a=-.答案:-8.已知平面上三条直线x+2y-1=0,x+1=0,x+=0,如果这三条直线将平面划分为六部分,则实数k的所有取值为.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k=0或2;若三条直线交于一点,也符合要求,此时k=1,故实数k的所有取值为0,1,2.答案:0,1,29.(2013·临沂模拟)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是.解析:由题意得,点到直线的距离为=.又≤3,即|15-3a|≤15,解得,0≤a≤10,所以a∈[0,10].答案:[0,10]10.(2013·舟山模拟)已知+=1(a>0,b>0),求点(0,b)到直线x-2y-a=0的距离的最小值.解:点(0,b)到直线x-2y-a=0的距离为d==(a+2b)=≥(3+2)=,当且仅当a2=2b2,a+b=,即a=1+,b=时取等号.所以点(0,b)到直线x-2y-a=0的距离的最小值为.11.(2012·荆州二检)过点P(1,2)的直线l被两平行线l1:4x+3y+1=0与l2:4x+3y+6=0截得的线段长=,求直线l 的方程.解:设直线l的方程为y-2=k(x-1),由错误!解得;由错误!解得错误!.∵=,∴=,整理,得7k2-48k-7=0,解得k1=7或k2=-.因此,所求直线l的方程为x+7y-15=0或7x-y-5=0.12.已知直线l:3x-y+3=0,求:(1)点P(4,5)关于l的对称点;(2)直线x-y-2=0关于直线l对称的直线方程.解:设P(x,y)关于直线l:3x-y+3=0的对称点为P′(x′,y′).∵′·=-1,即×3=-1.①又′的中点在直线3x-y+3=0上,∴3×-+3=0.②由①②得错误!(1)把x=4,y=5代入③④得x′=-2,y′=7,∴P(4,5)关于直线l的对称点P′的坐标为(-2,7).(2)用③④分别代换x-y-2=0中的x,y,得关于l的对称直线方程为--2=0,化简得7x+y+22=0.1.点P到点A(1,0)和直线x=-1的距离相等,且点P到直线y=x的距离为,这样的点P的个数是( )A.1 B.2C.3 D.4解析:选C ∵点P到点A和定直线距离相等,∴P点轨迹为抛物线,方程为y2=4x.设P(t2,2t),则=,解得t1=1,t2=1+,t3=1-,故P点有三个.2.(2012·福建模拟)若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是( )A.2 B.2C.4 D.2解析:选C 设原点到点(m,n)的距离为d,所以d2=m2+n2,又因为(m,n)在直线4x+3y-10=0上,所以原点到直线4x +3y-10=0的距离为d的最小值,此时d==2,所以m2+n2的最小值为4.3.在直线l:3x-y-1=0上求一点P,使得P到A(4,1)和B(0,4)的距离之差最大.解:如图所示,设点B关于l的对称点为B′,连接′并延长交l于P,此时的P满足-的值最大.设B′的坐标为(a,b),则′·=-1,即3·=-1.则a+3b-12=0.①又由于线段′的中点坐标为,且在直线l上,则3×--1=0,即3a-b-6=0.②解①②,得a=3,b=3,即B′(3,3).于是′的方程为=,即2x+y-9=0.解错误!得错误!即l与′的交点坐标为P(2,5).1.点(1,θ)(其中0≤θ≤π)到直线θ+θ-1=0的距离是,那么θ等于( )或或解析:选B 由已知得θ+2θ-1|,2θ+2θ)=,即θ-2θ|=,∴42θ-4 θ-1=0或42θ-4 θ+1=0,∴θ=或θ=.∵0≤θ≤π,∴0≤θ≤1,∴θ=,即θ=或.2.已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( )A.x-2y+1=0 B.x-2y-1=0C.x+y-1=0 D.x+2y-1=0解析:选B l1与l2关于l对称,则l1上任一点关于l的对称点都在l2上,故l与l1的交点(1,0)在l2上.又易知(0,-2)为l1上一点,设其关于l的对称点(x,y),则错误!得错误!即(1,0),(-1,-1)为l2上两点,可得l2方程为x-2y-1=0.3.光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y +7=0后反射,求反射光线所在的直线方程.解:法一:由错误!得错误!即反射点M的坐标为(-1,2).又取直线x-2y+5=0上一点P(-5,0),设P关于直线l 的对称点P′(x0,y0),由′⊥l可知,′=-=.而′的中点Q的坐标为,Q点在l上,即3·-2·+7=0.由错误!得错误!根据直线的两点式方程可得所求反射光线所在直线的方程为29x-2y+33=0.法二:设直线x-2y+5=0上任意一点P(x0,y0)关于直线l 的对称点为P′(x,y),则=-,又′的中点在l上,即3×-2×+7=0,由错误!可得P点的坐标为x0=,y0=,代入方程x-2y+5=0中,化简得29x-2y+33=0,故所求反射光线所在的直线方程为29x-2y+33=0.。
必修二第三章直线与方程的知识点倾斜角与斜率1. 当直线与x 轴相交时,我们把x 轴 方向与直线向 方向之间所成的角叫做直线l 的倾斜角. 直线的倾斜角α的范围是 .2. 斜率:①倾斜角为α,则 k= ( 条件: )②已知直线上两点1122(,),(,)P x y P x y ,则有k= ( 条件: ) 特别地是,当12x x =,12y y ≠时,直线与x 轴 ,斜率k 注意:当090α︒<<︒时,斜率 ,随着α的增大,斜率 ; 当90180α︒<<︒时,斜率 ,随着α的增大,斜率 。
两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)平行 (2)垂直2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴; 两条直线中一条斜率不存在,另一条斜率为0,则它们垂直。
直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为 .2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为 .3. 点斜式和斜截式不能表示 的直线.4. 注意:00y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为 ,2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为 .3. 两点式不能表示 的直线;截距式不能表示 的直线4. 线段12P P 中点坐标公式 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程 ,斜率为 ,y 轴上截距为 .2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为 ;与直线0Ax By C ++=垂直的直线,可设所求方程为 . 3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)平行 (2)垂直 .两条直线的交点坐标1. 求交点:解方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为: .点到直线的距离及两平行线距离1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为 .2.两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式 ,对称问题1、关于点的对称:实质考察:2、关于线的对称:要点:一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. -8 C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( )A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=0 5.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( )A. a+b=1B. a-b=1C. a+b=0D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( )A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )A (-2,1)B (2,1)C (1,-2)D (1,2)9. 已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2 10、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K3 B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 12. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <0 13. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2),B (-1,6)等距离的直线的方程是 。
直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k 斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1. ②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y ab+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:错误!各式的适用范围 错误!特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中.(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. (7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。
3.1倾斜角和斜率1.直线的倾斜角的概念:当直线l 与x 轴相交, 取x 轴作为基准, x 轴正向与直线l 向上方向所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2.倾斜角α的取值范围:0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3.直线的斜率:直线的倾斜角α(α≠90°)的正切值叫做直线的斜率,常用k 表示,即 k = tan α.⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 注意:由此可知, 直线的倾斜角α一定存在,但是斜率k 不一定存在.4. 斜率公式:若直线过两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,斜率公式: k=y 2-y 1/x 2-x 1 . 【题型1】求直线斜率33-D. 33C. 3-B. 3.A 120.1的斜率为(),则直线的倾斜角为若直线l l ︒ 34D. 43C. 34B. 43A..,53sin .2±±=则此直线的斜率为(),若已知直线的倾斜角为αα21D.C.2 21-B. 2-A..52B 31A .3率为())两点,则此直线的斜,(),,(若直线过 31-D. 31C. 3-B. A.3.013.4的斜率是()直线=+-y x 【题型2】求直线倾斜角︒︒︒︒D.135C.60 B.45 A.30.1.1的倾斜角为(),则直线的斜率为若直线l l︒︒︒︒=+- D.90C.60 B.45 A.30.0122.2的倾斜角为():直线y x l,不存在,不存在,,()的倾斜角和斜率分别是直线︒︒︒︒-= D.180 C.90 1B .135 1A.45.1.3x不存在的倾斜角为()直线 D. C.90 B.45 A.0.1.4︒︒︒=y【题型3】直线斜率大小比较123321213231321321 D. C. B. A...1k k k k k k k k k k k k k k k l l l <<<<<<<<,则必有()、、的斜率分别为、、如图,直线【题型4】求直线斜率、倾斜角范围)2[ ]4D.[0 ]4[0 C. )43[ ]4[0 B. )[0 A..))(1(B )12(A 2.) [0,]1D. ]1 C. ) B.[-1, A.1350.12ππππππππαα,,,,,,()的倾斜角的取值范围为两点,那么直线,,,经过点直线,(,(),()的斜率的取值范围为(,则直线,且的倾斜角为已知直线⋃⋃∈∞+⋃-∞--∞-∞+∞+∞-≤≤︒︒l R m m l l l3.2.1 点斜式方程1.点斜式方程:(1)条件:直线l 经过点),(000y x P ,且斜率为k .(2)方程:2.斜截式方程:(1)条件:直线l 的斜率为k ,与y 轴的交点为),0(b .(2)方程:3.2.2 两点式方程1.两点式方程:(1)条件:两点),(),,(222111y x P y x P其中),(2121y y x x ≠≠.(2)方程:2.截距式方程:(1)条件:直线l 与x 、y 轴的交点分别为A )0,(a 、B ),0(b ,其中0,0≠≠b a . (2)方程:3.2.3 直线的一般方程1、直线的一般式方程:关于y x ,的二元一次方程 (A ,B 不同时为0)2、各种直线方程之间的互化。
直 线一、直线斜率、倾斜角1、斜率:k=θtan (θ为倾斜角) [)0180θ∈︒︒,2、斜率:k=2121x x y y --(21x x ≠)已知两点可以求斜率3、k 与θ的关系例1 过A (1,2)点,且不过第四象限的直线,求直线的斜率k 的取值范围?例2 已知直线倾斜角30120θ︒︒⎡⎤∈⎣⎦,,求直线斜率k 的取值范围例3 已知直线斜率k []31,-∈,求直线倾斜角θ的取值范围例4 已知直线l 的倾斜角β是直线1l :012=+-y x 的倾斜角α的2倍,求直线l 的斜率.练 习1.下列说法中,正确的是( ). A. 直线的倾斜角为α,则此直线的斜率为tan α B. 直线的斜率为tan α,则此直线的倾斜角为α C. 若直线的倾斜角为α,则sin 0α> D. 任一直线都有倾斜角,但它不一定有斜率2.直线l 过点P (-1,2),且与以A (-6,-3),B (3,-2)为端点的线段相交(包括端点),求l 的倾斜角的范围 ?3.已知直线l 过点P (−1,2),且与以A (−2,−3)、B (3,0)为端点的线段相交,求直线l 的斜率的取值范围是4.经过点P (0,-1)作直线l 与连接A(1,-2),B (2,1)的线段总有公共点,找出直线l 的倾斜角α与斜率k 的取值范围.5.经过点()10,P 作直线l ,若直线l 与连接()33,13---,),(B A 的线段总有公共点,找出直线l 斜率k 的取值范围.二、直线的四种形式: 1.点斜式: 作用:几何意义: 范围:定点问题:例1 已知直线0355:=+--a y ax l(1)求证:不论a 为何值,直线l 总经过第一象限 (2)为使直线不经过第二象限,求a 的取值范围例2 点P 是(x,y )线段x+2y-4=0(22-≤≤x )上的任意一点,求xy 1+的范围.2.斜截式: 作用: 几何意义: 范围:例3 设直线l 的方程为(a+1)x+y+2-a=0(a R ∈) (1)若直线l 在两坐标轴上的截距相等,求l 的方程 (2)若l 不经过第二象限,求a 的范围(3)证明:不论a 为何值,直线恒过某定点,并求定点坐标 (4)证明:不论a 为何值,直线恒过第四象限 作业:1.已知直线01=+++a y ax ,不论a 取何值,则该直线恒过的定点为 .2.已知直线()0121:=-+-+a y a ax l 不通过第四象限,则a 的取值范围是 .3.下列图象不可能是直线()2--=a ax y 图象的是( ) A .B .C .D .4.如果直线()0,0<<+=b a b ax y 和直线()0>=k kx y 的图像交于点P ,那么点P 应该位于第 象限.3.截距式: 作用:几何意义: 范围:例1 已知直线过(3,-2)且在x 轴的截距a 是与y 轴的截距是3倍,求直线的截距式.4.求直线方程:两个已知条件设方程:有一个未知数 1、已知点:点斜式 2、已知k :斜截式 3、已知截距关系:截距式例2 (1)求过点P(2,−1),在x 轴和y 轴上的截距分别为a 、b ,且满足a=3b 的直线方程.(2)已知直线l 过点(1,0),且与直线)1(3-=x y 的夹角为︒30,求直线l 的方程。
高中数学必修2知识点——直线与方程一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即0tan (90)k αα=≠。
斜率反映直线与x 轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
例.如右图,直线l 1的倾斜角=30°,直线l 1⊥l 2,求直线l 1和l 2的斜率.解:k 1=tan30°=33∵l 1⊥l 2 ∴ k 1·k 2 =—1 ∴k 2 =—3例:直线053=-+y x 的倾斜角是( )° ° ° °(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)即不包含于平行于x 轴或y直线两点轴的直线,直线两点()11,y x ,()22,y x ,当写成211211()()()()x x y y y y x x --=--的形式时,方程可以表示任何一条直线。
④截矩式:1x y ab+=其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
对于平行于坐标轴或者过原点的方程不能用截距式。
⑤一般式:0=++C By Ax (A ,B 不全为0) 注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:ax =(a 为常数); 例题:根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是12-,经过点A(8,—2); . (2)经过点B(4,2),平行于x轴; .(3)在x轴和y轴上的截距分别是3,32-; . 4)经过两点P 1(3,—2)、P 2(5,—4); .例1:直线l 的方程为A x +B y +C =0,若直线经过原点且位于第二、四象限,则( )A .C =0,B>0B .C =0,B>0,A>0C .C =0,AB<0D .C =0,AB>0例2:直线l 的方程为A x —B y —C =0,若A 、B 、C 满足AB.>0且BC<0,则l 直线不经的象限是( )A .第一B .第二C .第三D .第四(4)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系(ⅰ)斜率为k 的直线系:()00y y kx x -=-,直线过定点()0,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(三)垂直直线系垂直于已知直线0Ax By C ++=(,A B 是不全为0的常数)的直线系:0Bx Ay C '-+=例1:直线l :(2m+1)x +(m+1)y —7m —4=0所经过的定点为 。
(m∈R) (5)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,(1)212121,//b b k k l l ≠=⇔;(2)12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(3)1212,k k b b ==⇔1l 与2l 重合;(4)12k k ≠⇔1l 与2l 相交。
另外一种形式:一般的,当1111110:0(,)l A x B y C A B ++=不全为, 与2222220:0(,)l A x B y C A B ++=不全为时,(1)122112210//120A B A B l l B C B C -=-≠⎧⇔⎨⎩,或者1221122100A B A B AC A C -=⎧⎨-≠⎩。
(2)1212120l l A A B B ⊥⇔+=。
(3)1l 与2l 重合⇔1221A B A B -=1221B C B C -=1221A C A C -=0。
(4)1l 与2l 相交⇔12210A B A B -≠。
例.设直线 l 1经过点A(m ,1)、B(—3,4),直线 l 2经过点C(1,m )、D(—1,m +1),当(1) l 1/ / l 2 (2) l 1⊥l 1时分别求出m 的值例1.已知两直线l 1: x +(1+m ) y =2—m 和l 2:2mx +4y +16=0,m 为何值时l 1与l 2①相交②平行例 2. 已知两直线l 1:(3a +2) x +(1—4a ) y +8=0和l 2:(5a —2)x +(a +4)y —7=0垂直,求a 值 (6)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合 例3.求两条垂直直线l 1:2x + y +2=0和l 2: mx +4y —2=0的交点坐标例4. 已知直线l 的方程为121+-=x y ,(1)求过点(2,3)且垂直于l 的直线方程;(2)求过点(2,3)且平行于l 的直线方程。
例2:求满足下列条件的直线方程(1) 经过点P(2,3)及两条直线l 1: x +3y —4=0和l 2:5x +2y+1=0的交点Q ;(2) 经过两条直线l 1: 2x +y —8=0和l 2:x —2y+1=0的交点且与直线4x —3y —7=0平行;(3) 经过两条直线l 1: 2x —3y +10=0和l 2:3x +4y —2=0的交点且与直线3x —2y +4=0垂直;(7)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB =(8)点到直线距离公式:一点()00,y x P 到直线1:0l Ax By C ++=的距离2200BA CBy Ax d +++=(9)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
对于0:1111=++C y B x A l 0:2222=++C y B x A l 来说:d =。
例1:求平行线l 1:3x + 4y —12=0与l 2: ax +8y +11=0之间的距离。
例2:已知平行线l 1:3x +2y —6=0与l 2: 6x +4y —3=0,求与它们距离相等的平行线方程。
(10) 对称问题1)中心对称 A 、若点11(,)M x y 及(,)N x y 关于(,)P a b 对称,则由中点坐标公式得112,2.x a x y b y =-⎧⎨=-⎩ B 、直线关于点的对称,主要方法是:在已知直线上取两点,利用中点坐标公式求出它们对于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用12//l l ,由点斜式得出所求直线的方程。
2)轴对称 A 、点关于直线的对称: 若111(,)P x y 与222(,)P x y 关于直线:0l Ax By C ++=对称,则线段12P P 的中点在对称轴l 上,而且连结12P P 的直线垂直于对称轴l ,由方程组121212120,22,x x y y A B C y y B x x A++⎧⋅+⋅+=⎪⎪⎨-⎪=-⎪⎩可得到点1P 关于l 对称的点2P 的坐标22(,)x y (其中120,)A x x ≠≠。
B 、直线关于直线的对称:此类问题一般转化为关于直线对称的点来解决,若已知直线1l 与对称轴l 相交,则交点必在与1l 对称的直线2l 上,然后再求出1l 上任一个已知点1P 关于对称轴l 对称的点2P ,那么经过交点及点2P 的直线就是2l ;若已知直线1l 与对称轴l 平行,则与1l 对称的直线和1l 到直线l 的距离相等,由平行直线系和两条平行线间的距离,即可求出1l 的对称直线。
例1:已知直线l :2x —3y +1=0和点P(—1,—2).(1) 分别求:点P(—1,—2)关于x 轴、y 轴、直线y=x 、原点O 的对称点Q 坐标(2) 分别求:直线l:2x—3y+1=0关于x轴、y轴、直线y=x、原点O的对称的直线方程.(3) 求直线l关于点P(—1,—2)对称的直线方程。
(4) 求P(—1,—2)关于直线l轴对称的直线方程。
例2:点P(—1,—2)关于直线l: x+y—2=0的对称点的坐标为。
11. 中点坐标公式:已知两点P1 (x1,y1)、P1(x1,y1),则线段的中点M坐标为(221xx+,221yy+)例. 已知点A(7,—4)、B(—5,6),求线段AB的垂直平分线的方程直线方程练习题1.过点(1,3)-且平行于直线032=+-yx的直线方程为_____________ 2.若直线x+a y+2=0和2x+3y+1=0互相垂直,则a=__________________3、直线2x+3y-5=0关于直线y=x对称的直线方程为________________4、与直线2x+3y-6=0关于点(1,-1)对称的直线是___________________5、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是______________6. 过点(1,2)且在两坐标轴上的截距相等的直线的方程__________________7两直线2x+3y-k=0和x-ky+12=0的交点在y轴上,则k的值是_________________8、两平行直线0-=+yxx与的距离是_______________y+-9263=49、已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。