高中数学复习专题讲座导数的运算法则及基本公式应用
- 格式:doc
- 大小:477.50 KB
- 文档页数:6
1.2.2 基本初等函数的导数公式及导数的运算法则(二)1.复合函数的概念一般地,对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成□01x 的函数,那么称这个函数为y =f (u )和u =g (x )的复合函数,记作□02y =f [g (x )]. 在复合函数中,内层函数u =g (x )的值域必须是外层函数y =f (u )的定义域的子集.2.复合函数的求导法则复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即y x ′=□03y u ′·u x ′,并且在利用复数的求导法则求导数后,最后结果要把中间变量换成自变量的函数.复合函数,可以是一个中间变量,也可以是两个或多个中间变量,应该按照复合次序从外向内逐层求导.使用复合函数求导法则的注意事项(1)分清复合函数的复合关系是由哪些基本函数复合而成的,选择适当的中间变量.(2)分步计算的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量的导数,如(sin2x )′=2cos2x ,不能得出(sin2x )′=cos2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数,如求y =sin ⎝⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3.(4)熟练掌握复合函数的求导后,中间步骤可省略不写. 1.判一判(正确的打“√”,错误的打“×”) (1)f ′(x )=2x ,则f (x )=x 2.( )(2)函数f (x )=x e x 的导数是f ′(x )=e x(x +1).( ) (3)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) 答案 (1)× (2)√ (3)× 2.做一做(1)若f (x )=2x +3,则f ′(x )=________.(2)函数f (x )=2sin x -cos x ,则f ′(x )=________. (3)函数f (x )=-2x +1,则f ′(x )=________.答案 (1)2 (2)2cos x +sin x (3)2x +12探究1 简单复合函数求导问题 例1 求下列函数的导数.(1)y =(3x -2)2;(2)y =ln (6x +4); (3)y =sin(2x +1);(4)y =3x +5.[解] (1)∵y =(3x -2)2由函数y =u 2和u =3x -2复合而成,∴y x ′=y u ′·u x ′=(u 2)′·(3x -2)′=6u =18x -12.(2)∵y =ln (6x +4)由函数y =ln u 和u =6x +4复合而成,∴y x ′=y u ′·u x ′=(ln u )′·(6x +4)′=6u =66x +4=33x +2.(3)函数y =sin(2x +1)可以看作函数y =sin u 和u =2x +1的复合函数,根据复合函数求导法则有y x ′=y u ′·u x ′=(sin u )′·(2x +1)′=2cos u =2cos(2x +1).(4)函数y =3x +5可以看作函数y =u 和u =3x +5的复合函数,根据复合函数求导法则有y x ′=y u ′·u x ′=(u )′·(3x +5)′=32u =323x +5.拓展提升复合函数求导的步骤【跟踪训练1】 求下列函数的导数. (1)y =1-2x 2;(2)y =esin x;(3)y =sin ⎝⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1).解 (1)设y =u12 ,u =1-2x 2,则y ′=(u 12 )′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u - 12 ·(-4x )=12(1-2x 2) - 12 (-4x )=-2x 1-2x 2 . (2)设y =e u,u =sin x ,则y x ′=y u ′·u x ′=e u·cos x =e sin xcos x .(3)设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1,则y ′=5(log 2u )u ′(2x +1)x ′=10u ln 2=102x +1ln 2.探究2 复合函数与导数的运算法则的综合应用 例2 求下列函数的导数. (1)y =x (x +1)(x +2)(x >0); (2)y =sin2⎝⎛⎭⎪⎫2x +π3.[解] (1)y ′=[x (x +1)(x +2)]′=x ′(x +1)(x +2)+x (x +1)′(x +2)+x (x +1)(x +2)′=(x +1)(x +2)+x (x +2)+x (x +1)=3x 2+6x +2.(2)设y =u 2,u =sin ν,ν=2x +π3,则y x ′=y u ′·u ν′·νx ′=2u ·cos ν·2=4sin νcos ν=2sin2ν=2sin ⎝⎛⎭⎪⎫4x +2π3.[解法探究] 此题有没有其他解法呢?[解] (1)因为y =x (x +1)(x +2)=(x 2+x )(x +2)=x 3+3x 2+2x ,所以y ′=(x 3+3x 2+2x )′=3x 2+6x +2.(2)y ′=⎣⎢⎡⎦⎥⎤sin 2⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝ ⎛⎭⎪⎫2x +π3·[ sin ( 2x +π3 ) ]′=2sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝⎛⎭⎪⎫4x +2π3.拓展提升求复合函数的导数需处理好的几个环节(1)求导之前应先将函数化简,然后再求导,以减少运算量;(2)中间变量的选择应是基本函数结构; (3)关键是正确分析函数的复合层次;(4)一般是从最外围开始,由外及里,一层层地求导; (5)善于把一部分表达式作为一个整体; (6)最后要把中间变量换成自变量的函数. 【跟踪训练2】 求下列函数的导数. (1)y =x 1+x2;(2)y =x cos ⎝ ⎛⎭⎪⎫2x +π2sin ⎝⎛⎭⎪⎫2x +π2.解 (1)y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x2=错误!.(2)∵y =x cos ⎝⎛⎭⎪⎫2x +π2sin ⎝ ⎛⎭⎪⎫2x +π2=x (-sin2x )cos2x =-12x sin4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin4x ′=-12sin4x -x 2cos4x ·4=-12sin4x -2x cos4x .探究3 导数的综合应用例3 设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.[解] (1)由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=2a -b 2=12.①又f ′(x )=a +b x 2,∴f ′(2)=a +b 4=74.②由①②得⎩⎪⎨⎪⎧4a -b =1,4a +b =7,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知,曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.拓展提升根据切线方程求出切点及斜率,代入解方程组即可.利用f (x )上任意一点的切线方程求出三角形三顶点坐标即可求三角形面积.高考中对导数的考查,往往与其他知识点相结合:如切线的斜率、不等式的证明、函数的性质等,解题的关键是能够熟练求出导数,把问题转化为相对应的知识求解.【跟踪训练3】 已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且直线l 与曲线C 相切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标.解 因为直线l 过原点,所以直线l 的斜率k =y 0x 0(x 0≠0),由点(x 0,y 0)在曲线C 上,得y 0=x 30-3x 20+2x 0,所以y 0x 0=x 20-3x 0+2.又y ′=3x 2-6x +2,所以k =y ′| x =x 0=3x 20-6x 0+2.又k =y 0x 0,所以3x 20-6x 0+2=y 0x 0=x 20-3x 0+2,整理得2x 20-3x 0=0.因为x 0≠0,所以x 0=32,此时y 0=-38,k =-14.因此直线l 的方程为y =-14x ,切点坐标为⎝ ⎛⎭⎪⎫32,-38.1.在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不具备求导法则条件的式子,可适当地进行等价变形,以达到化异求同,化繁为简的目的.2.在可能的情况下,求导时应尽量避免使用积商的求导法则,因此在求导前应利用代数、三角恒等变形对函数式进行化简,然后再求导,这样可以减少运算量,同时提高正确率.1.下列函数不是复合函数的是( ) A .y =-x 3-1x+1B .y =cos ⎝⎛⎭⎪⎫x +π4C .y =1ln xD .y =(2x +3)4答案 A解析 A 中的函数是一个多项式函数,B 中的函数可看作函数u =x +π4,y =cos u 的复合函数,C 中的函数可看作函数u =ln x ,y =1u的复合函数,D 中的函数可看作函数u =2x +3,y =u 4的复合函数,故选A .2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x )C .e x-e -xD .e x+e-x答案 A 解析y ′=⎣⎢⎡⎦⎥⎤12e x +e-x′=12[(e x )′+(e -x)′]=12(e x -e -x). 3.函数f (x )=π2x 2的导数是( ) A .f ′(x )=4πx B .f ′(x )=2πxC .f ′(x )=2π2xD .f ′(x )=2πx 2+2π2x答案 C解析 由f (x )=π2x 2得f ′(x )=2π2x ,故选C .4.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b =________.答案 18解析 f ′(x )=4x3+2ax -b ,由⎩⎪⎨⎪⎧f ′0=-13,f ′-1=-27⇒⎩⎪⎨⎪⎧-b =-13,-4-2a -b =-27⇒⎩⎪⎨⎪⎧a =5,b =13⇒a +b =5+13=18.5.设f (x )=ln (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.解 由曲线y =f (x )过(0,0)点,可得ln 1+1+b =0,故b =-1.由f (x )=ln (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意知32+a =32,故a =0.。
1.2.2 基本初等函数的导数公式及导数的运算法则(一)1.几个常见函数的导数2.基本初等函数的导数公式设两个函数分别为f(x)和g(x).4.导数的加法与减法法则(1)两个函数和(或差)的导数等于两个函数的导数的和(或差),可推广到多个函数的和(或差),即(f1±f2±…±f n)′=□17f1′±f2′±…±f n′.(2)两个函数和(或差)的导数还可推广为[mf(x)±ng(x)]′=□18mf′(x)±ng′(x)(m,n为常数).基本初等函数的四类求导公式(1)第一类为幂函数,y ′=(x α)′=α·xα-1(注意幂指数α可推广到全体实数).对于解析式为根式形式的函数,首先应把根式化为分数指数幂的形式,再求导数.(2)第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.注意余弦函数的导数,不要漏掉前面的负号.(3)第三类为指数函数,y ′=(a x)′=a x·ln a ,当a =e 时,e x的导数是(a x )′的一个特例.(4)第四类为对数函数,y ′=(log a x )′=1x ·ln a ,也可记为(log a x )′=1x·log a e ,当a=e 时,ln x 的导数也是(log a x )′的一个特例.1.判一判(正确的打“√”,错误的打“×”) (1)若y =2,则y ′=12×2=1.( )(2)若f ′(x )=sin x ,则f (x )=cos x .( ) (3)若f (x )=-1x ,则f ′(x )=12x x.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)⎝ ⎛⎭⎪⎫1x 3′=________. (2)(2x)′=________.(3)若f (x )=x 3,g (x )=log 3x ,则f ′(x )-g ′(x )=________. 答案 (1)-3x4 (2)2x ln 2 (3)3x 2-1x ln 3探究1 利用导数公式及运算法则求导 例1 求下列函数的导数.(1)y =5x 3;(2)y =log 5x ;(3)f (x )=(x +1)2(x -1); (4)f (x )=2-2sin 2x2;(5)f (x )=e x+1e x -1.[解] (1)y ′=(5x 3)′=(x 35 )′=35x - 25 =355x 2.(2)y ′=(log 5x )′=1x ln 5. (3)因为f (x )=(x +1)2(x -1)=(x 2+2x +1)(x -1)=x 3+x 2-x -1,所以f ′(x )=3x 2+2x -1.(4)因为f (x )=2-2sin 2x2=1+cos x ,所以f ′(x )=-sin x .(5)解法一:f ′(x )=x +x--x+x-x -2=-2e xx -2.解法二:因为f (x )=e x+1e x -1=1+2e x -1,所以f ′(x )=x--x -x -2=-2e xx -2.拓展提升(1)利用函数的和、差、积、商的求导法则求函数的导数时,要分清函数的结构,再利用相应的法则进行求导.(2)遇到函数的表达式是乘积形式或是商的形式,有时先将函数表达式展开或化简,然后再求导.【跟踪训练1】 求下列函数的导数. (1)y =13x2;(2)y =x 3·e x;(3)y =cos x x.解 (1)y ′=⎝ ⎛⎭⎪⎪⎫13x 2′=(x - 23 )′=-23x -23-1 =-23x - 53 .(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x)′ =3x 2·e x +x 3·e x=x 2e x(3+x ). (3)y ′=⎝ ⎛⎭⎪⎫cos x x ′=xx -cos x xx 2=-x ·sin x -cos x x2=-x sin x +cos xx2. 探究2 曲线切线方程的确定与应用例2 过原点作曲线y =e x的切线,求切点的坐标及切线的斜率.[解] 因为(e x )′=e x,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,所以所求切线方程为y -ex 0=ex 0(x -x 0).因为切线过原点,所以-ex 0=-x 0·ex 0,x 0=1.所以切点为(1,e),斜率为e.[条件探究] 已知点P 是曲线y =e x上任意一点,求点P 到直线y =x 的最小距离.[解] 根据题意设平行于直线y =x 的直线与曲线y =e x相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.y ′=(e x )′=e x,ex 0=1,得x 0=0,代入y =e x,y 0=1,即P (0,1). 利用点到直线的距离公式得距离为22. 拓展提升利用基本初等函数的求导公式和导数的四则运算法则,结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题.解题的关键是正确确定所求切线的位置,进而求出切点坐标.【跟踪训练2】 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 因为y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′| x =x 0=2x 0.又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,所以k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14. 所以所求的切线方程为y -14=x -12,即4x -4y -1=0. 探究3 导数的综合应用例3 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0. (2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 拓展提升求曲线方程或切线方程时,应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.【跟踪训练3】 已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,当x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.解 f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.① 若-b ≤-1,即b ≥1,则f ′(x )在[-1,3]上是增函数, 所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1,②由①②,解得b =14,不满足b ≥1,应舍去.若-1<-b <3,即-3<b <1, 则f ′(x )min =f ′(-b )=-1, 即b 2-2b 2+c =-1,③由①③,解得b =-2,c =3或b =0,c =-1. 若-b ≥3,即b ≤-3,f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1, 即9+6b +c =-1,④由①④,解得b =-94,不满足b ≤-3,应舍去.综上可知,b =-2,c =3或b =0,c =-1.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,要认真观察函数的结构特征,积极地进行联想划归.2.准确记忆导数的运算法则是进行导数运算的前提,但在解题过程中要注意如何使用运算法则可使运算较为简单,例如求y =x ·x 的导数,若使用积的导数公式可以求出结果,但不如先化简为y =x ·x =x 32 ,再求y ′=32x 12简单.3.三次函数的导数为二次函数,当涉及与二次函数最值有关的问题时,常需要讨论,而讨论的立足点是二次函数的图象的对称轴与区间的位置关系.1.已知函数f (x )=5,则f ′(1)等于( ) A .5 B .1 C .0 D .不存在 答案 C解析 因为f (x )=5,所以f ′(x )=0,所以f ′(1)=0. 2.已知f (x )=x 3+3x+ln 3,则f ′(x )为( ) A .3x 2+3xB .3x 2+3x·ln 3+13C .3x 2+3x ·ln 3D .x 3+3x·ln 3答案 C解析 (ln 3)′=0,注意避免出现(ln 3)=13的错误,∵f (x )=x 3+3x +ln 3,∴f ′(x )=3x 2+3x·ln 3.3.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为________.答案 x +2y -3-π6=0解析 因为y ′=(cos x )′=-sin x ,所以k =-sin π6=-12,所以在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即x +2y -3-π6=0.4.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案 1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x , ∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,即f ′⎝ ⎛⎭⎪⎫π4=2-1,从而有f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1,故填1. 5.已知直线y =kx 是函数y =ln x 的一条切线,试求k 的值. 解 设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x ,∴y ′| x =x 0=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上, ∴⎩⎪⎨⎪⎧y 0=kx 0,①y 0=ln x 0,②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e ,∴k =1x 0=1e .。
高中数学导数知识点归纳总结1.导数的定义-函数f在a点可导的充分必要条件是:存在一个常数k,使得当自变量趋于a时,函数值与f(a)之差与自变量与a之差的比值的极限等于k。
这个常数k就是函数f在a点的导数。
- 导数的定义公式为:f'(x) = lim (f(x + △x) - f(x))/△x(△x→0)2.导数的基本运算法则- 常数法则:如果c是常数,那么dc/dx = 0-乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-除法法则:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g(x)^2- 链式法则:如果y = f(u)且u = g(x),那么dy/dx = dy/du *du/dx3.导数与函数的关系-函数f在点x=a处可导,则函数f在点x=a处连续。
-可导函数必定在其可导区间内连续,但是连续函数未必可导。
-导数存在的充分必要条件是函数在该点连续且有极限。
4.常见函数的导数- 幂函数:y = x^n,则y' = nx^(n-1)- 指数函数:y = a^x,则y' = a^x * ln(a)- 对数函数:y = ln(x),则y' = 1/x- 三角函数:sin x的导数是cos x,cos x的导数是-sin x,tan x 的导数是sec^2x5.导数的几何意义-导数表示函数在其中一点上的切线的斜率。
-导数的绝对值表示函数在该点的变化速率,正表示增加,负表示减小。
6.导数的应用-求函数的极值点:对导数函数进行分析,找到其零点。
-求函数的单调区间:根据导数的正负性,确定函数在哪些区间上是增函数或减函数。
-求函数的最大值最小值:结合极值点和边界点来进行判断。
-求曲线的切线和法线:根据导数和函数在其中一点上的数值来确定切线和法线的斜率。
7.高阶导数和导数的计算-高阶导数表示对函数的导数进行多次求导的结果。
【高中数学】高中数学导数的定义,公式及应用总结高中数学导数的定义,公式及应用总结导数的定义:当自变量的增量δx=x-x0,δx→0时函数增量δy=f(x)-f(x0)与自变量增量之比的音速存有且非常有限,就说道函数f在x0点可微,称作f在x0点的导数(或变化率).函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在p0[x0,f(x0)]点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
通常地,我们得出结论用函数的导数去推论函数的多寡性(单调性)的法则:设y=f(x)在(a,b)内可微。
如果在(a,b)内,f'(x)>0,则f(x)在这个区间就是单调减少的(该点切线斜率减小,函数曲线显得“平缓”,持续上升状)。
如果在(a,b)内,f'(x)<0,则f(x)在这个区间就是单调增大的。
所以,当f'(x)=0时,y=f(x)存有极大值或极小值,极大值中最大者就是最大值,极小值中最轻者就是最小值求导数的步骤:求函数y=f(x)在x0处为导数的步骤:①求函数的增量δy=f(x0+δx)-f(x0) ②求平均变化率③取极限,得导数。
导数公式:①c'=0(c为常数函数); ②(x^n)'=nx^(n-1)(n∈q*);熟记1/x的导数③(sinx)'=cosx;(cosx)'=-sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④(sinhx)'=hcoshx(coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1)(x<1) (arcothx)'=1/(x^2-1)(x>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)⑤(e^x)'=e^x;(a^x)'=a^xlna(ln为自然对数) (inx)'=1/x(ln为自然对数) (logax)'=(xlna)^(-1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)导数的应用领域:1.函数的单调性(1)利用导数的符号推论函数的多寡性利用导数的符号推论函数的多寡性,这就是导数几何意义在研究曲线变化规律时的一个应用领域,它体现了数形融合的思想.通常地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递减;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递增. 如果在某个区间内恒存有f'(x)=0,则f(x)就是常数函数. 特别注意:在某个区间内,f'(x)>0就是f(x)在此区间上以增函数的充分条件,而不是必要条件,如f(x)=x3在r内就是增函数,但x=0时f'(x)=0。
高中数学复习专题讲座导数的运算法则及基本公式应用高考要求导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式 四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导 重难点归纳1 深刻理解导数的概念,了解用定义求简单的导数x y∆∆表示函数的平均改变量,它是Δx 的函数,而f ′(x 0)表示一个数值,即f ′(x )=xyx ∆∆→∆lim 0,知道导数的等价形式)()()(lim )()(lim0000000x f x x x f x f x x f x x f x x x '=--=∆-∆+→∆→∆ 2 求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键3 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误4 复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环 必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系 典型题例示范讲解例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx xy ω 命题意图 本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法 这是导数中比较典型的求导类型知识依托 解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数错解分析 本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错技巧与方法 先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x x x x x x x x x x x x x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解 y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一 设y =f (μ),μ=v ,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x=f ′(12+x )·21112+x ·2x=),1(122+'+x f x x解法二 y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1)21-·2x=12+x x f ′(12+x )例2利用导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *)(2)S n =C 1n +2C 2n +3C 3n +…+n C n n ,(n ∈N *)命题意图 培养考生的思维的灵活性以及在建立知识体系中知识点灵活融合的能力知识依托 通过对数列的通项进行联想,合理运用逆向思维 由求导公式(x n )′=nx n -1,可联想到它们是另外一个和式的导数 关键要抓住数列通项的形式结构错解分析 本题难点是考生易犯思维定势的错误,受此影响而不善于联想 技巧与方法 第(1)题要分x =1和x ≠1讨论,等式两边都求导 解 (1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时,∵x +x 2+x 3+…+x n =xx x n --+11, 两边都是关于x 的函数,求导得(x +x 2+x 3+…+x n )′=(xx x n --+11)′即S n =1+2x +3x 2+…+nxn -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n,两边都是关于x 的可导函数,求导得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n xn -1, 令x =1得,n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n ,即S n =C 1n +2C 2n +…+n C n n =n ·2n -1例3 已知曲线C y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标解 由l 过原点,知k =x y (x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0, ∴x y =x 02-3x 0+2 y ′=3x 2-6x +2,k =3x 02-6x 0+2 又k =x y ,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23 由x ≠0,知x 0=23 ∴y 0=(23)3-3(23)2+2·23=-83∴k =00x y =-41 ∴l 方程y =-41x 切点(23,-83)学生巩固练习1 y =e sin x cos(sin x ),则y ′(0)等于( )A 0B 1C -1D 22 经过原点且与曲线y =59++x x 相切的方程是( ) A x +y =0或25x +y =0 B x -y =0或25x+y =0C x +y =0或25x -y =0D x -y =0或25x -y =0 3 若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4 设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5 已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程6 求函数的导数 (1)y =(x 2-2x +3)e 2x ;(2)y =31xx- 7 有一个长度为5 m 的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚1 4 m 时,梯子上端下滑的速度8 求和S n =12+22x +32x 2+…+n 2x n -1,(x ≠0,n ∈N *) 参考答案1 解析 y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1 答案 B2 解析 设切点为(x 0,y 0),则切线的斜率为k =x y , 另一方面,y ′=(59++x x )′=2)5(4+-x , 故y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0 得x 0(1)=-3, x 0 (2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53), 从而得y ′(A )=3)53(4+-- =-1及y ′(B )= 251)515(42-=+-- , 由于切线过原点,故得切线 l A :y =-x 或l B :y =-25x 答案 A3 解析 根据导数的定义 f ′(x 0)=k x f k x f k ---+→)()]([(lim000(这时k x -=∆)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---⋅-=--∴→→→x f k x f k x f kx f k x f k x f k x f k k k答案 -14 解析 设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n ! 答案 n !5 解 设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2) 对于C 1 y ′=2x ,则与C 1相切于点P 的切线方程为 y -x 12=2x 1(x -x 1),即y =2x 1x -x 12 ①对于C 2 y ′=-2(x -2),与C 2相切于点Q 的切线方程为 y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4, 解得x 1=0,x 2=2或x 1=2,x 2=0 ∴直线l 方程为y =0或y =4x -46 解 (1)注意到y >0,两端取对数,得 ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2xxxe x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1⋅+-=⋅+-⋅+-+-=⋅+-+-='∴+-+-=++--=++-'+-='⋅∴(2)两端取对数,得ln|y |=31(ln|x |-ln|1-x |), 两边解x 求导,得31)1(31)1(131)1(131)111(311xx x x y x x y x x x x y y --=⋅-⋅='∴-=---='⋅7 解 设经时间t 秒梯子上端下滑s 米,则s =5-2925t -, 当下端移开1 4 m 时,t 0=157341=⋅, 又s ′=-21 (25-9t 2)21-·(-9·2t )=9t 29251t-,所以s ′(t 0)=9×2)157(9251157⨯-⋅=0 875(m/s)8 解 (1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1), 当x ≠1时,1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+,两边同乘以x ,得x +2x 2+3x 2+…+nx n=221)1()1(x nx x n x n n -++-++ 两边对x 求导,得S n =12+22x 2+32x 2+…+n 2x n -1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++课前后备注。