常见失效形式及特征及诊断
- 格式:ppt
- 大小:3.82 MB
- 文档页数:42
压力容器和压力管道的失效(破坏)1.失效的定义:完全失去原定功能;虽还能运行,但已失去原有功能或不能达到原有功能;虽还能运行,但已严重损伤而危及安全,使可靠性降低。
2.失效的方式:1)从广义上分类:过度变形失效:由于超过变形限度而失效。
断裂失效:由于出现裂口而失效。
表面损伤失效;因表面腐蚀而导至失效。
2)一般分类:可分为a)过度变形失效:失效后存在较大的变形。
b)断裂失效:失效是由于存在缺陷如裂纹、腐蚀等缺陷而引起的。
c)表面损伤失效:因腐蚀、表面损伤、材料表面损伤等原因引起的失效。
3.失效的原因1)韧性失效:容器所受应力超过材料的屈服强度发生较大的变形而导致失效,原因为设计不当、腐蚀减薄、材质劣化强度下降、超压、超温。
断口有纤维区、放射纹区、剪切唇区。
2)脆性失效:容器在无明显变形情况下出现断裂导致失效,开裂部位存在较大的缺陷(主要是裂缝),材质劣化变脆、应力腐蚀、晶间腐蚀、疲劳、蠕变开裂。
断口平齐,有金属光泽,断口和最大主应力方向垂直。
3)疲劳失效:容器长期受交变载荷引起的疲劳开裂导致疲劳失效。
原因为容器长期受交变载荷、开裂点应力集中、开裂点上有小缺陷。
断口比较平齐光整,有三个区萌生区、疲劳扩展区和瞬断区。
其中扩展区有明显的贝壳样条纹。
4)腐蚀失效:因腐蚀原因导致失效。
均匀腐蚀减薄导致强度不够;应力腐蚀导致断裂;晶间腐蚀导致开裂;氢蚀导致开裂、点蚀造成的泄漏;缝隙腐蚀造成的泄漏或开裂;冲蚀造成局部减薄,泄漏;双金属腐蚀造成局部减薄。
晶间腐蚀:金属材料均属多晶材料,晶粒间存在晶界,晶间腐蚀是指晶界发生腐蚀。
应力腐蚀:金属材料的材质、介质、和拉应力三个因素共同作用下发生的裂纹不断扩大。
裂纹的发展可以是沿晶的也可以是串晶的。
氢蚀:在高温下氢气常形成原子状态氢极易渗透到钢材内部,进入钢材的氢与渗碳体中的碳生成甲烷,使渗碳体脱碳材料变软,生成的甲烷在金属中体积增大,使金属内压力增大金属表面形成鼓包。
腐蚀失效的形式:韧性失效、脆性失效、局部鼓胀、爆破、泄漏、裂纹泄漏、低应力脆断、材质劣化。
滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。
据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。
滚动轴承的常见故障形式有以下几种。
1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。
严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。
疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。
然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。
轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。
2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。
磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。
3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。
其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。
通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。
胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。
4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。
5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。
开式蜗杆传动的主要失效形式开式蜗杆传动的主要失效形式1. 引言开式蜗杆传动是一种常见的传动方式,它具有紧凑、可靠、承载能力高等优点,因此广泛应用于机械设备中。
然而,随着使用时间的增加和工作环境的变化,开式蜗杆传动也会出现一些失效形式,对传动系统的正常运行产生影响。
本文将对开式蜗杆传动的主要失效形式进行全面评估,并探讨其影响因素以及对策。
2. 蜗杆磨损蜗杆磨损是开式蜗杆传动中最常见的失效形式之一。
由于工作时蜗杆与蜗轮之间的相对运动,会产生接触磨损和摩擦磨损。
接触磨损主要由于局部高温和高压引起,摩擦磨损则是由于摩擦力和摩擦热导致。
3. 蜗轮齿面疲劳蜗轮齿面疲劳是开式蜗杆传动中另一个常见的失效形式。
蜗轮在高速运转的情况下,由于受到重复载荷作用,容易引起齿面的裂纹和断裂。
这种失效形式主要与蜗轮材料的强度、设计参数以及润滑条件等因素有关。
4. 蜗轮变形和变位蜗轮变形和变位也是开式蜗杆传动中的一种常见失效形式。
当传动系统受到外界载荷或温度变化等因素影响时,会导致蜗轮变形或变位。
这会使得蜗轮的齿廓形状和配合间隙发生变化,进而影响传动效率和传动精度。
5. 油膜性能退化开式蜗杆传动在工作时需要润滑油膜的支持,以减小齿面磨损和摩擦,并降低传动噪音。
然而,随着使用时间的增长和油品性能退化,油膜的质量会下降,从而降低传动系统的工作效果,甚至引起故障。
6. 影响因素与对策开式蜗杆传动的失效形式受到多种因素的影响,如工作负载、温度、材料选择和润滑条件等。
为了减少失效形式的发生和延长传动系统的使用寿命,我们可以采取以下对策:- 选择适当的材料,提高传动部件的强度和耐磨性;- 合理设计传动参数,减小磨损和摩擦;- 加强油润滑,保证油膜性能,并定期更换润滑油;- 控制工作负载和温度,避免传动系统超负荷和过热。
7. 个人观点与理解开式蜗杆传动作为一种常见的传动方式,其失效形式必然对传动系统的正常运行产生一定影响。
在实际工程中,我们应该关注并加以预防常见的失效形式,从而提高传动系统的可靠性和寿命。
常见的滚动轴承失效形式1.接触疲劳失效接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。
接触疲劳失效常见的形式是接触疲劳剥落发。
接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。
由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。
深层剥落是接触疲劳失效的疲劳源。
2.磨损失效磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。
持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它相关问题。
磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为最常见的磨粒磨损和粘着磨损。
磨粒磨损系指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。
粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。
3.断裂失效轴承断裂失效主要原因是缺陷与过载两大因素。
当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。
过载原因主要是主机突发故障或安装不当。
轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。
应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。
但一般来说,通常出现的轴承断裂失效大多数为过载失效。
4.腐蚀失效有些滚动轴承在实际运行当中不可避免的要接触到水、水汽以及腐蚀性介质等,这些物质会引起滚动轴承的生锈和腐蚀,另外滚动轴承在运转过程中还会受到微电流和静电的作用,造成滚动轴承的电流腐蚀。
设备管理与维修2021№4(下)0引言气阀是往复式压缩机的重要组件,最容易出现故障。
一旦组件发生问题,会直接导致往复式压缩机机组出现排气压比例失调、排温高等情况。
这样不但影响机械的使用寿命,也会带来安全隐患,干扰企业生产计划。
为保障日常生产正常进行,下面对机组故障进行分析和诊断。
1往复式压缩机气阀结构及失效形式分析1.1往复式压缩机气阀结构要明确找出往复式压缩机气阀失效的原因,并进行针对性分析,要先了解往复式压缩机的气阀结构。
往复式压缩机的气阀主要由阀座、阀片、升程限制器和弹簧组成。
其中,阀片负责开启和关闭气阀通道,弹簧负责配合气流控制阀片运动,阀座上有环形的气体通道,升程限制器则对阀片的活动范围进行限制,同时支撑起弹簧。
1.2往复式压缩机气阀工作过程气阀分为吸气阀和排气阀两部分。
在往复式压缩机工作过程中,活塞会进行上下往复的规律运动。
每运动一次,气阀的吸气阀和排气阀就各开启、关闭一次。
即活塞活动会控制压缩机完成吸气、排气的工作。
当吸气阀中F g (进气管中压力)>F s (外界压力)时,往复式压缩机进行吸气,反之,进行压缩;当排气阀中F g <F s 时,排气阀进行排气,反之,进行压缩。
1.3往复式压缩机气阀失效的集中情况在日常工作中,往复式压缩机气阀失效的形式主要集中在阀座失效、弹簧失效和阀片失效等3种。
其中阀片和阀座失效占据气阀失效原因的55%以上,是往复式压缩机气阀失效的主要问题。
1.3.1阀座失效阀座是往复式压缩机气阀的重要组成部分。
它可以和升程限制器一起形成气阀内部空间,气体在形成气阀内部空间中通过,开始正常运作。
阀座可能出现故障有阀座与阀片之间形成的气体密封结构失效。
故障原因可能是阀座锈迹,或因腐蚀导致密闭空间被破坏,间接引起压缩机气阀失效。
1.3.2阀片失效阀片在机器长期高频使用过程中,可能会出现变形、断裂等情况,造成阀片失效。
根据气阀结构可以看出,阀片和弹簧在工作时具有很强关联性,当弹簧出现情况时,也会对阀片产生影响,出现各处开合力不平衡的情况,导致阀片出现变形。
常见材料失效形式与分析1.概述材料失效分析技术包括:感官检查、断口分析、化学成分分析、力学性能测试、组织分析、无损检测、残余应力测试、结构受力分析、使用维护分析、环境分析等。
其中断口分析是重要的一环。
材料失效形式有断裂、变形、腐蚀、磨损等。
在机械装备的各类失效中以断裂失效最主要、危害最大。
断口是断裂失效中两断裂分离面的简称。
断口真实地记录了裂纹由萌生、扩展直至失稳断裂全过程的各种与断裂有关的信息。
对断口进行定性和定量分析,可为断裂失效模式及断裂类型的确定提供有力依据,为断裂失效原因的诊断提供线索,并且可以作为冲击试验转变温度的确定依据。
断口金相学不仅能在设备失效后进行诊断分析,还可为新产品、新装备投入使用进行预研预测。
本实验的主要内容为:观察不同载荷下失效的金属断口的宏观形貌和微观形貌,掌握其宏观形貌特征和微观形貌特征。
2.实验目的(1)了解拉伸、冲击、疲劳断口各特征区的构成及形貌特征;(2)掌握判定断口承载类型及断裂性质的方法。
3.实验装置及材料(1)扫描电子显微镜(JSM-6390A型)一台;(2)超声清洗仪(SCQ-200)一台;(3)拉伸、冲击、疲劳断口试样若干;(4)放大镜一只;(5)吹风机一只;(6)丙酮、无水酒精、导电胶带若干。
4.实验原理4.1断口形貌特征:(1)宏观形貌特征包括断口附近的残留塑性变形特征,如:缩颈量的多少、表面的凹凸程度,有无剪切唇等;断口的光泽和颜色:各区域的颜色及亮、暗程度,氧化腐蚀产物的颜色;断口的形貌特征花样:如纤维状、结晶状、发光小平面、放射线、弧形线等;特征区的位置、分布、面积;材料内部缺陷的痕迹等。
(2)微观形貌特征断口上常见的微观特征有:韧窝,特征包括微孔深度、大小,微孔形态(等轴、剪切、撕裂)等;滑移,具有滑移线、蛇形花样、涟波花样和延伸区(平直区)等特征;解理,包括台阶、河流、舌状、扇形、鱼骨状花样及瓦纳线等特征。
准解理,介于解理断裂与塑性断裂间的一种过渡断裂形式,具有解理小平面、撕裂棱、浅韧窝、涟波花样及延伸区等特征;沿晶断裂,具有岩石状、冰糖状等特征;疲劳,具有条带、二次裂纹、轮胎花样等特征;腐蚀,具有氧化物、腐蚀产物、泥纹等特征。
- 76 -故障诊断石油和化工设备2021年第24卷图1 海洋平台压力容器不同阶段出现失效的概率海洋平台压力容器常见失效形式及检测方法分析王良杰,王柳,白鹏飞,陈征(中海油能源发展股份有限公司工程技术分公司, 天津 300452)[摘 要] 海洋平台的压力容器较为特殊,必须确保其运行的可靠和稳定。
本文对压力容器在整个使用过程中不同阶段出现失效的概率进行了分析。
结合实践对压力容器常见的失效形式进行了介绍,主要有变形失效、断裂失效和腐蚀失效。
对常用压力容器检测技术方法进行了阐述,主要有人工目视检测、磁粉检测、超声波检测和射线检测。
这些检测手段对于提升压力容器检测效果,保障设备安全可靠运行具有重要意义。
[关键词] 海洋平台;压力容器;失效;检测技术作者简介:王良杰(1988—),男,四川南充人,西南石油大学机械工程及自动化专业毕业,工学学士,工程师。
从事注水工艺地面设备及井下工具研究工作。
随着我国海洋战略的不断推进,目前在建的海洋平台数量越来越多,所使用的压力容器数量也日益增多。
海洋平台压力容器在工作中需要承受较大的工作载荷,且服役环境较为复杂,主要表现为大载荷、强腐蚀、易燃易爆等。
为了保障压力容器的使用安全,需要时刻关注其运行状态,对其服役状态进行准确检测,避免压力容器工作时出现突发性故障问题。
一旦出现问题,轻则对海洋平台的正常运行造成不利影响,重则会引发严重的生产安全事故,甚至威胁工作人员的人身安全。
因此,有必要针对海洋平台压力容器在使用时经常出现的失效形式进行系统分析,在此基础上提出针对性的检测方法。
通过这些方法能够及时发现设备运行问题,并在第一时间采取措施进行处理,避免小问题引发严重的安全事故。
1 压力容器不同阶段失效的概率海洋平台中使用的压力容器属于特种设备,服务环境相对特殊和复杂。
因此在使用过程中不可避免地会出现各种问题,导致设备失效无法正常工作。
大量实践经验表明,压力容器在安装完成投入使用的前期,由于在生产、加工、运输和安装等环节存在不当之处,设备运行时可能会出现各种问题。