离散系统的数学模型与分析
- 格式:ppt
- 大小:734.00 KB
- 文档页数:22
线性离散系统数学模型和分析方法目录一、内容简述 (3)二、线性离散系统的数学模型 (3)2.1 离散系统的概念 (5)2.2 离散系统的描述方法 (6)2.2.1 差分方程 (7)2.2.2 马尔可夫过程 (8)2.2.3 状态空间表示 (10)2.3 线性离散系统的特性 (11)2.3.1 稳定性分析 (12)2.3.2 脉冲响应与收敛性 (13)2.3.3 系统性能评估 (14)三、分析方法 (16)3.1 拉普拉斯变换法 (17)3.1.1 基本概念 (19)3.1.2 应用分析 (20)3.1.3 收敛性与应用局限 (21)3.2 状态空间方法 (23)3.2.1 基本理论 (24)3.2.2 控制器设计 (25)3.2.3 参数估计 (26)3.3 Z变换法 (27)3.3.1 基本原理 (28)3.3.2 系统分析 (30)3.3.3 系统的性能评估 (31)3.4 时域分析方法 (33)3.4.1 序贯逼近法 (34)3.4.2 数值仿真 (34)3.4.3 基于数字模型的算法 (36)四、应用实例 (37)4.1 控制系统设计 (39)4.1.1 系统建模 (40)4.1.2 控制器设计与仿真 (42)4.2 信号处理 (43)4.2.1 离散信号处理 (45)4.2.2 滤波器设计 (46)4.3 通信系统 (47)4.3.1 调制与解调 (49)4.3.2 语音编码与加密 (51)五、结论与展望 (52)5.1 研究成果总结 (53)5.2 未来研究方向 (54)5.3 实际应用前景 (55)一、内容简述本文档旨在全面介绍线性离散系统数学模型的构建及其分析方法。
线性离散系统在现代科技、工程和经济学等领域具有广泛的应用,因此对其数学模型的理解和分析显得尤为重要。
我们将从线性离散系统的基本概念出发,详细阐述线性离散系统的定义、特点以及类型。
通过实例演示如何建立线性离散系统的数学模型,包括状态方程、传递函数等基本形式。
连续状态空间模型离散状
Ø
*(t)连续状态空间模型
⎧
x(k
例7-3-9 ,求其离散方程(含零阶保持)解:
1) 离散状态方程本质上是一阶差分方程组,故求其解也与求差分方程解一样有两种方法:递推法与
Ø
直接将初始条件
令Φ(
Øz z () X
解:1)用递推法代入不同的例7-3-10 x x ⎢⎣⎡
解:例7-3-10 x x ⎢⎣⎡
X
1)
Ø由差分方程
y
例:,求脉冲传递函数解:作
零初始条件
Ø
若已知控制器的脉冲传递函数须将
2) Ø
例7-3-11
⎤
u
(k
)
解:
Ø
Ø
现问题
Ø
分解)、
信号流图等工具也可以采用Ø
Ø能控标准型和能观标准型
G (z )==⎢⎢⎢⎡=A
Ø例7-3-12 解:1(21k y x x ⎢⎣⎡
Ø正则标准型(并联分解):适用于脉冲传递函数为部分分式形式,
基本单元:
Ø例7-3-12 解:
(D z
Ø:适用于脉冲传递函数分子分母均为因式分解形式一阶环节基本单元
例7-3-12
解:
状态变量图
Ø例7-3-12
解:
状态变量图
例7-3-13
解:特征方程的根:
)(z D e
) (k
3) 差分方程和状态方程Ø
Ø
例7-3-14
4) •例
(G 12(((x x y k (e k。
2326.4 离散系统的数学模型为研究离散系统的性能,需要建立离散系统的数学模型。
线性离散系统的数学模型有差分方程、脉冲传递函数和离散状态空间表达式三种。
本节主要介绍差分方程及其解法,脉冲传递函数的定义,以及求开环脉冲传递函数和闭环脉冲传递函数的方法。
有关离散状态空表达式及其求解,将在第8章介绍。
6.4.1 线性常系数差分方程及其解法对于线性定常离散系统,k 时刻的输出)(k c ,不但与k 时刻的输入)(k r 有关,而且与k 时刻以前的输入 ),2(),1(--k r k r 有关,同时还与k 时刻以前的输出 ),2(),1(--k c k c 有关。
这种关系一般可以用n 阶后向差分方程来描述,即∑∑==-+--=mj jni i j k r bi k c a k c 01)()()( (6-34)式中,i a ,i =1,2,…,n 和j b ,j =0,1,…,m 为常系数,n m ≤。
式(6-34)称为n 阶线性常系数差分方程。
线性定常离散系统也可以用n 阶前向差分方程来描述,即∑∑==-++-+-=+mj jni i j m k r bi n k c a n k c 01)()()( (6-35)工程上求解常系数差分方程通常采用迭代法和z 变换法。
1. 迭代法若已知差分方程式(6-34)或式(6-35),并且给定输出序列的初值,则可以利用递推关系,在计算机上通过迭代一步一步地算出输出序列。
例6-10 已知二阶差分方程)2(6)1(5)()(---+=k c k c k r k c输入序列1)(=k r ,初始条件为1)1(,0)0(==c c ,试用迭代法求输出序列)(k c , ,5,4,3,2,1,0=k 。
解 根据初始条件及递推关系,得0)0(=c 1)1(=c6)0(6)1(5)2()2(=-+=c c r c 25)1(6)2(5)3()3(=-+=c c r c 90)2(6)3(5)4()4(=-+=c c r c301)3(6)4(5)5()5(=-+=c c r c2. z 变换法233设差分方程如式(6-34)所示,对差分方程两端取z 变换,并利用z 变换的实数位移定理,得到以z 为变量的代数方程,然后对代数方程的解)(z C 取z 反变换,可求得输出序列)(k c 。
离散事件系统的建模及仿真离散事件系统(DES)是由一组离散的事件组成的系统,这些事件发生的时间是不连续的,而是符合某些随机分布的。
其中最典型的例子就是计算机网络系统和制造业系统。
为了研究系统的行为和性能,需要进行建模和仿真。
一、离散事件系统模型离散事件系统模型主要分为:1. 离散时间模型离散时间模型将时间视作离散的时间点,系统状态在各个时间点之间发生变化。
变化是由离散事件引起的。
2. 连续时间模型连续时间模型将时间视作连续的时间流,系统状态是在时间流中按照连续方式演化的。
如具有阶段性和可重复性的工业生产过程。
3. 混合时间模型混合时间模型同时兼具离散和连续的特点。
如涉及到无线网络时,用户的驻留时间属于连续时间,用户数量的变化属于离散事件。
二、离散事件系统仿真离散事件系统仿真一般采用事件驱动的方法。
将系统分为若干模块,在每个模块中,定义被模拟的事件,并计算事件发生的时间和所带来的影响。
事件驱动仿真的主要思路是:1. 仿真的初期,将系统的状态初始化为所设定的状态,用“时钟”来模拟时间。
2. 仿真系统通过时钟来不断加倍地运行,等到仿真过程中需要出现事件的时候,就跳出当前仿真的运动,而声明事件的发生时间。
3. 标记事件后,仿真系统可以基于某种策略对事件进行排队,然后按照时间的先后顺序进行运行。
4. 在仿真的过程中,会根据发生的事件得出相应的结果,保存在仿真结果的数据结构中,用于后续的仿真分析。
离散事件系统仿真时要注意的地方:1. 对于大型系统,由于其状态空间太大,会导致模型的运行时间过长,从而影响仿真的效率。
2. 因为模型已经不仅仅是数学模型而是物理模型,所以需要考虑仿真结果的表示方法。
3. 仿真结果的分析是非常必要的,而且分析需要进行统计,统计方法必须要掌握。
三、离散事件系统的应用1. 计算机网络系统计算机网络系统中涉及到的很多问题都可以使用离散事件系统模型进行仿真。
如路由选择问题、网络拥塞问题、网络性能评估等。
§10-2 线性离散系统的数学模型和分析方法大多数计算机控制系统可以用线性时不变离散系统的数学模型来描述。
对于单输入单输出线性离散系统,人们习惯用线性常系数差分方程或脉冲传递函数来表示。
离散系统的线性常系数差分方程和脉冲传递函数,分别和连续系统的线性常系数微分方程和传递函数在结构、性质和运算规则上相类似。
对于多变量、时变和非线性系统用状态空间方法处理比较方便。
一、线性离散系统的数学描述1. 差分方程对简单的单输入单输出线性离散系统,其输入)(kT u 和输出)(kT y 之间的关系可用下列线性常系数差分方程来表示)()()()()()(101nT kT u b T kT u b kT u b nT kT y a T kT y a kT y n n -++-+=-++-+ (10.17)(10.17)式也可以写成如下紧缩的形式∑∑==-=-+n i ni i i iT kT u b iT kT y a kT y 1)()()( (10.18)如果引入后移算子1-q ,即)()(1T kT y kT y q -=- (10.19)则(10.18)式可写成多项式的形式)()()()(11kT u q B kT y q A --= (10.20)式中n n q a q a q A ---+++= 1111)( n n q b q b b q B ---+++= 1101)(方程(10.17)、(10.18)和(10.20)中假设左右两端阶次相同,这并不失一般性,差分方程中最高和最低指数之差n 被称为差分方程的阶数。
如果(10.17)式中右端的系数项i b ,n i ,,1,0 =,不全为零,则此方程被称为非齐次方程。
方程右端又被称为驱动项。
方程的阶数和系数反映系统的结构特征。
用差分方程作为物理系统的数学模型时,方程中各变量代表一定的物理量,其系数有时具有明显的物理意义。
如果(10.17)式右端的系数全为零,则被称作齐次方程。
离散电力系统的建模与分析离散电力系统是指由多个离散的电力设备组成的电力系统。
与传统的连续电力系统相比,离散电力系统在物理结构和工作原理上存在较大的差异。
建立准确的电力系统模型,并进行合理的分析和优化,对于提高系统的稳定性和可靠性具有重要意义。
本文将探讨离散电力系统的建模与分析方法。
第一部分:离散电力系统建模离散电力系统的建模是分析该系统运行特点和性能的基础。
常用的离散电力系统建模方法包括状态空间模型、概率图模型和网络模型等。
1. 状态空间模型状态空间模型是一种将电力系统的离散状态用数学形式表示的方法。
通过定义系统的状态和状态转移规则,可以描述系统的动态演化过程。
状态空间模型常用于分析系统的稳定性、动态响应和控制。
2. 概率图模型概率图模型是一种用图形表示系统状态和事件之间关系的方法。
其中,贝叶斯网络是常用的概率图模型之一,在电力系统中广泛应用于故障诊断和可靠性评估等方面。
概率图模型能够通过统计建模,对系统的潜在因果关系进行推理和分析。
3. 网络模型网络模型是将电力设备和节点以网络形式进行表示的方法。
通过定义节点之间的连接关系和参数,可以描述电力系统的拓扑结构和能量流动规律。
网络模型适用于分析电力系统的负荷平衡、线损和容量配置等问题。
第二部分:离散电力系统分析离散电力系统的分析是对系统进行定量评估和优化的过程。
常用的离散电力系统分析方法包括可靠性评估、故障诊断和优化调度等。
1. 可靠性评估离散电力系统的可靠性评估是对系统各组成部分的可靠性进行定量测算的过程。
通过统计方法和概率模型,可以评估系统在给定时间段内保持功能的概率,为系统的运行和维护提供指导。
2. 故障诊断离散电力系统的故障诊断是通过对系统运行状态的观测和分析,确定故障原因和位置的过程。
故障诊断可以借助传感器、监测设备和数据处理技术,通过模型匹配和推理方法,准确地识别故障并进行修复。
3. 优化调度离散电力系统的优化调度是通过对系统资源的合理配置和协调安排,以达到系统性能最优化的目标。