计算机图形学
- 格式:docx
- 大小:91.02 KB
- 文档页数:8
计算机图形学教案一、课程简介计算机图形学是一门涉及计算机图形、图像处理和计算机视觉等领域的重要课程。
本课程将介绍计算机图形学的基本概念、原理和应用,帮助学生掌握计算机图形学的基础知识,并提升他们在图形学领域的技能。
二、课程结构1. 计算机图形学基础- 介绍计算机图形学的历史发展和基本概念- 讨论计算机图形学的应用领域和未来发展趋势- 熟悉图像处理、图形学渲染和动画等基本技术2. 图形系统建模- 学习三维图形对象的建模和表示方法- 掌握光栅化和矢量化图形处理技术- 讨论图形系统的设计和实现3. 计算机视觉- 理解视觉系统的基本原理和功能- 学习计算机视觉的算法和应用- 探讨计算机视觉在人工智能领域的应用4. 图形学编程实践- 深入学习图形学编程语言和库- 完成实际项目,提升图形学编程能力- 探索图形学在多领域的应用案例三、教学目标1. 帮助学生全面了解计算机图形学的基本知识和技术2. 培养学生分析和解决计算机图形学问题的能力3. 提升学生在图形学领域的实际操作和应用能力4. 激发学生对计算机图形学研究的兴趣和热情四、教学方法1. 理论讲解:通过课堂讲解、案例分析等方式,向学生介绍计算机图形学的基本概念和原理2. 实践操作:组织学生参与实验、项目等实际操作,巩固理论知识并提升实践能力3. 课堂互动:鼓励学生提问、讨论,促进师生间的互动和交流4. 作业考核:布置不同形式的作业,检测学生对知识的掌握情况,促进学习效果的提升五、教材参考1. 《计算机图形学导论》2. 《OpenGL图形与游戏开发实践》3. 《计算机视觉:算法与应用》4. 《经典图形学算法实例详解》六、学习评价1. 课堂表现:出勤情况、课堂参与度等2. 作业考核:课后作业、实验报告等3. 期末考核:闭卷考试、项目实践等4. 综合评价:综合考虑以上因素,对学生进行综合评定七、总结计算机图形学作为一门新兴的学科,正逐渐成为信息技术领域的热门专业之一。
计算机图形学基础知识重点整理一、图形学的概念计算机图形学简单来说,就是让计算机去生成、处理和显示图形的学科。
它就像是一个魔法世界,把一堆枯燥的数字和代码变成我们眼睛能看到的超酷图形。
你看那些超炫的3D游戏里的场景、超逼真的动画电影,那可都是计算机图形学的功劳。
这个学科就是想办法让计算机理解图形,然后把图形按照我们想要的样子呈现出来。
二、图形的表示1. 点点是图形里最基本的元素啦。
就像盖房子的小砖头一样,很多个点组合起来就能变成各种图形。
一个点在计算机里就是用坐标来表示的,就像我们在地图上找一个地方,用经度和纬度一样,计算机里的点就是用x和y坐标(如果是3D图形的话,还有z坐标呢)来确定它在空间里的位置。
2. 线有了点,就能连成线啦。
线有各种各样的类型,直线是最简单的,它的方程可以用我们学过的数学知识来表示。
比如说斜截式y = kx + b,这里的k就是斜率,b就是截距。
还有曲线呢,像抛物线、双曲线之类的,在图形学里也经常用到。
这些曲线的表示方法可能会复杂一点,但也很有趣哦。
3. 面好多线围起来就形成了面啦。
面在3D图形里特别重要,因为很多3D物体都是由好多面组成的。
比如说一个正方体,就有六个面。
面的表示方法也有不少,像多边形表示法,就是用好多条边来围成一个面。
三、图形变换1. 平移平移就是把图形在空间里挪个位置。
这就像我们把桌子从房间的这头搬到那头一样。
在计算机里,平移一个图形就是把它每个点的坐标都加上或者减去一个固定的值。
比如说把一个点(x,y)向右平移3个单位,向上平移2个单位,那这个点就变成(x + 3,y + 2)啦。
2. 旋转旋转就更有意思啦。
想象一下把一个图形像陀螺一样转起来。
在计算机里旋转图形,需要根据旋转的角度和旋转中心来计算每个点新的坐标。
这就得用到一些三角函数的知识啦,不过也不难理解。
比如说以原点为中心,把一个点(x,y)逆时针旋转θ度,新的坐标就可以通过一些公式计算出来。
3. 缩放缩放就是把图形变大或者变小。
计算机图形学1. 简介计算机图形学是研究如何使用计算机来生成、处理和显示图像的一门学科。
它主要涉及图像的几何和物理特性的建模,以及图像的渲染和表示。
计算机图形学在各个领域中都有广泛的应用,包括游戏开发、电影制作、虚拟现实、医学成像等。
2. 图形学的基本概念图形学的基本概念包括点、线、多边形和曲线等基本元素,以及相应的数学方法和算法。
这些方法和算法用于描述和处理图像的几何特性,包括位置、方向、大小和形状等。
2.1 点和线在计算机图形学中,点是图像中最基本的元素,可以通过坐标系来表示。
线是由两个点之间的连接所形成的,可以通过直线方程或参数方程来描述。
2.2 多边形和曲线多边形是由多个线段连接而成的封闭图形,可以通过顶点的集合来描述。
曲线是由多个点按照一定规律连接而成的,可以通过控制点和插值方法来表示。
3. 图形的几何建模图形的几何建模是计算机图形学中的一个重要研究方向,它涉及如何使用数学模型来表示和描述物体的几何特性。
常用的几何建模方法包括点、线、面、体和曲面等。
3.1 点云和网格模型点云模型是一组离散的点的集合,它可以用于表示不规则形状的物体。
网格模型是一组由三角形或四边形面片组成的表面模型,它可以用于表示规则形状的物体。
3.2 曲面建模曲面建模是基于数学曲面的建模方法,它将物体表面抽象为由曲线和曲面组成的,可以通过控制点和插值方法来表示。
常用的曲面建模方法包括贝塞尔曲线和贝塞尔曲面等。
4. 图形的渲染和表示图形的渲染和表示是计算机图形学中的另一个重要研究方向,它涉及如何将图像的几何信息转化为可视的图像。
常用的渲染和表示方法包括光栅化、光线追踪和纹理映射等。
4.1 光栅化光栅化是将几何对象转化为像素的过程,它涉及将线段或多边形映射到屏幕上的像素点,并进行相应的着色和填充。
常用的光栅化算法包括Bresenham算法和扫描线算法等。
4.2 光线追踪光线追踪是一种以物理光线为基础的渲染方法,它从观察者的视角出发,沿着光线的路径跟踪物体的相交和反射,最终得到图像。
计算机图形学教案第一章:计算机图形学概述1.1 课程介绍计算机图形学的定义计算机图形学的发展历程计算机图形学的应用领域1.2 图形与图像的区别图像的定义图形的定义图形与图像的联系与区别1.3 计算机图形学的基本概念像素与分辨率矢量与栅格颜色模型图像文件格式第二章:二维图形基础2.1 基本绘图函数画点函数画线函数填充函数2.2 图形变换平移变换旋转变换缩放变换2.3 图形裁剪矩形裁剪贝塞尔曲线裁剪多边形裁剪第三章:三维图形基础3.1 基本三维绘图函数画点函数画线函数填充函数3.2 三维变换平移变换旋转变换缩放变换3.3 光照与材质基本光照模型材质的定义与属性光照与材质的实现第四章:图像处理基础4.1 图像处理基本概念像素的定义与操作图像的表示与存储图像的数字化4.2 图像增强对比度增强锐化滤波4.3 图像分割阈值分割区域生长边缘检测第五章:计算机动画基础5.1 动画基本概念动画的定义与分类动画的基本原理动画的制作流程5.2 关键帧动画关键帧的定义与作用关键帧动画的制作方法关键帧动画的插值算法5.3 骨骼动画骨骼的定义与作用骨骼动画的制作方法骨骼动画的插值算法第六章:虚拟现实与增强现实6.1 虚拟现实基本概念虚拟现实的定义与分类虚拟现实技术的关键组件虚拟现实技术的应用领域6.2 虚拟现实实现技术头戴式显示器(HMD)位置追踪与运动捕捉交互设备与手势识别6.3 增强现实基本概念与实现增强现实的定义与原理增强现实技术的应用领域增强现实设备的介绍第七章:计算机图形学与人类视觉7.1 人类视觉系统基本原理视觉感知的基本过程人类视觉的特性和局限性视觉注意和视觉习惯7.2 计算机图形学中的视觉感知视觉感知在计算机图形学中的应用视觉线索和视觉引导视觉感知与图形界面设计7.3 图形学中的视觉错误与解决方案常见视觉错误分析避免视觉错误的方法提高图形可读性与美观性第八章:计算机图形学与艺术8.1 计算机图形学在艺术创作中的应用数字艺术与计算机图形学的交融计算机图形学工具在艺术创作中的使用计算机图形学与艺术的创新实践8.2 计算机图形学与数字绘画数字绘画的基本概念与工具数字绘画技巧与风格数字绘画作品的创作与展示8.3 计算机图形学与动画电影动画电影制作中的计算机图形学技术3D动画技术与特效制作动画电影的视觉艺术表现第九章:计算机图形学的未来发展9.1 新兴图形学技术的发展趋势实时图形渲染技术基于物理的渲染动态图形设计9.2 计算机图形学与其他领域的融合计算机图形学与的结合计算机图形学与物联网的结合计算机图形学与生物医学的结合9.3 计算机图形学教育的未来发展图形学教育的重要性图形学教育的发展方向图形学教育资源的整合与创新第十章:综合项目实践10.1 项目设计概述项目目标与需求分析项目实施流程与时间规划项目团队组织与管理10.2 项目实施与技术细节项目技术选型与工具使用项目开发过程中的关键技术项目测试与优化10.3 项目成果展示与评价项目成果的展示与推广项目成果的评价与反馈重点和难点解析一、图像的定义与图像的定义,图形与图像的联系与区别1. 学生是否能够理解并区分图像和图形的概念。
计算机图形学基础知识重点整理一、图形学基础知识1、图形学的定义:图形学是一门研究图形的计算机科学,它研究如何使用计算机来生成、处理和显示图形。
2、图形学的应用:图形学的应用非常广泛,它可以用于计算机游戏、虚拟现实、图形用户界面、图形设计、图形处理、图形建模、图形分析等。
3、图形学的基本概念:图形学的基本概念包括图形、坐标系、变换、光照、纹理、投影、深度缓冲、抗锯齿等。
4、图形学的基本算法:图形学的基本算法包括几何变换、光照计算、纹理映射、投影变换、深度缓冲、抗锯齿等。
5、图形学的基本技术:图形学的基本技术包括OpenGL、DirectX、OpenCL、CUDA、OpenGL ES等。
二、图形学的基本原理1、坐标系:坐标系是图形学中最基本的概念,它是一种用来表示空间位置的系统,它由一系列的坐标轴组成,每个坐标轴都有一个坐标值,这些坐标值可以用来表示一个点在空间中的位置。
2、变换:变换是图形学中最重要的概念,它指的是将一个图形从一个坐标系变换到另一个坐标系的过程。
变换可以分为几何变换和光照变换,几何变换包括平移、旋转、缩放等,光照变换包括颜色变换、照明变换等。
3、光照:光照是图形学中最重要的概念,它指的是将光照投射到物体表面,从而产生颜色和纹理的过程。
光照可以分为环境光照、漫反射光照和镜面反射光照。
4、纹理:纹理是图形学中最重要的概念,它指的是将一张图片映射到物体表面,从而产生纹理的过程。
纹理可以分为纹理映射、纹理坐标变换、纹理过滤等。
5、投影:投影是图形学中最重要的概念,它指的是将一个三维图形投射到二维屏幕上的过程。
投影可以分为正交投影和透视投影,正交投影是将三维图形投射到二维屏幕上的过程,而透视投影是将三维图形投射到二维屏幕上,从而产生透视效果的过程。
*计算机图形学是指用计算机产生对象图形的输出的技术。
更确切的说,计算机图形学是研究通过计算机将数据转换为图形,并在专门显示设备上显示的原理、方法和技术的学科。
*图形学的主要研究内容:图形的生成和表示技术;图形的操作和处理方法;图形输出设备与输出技术的研究;图形输入设备、交互技术和用户接口技术的研究;图形信息的数据结构及存储、检索方法;几何模型构造技术;动画技术;图形软硬件的系列化、模块化和标准化的研究;科学计算的可视化*能够正确地表达出一个对象性质、结构和行为的描述信息,成为这个对象的模型。
*图像处理是指用计算机来改善图像质量的数字技术。
*模式识别是指用计算机对输入图形进行识别的技术。
*计算几何学是研究几何模型和数据处理的学科。
*交互式计算机图形学是指用计算机交互式地产生图形的技术。
*计算机图形系统的硬件包括五部分:计算机、显示处理器、图形显示器、输入设备、硬拷贝设备。
*CRT图形显示器工作方式有两种:随机扫描方式和光栅扫描方式。
*随机扫描方式的图形显示器通过画出一系列线段来画出图形。
*一帧:扫描过程所产生的图像。
*像素:在光栅扫描图形显示器中,屏幕上可以点亮或熄灭的最小单位。
*分辨率:显示屏上像素的总数。
*帧存储器:二维矩阵,帧存储大小=分辨率*单元字节,存储屏幕上每个像素对应的颜色或亮度值。
*屏幕上每个像素对应的颜色或亮度值要存储在帧存储器中。
*将图形描述转换成用像素矩阵表示的过程称为扫描转换。
*在光栅扫描显示方式中像素坐标是行和列的位置值,只能取整数。
*图形基元(输出图形元素):图形系统能产生的最基本图形。
*区域是指光栅网络上的一组像素。
*区域填充是把某确定的像素值送入到区域内部的所有像素中。
*区域填充方法:一类方法是把区域看做是由多边形围成的,区域事实上由多边形的顶点序列来定义,相应的技术称为是以多边形为基础的;另一类方法是通过像素的值来定义区域的内部,这时可以定义出任意复杂形状的区域。
计算机图像学基础——图形图像图素象素位图的概念一、计算机图形学(Computer Graphics)1、什么是计算机图形学?计算机图形学是研究怎样利用计算机来显示、生成和处理图形的原理、方法和技术的一门学科。
IEEE定义:Computer graphics is the art or science of producing graphical images with the aid of computer.2、计算机图形学的研究内容计算机图形学的研究内容非常广泛,如图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法、非真实感绘制,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。
简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。
图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。
从处理技术上来看,图形主要分为两类,一类是基于线条信息表示的,如工程图、等高线地图、曲面的线框图等,另一类是明暗图,也就是通常所说的真实感图形。
计算机图形学主要目的就是要利用计算机表达的真实感图形。
为此,必须建立图形描述的场景的几何表示,运用某种光照模型,计算出假想的光源、纹理、材质属性下的光照明效果。
所以计算机图形学与计算机辅助几何设计有着密切的关系。
图形学也把可以表示几何场景的曲线曲面造型技术和实体造型技术作为其主要的研究内容。
同时,真实感图形计算的结果是以数字图象的方式提供的,计算机图形学和图形图象处理有着密切的联系3、计算机图形学的主要应用领域1).计算机辅助设计与制造(Computer Aided Design / Computer Aided Manufacture)机械结构、零部件、土木建筑工程、集成电路等的设计等,利用计算机图形学不仅可提高设计效率、缩短设计周期、改善设计质量、降低设计成本,而且可以为后续的计算机辅助制造建立起数据库,CAD/CAM一体化,生产的自动化奠定基础。
计算机图形学计算机图形学是研究计算机生成、处理和显示图像的学科领域。
它是计算机科学的一个重要分支,与计算机视觉和图像处理相关。
计算机图形学的发展促进了许多领域的进步,包括动画、游戏开发、虚拟现实等。
一、引言计算机图形学是指通过计算机技术实现图像的生成、处理和显示。
它利用算法和数学模型来模拟和渲染图像,以生成逼真的图像或动画。
计算机图形学在多个领域有着广泛的应用,如电影、游戏、建筑设计等。
二、图形学的基本原理1. 坐标系统图形学中常用的坐标系统是笛卡尔坐标系,它由横轴X、纵轴Y和垂直于二者的Z轴组成。
通过坐标系统,可以定位和描述图像中的点、线和面。
2. 图形的表示图形可以通过几何图元来表示,常见的几何图元有点、线和面。
点由坐标表示,线由两个端点的坐标表示,面由多个点或线组成。
3. 变换和投影变换是指对图像进行平移、旋转和缩放等操作,通过变换可以改变图像的形状和位置。
投影是将三维图像映射到二维平面上的过程,常见的投影方式有平行投影和透视投影。
4. 着色模型着色模型用于为图像添加颜色和材质信息,常见的着色模型有平均着色模型和Phong着色模型。
平均着色模型通过计算图像的平均颜色来实现简单的着色效果,Phong着色模型考虑了光照的影响,能够产生更加逼真的效果。
三、图形学的应用1. 电影和动画计算机图形学在电影和动画领域有着广泛的应用。
通过计算机图形学技术,电影制作人能够创建逼真的特效,包括爆炸、碰撞和飞行等场景。
动画片的制作也离不开计算机图形学的技术支持,它能够实现角色的自由移动、表情的变化等特效效果。
2. 游戏开发计算机图形学是游戏开发中不可或缺的一部分。
游戏中的人物、场景和特效都是通过计算机图形学技术来实现的。
游戏开发人员利用图形学算法和引擎来创建游戏中的3D场景和角色,并通过渲染技术使其看起来逼真。
3. 虚拟现实虚拟现实是一种模拟真实世界的计算机生成环境。
计算机图形学在虚拟现实领域的应用可以让用户身临其境地感受到虚拟环境的存在。
计算机图形学知识点大全计算机图形学是计算机科学中的一个重要分支,涵盖了图像处理、计算机视觉、图形渲染等多个领域。
本文将介绍计算机图形学的一些重要知识点,帮助读者更好地理解和应用这些知识。
一、基础概念1. 图形学概述:介绍计算机图形学的定义、发展历史以及应用领域。
2. 图像表示:探讨图像的表示方法,包括光栅图像和矢量图像,并介绍它们的特点和应用场景。
3. 坐标系统:详细介绍二维坐标系和三维坐标系,并解释坐标变换的原理和应用。
二、图像处理1. 图像获取与预处理:介绍数字图像的获取方式和常见的预处理方法,如去噪、增强和平滑等。
2. 图像特征提取:讲解图像特征提取的基本概念和方法,例如边缘检测、角点检测和纹理特征提取等。
3. 图像分割与目标识别:介绍常见的图像分割算法,如阈值分割、基于区域的分割和基于边缘的分割等,以及目标识别的原理和算法。
三、计算机视觉1. 相机模型:详细介绍透视投影模型和针孔相机模型,并解释摄像机矩阵的计算和相机标定的方法。
2. 特征点检测与匹配:讲解常用的特征点检测算法,如Harris 角点检测和SIFT特征点检测,并介绍特征点匹配的原理和算法。
3. 目标跟踪与立体视觉:介绍目标跟踪的方法,如卡尔曼滤波和粒子滤波,以及立体视觉的基本原理和三维重建方法。
四、图形渲染1. 光栅化:详细介绍光栅化的原理和算法,包括三角形光栅化和线段光栅化等。
2. 着色模型:介绍常见的着色模型,如平面着色、高光反射和阴影等,并解释经典的光照模型和材质属性。
3. 可视化技术:讲解常用的可视化技术,如体数据可视化、流场可视化和虚拟现实等,以及它们在医学、工程等领域的应用。
五、图形学算法与应用1. 几何变换:介绍图形学中的几何变换,包括平移、旋转、缩放和矩阵变换等,并解释它们在图形处理和动画中的应用。
2. 贝塞尔曲线与B样条曲线:详细介绍贝塞尔曲线和B样条曲线的定义、性质和应用,以及它们在曲线建模和动画设计中的重要作用。
沈阳工业大学软件学院虚拟现实技术的发展与应用学生姓名:汤常珩学号:141201206专业班级:1402指导教师:马广焜二零一六年九月二十一日虚拟现实技术的发展与应用摘要虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统它利用计算机生成一种模拟环境是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。
虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。
虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。
模拟环境是由计算机生成的、实时动态的三维立体逼真图像。
关键词:虚拟现实;模拟;仿真技术目录第一章引言 (4)第二章发展历史 (4)第三章关键技术 (4)3.1显示 (5)3.2 声音 (5)3.3 语音 (5)第四章应用 (6)4.1 医学 (6)4.2 军事 (7)4.3 游戏 (7)第五章结论 (8)参考文献 (8)第一章引言虚拟现实(Virtual Reality,VR)是以计算机技术为核心,结合相关科学技术,生成与一定范围真实环境在视、听、触感等方面高度近似的数字化环境,用户借助必要的装备与数字化环境中的对象进行交互作用、相互影响,可以产生亲临对应真实环境的感受和体验。
虚拟现实是人类在探索自然、认识自然过程中创造产生,逐步形成的一种用于认识自然、模拟自然,进而更好地适应和利用自然的科学方法和科学技术。
随着社会生产力和科学技术的不断发展,各行业对VR技术的需求日益旺盛,人们对VR技术的研究日益重视,VR技术也取得了巨大进展,并逐步成为一个新的科学技术领域。
第二章发展历史1956年,Heileg M. 开发了一个摩托车仿真器Sensorama,具有三维显示及立体声效果,并能产生振动感觉。
他在1962年的“Sensorama Simulator”专利已具有一定的VR技术的思想。
计算技术和计算机的小型化的发展,推动了仿真技术的发展,逐步形成了计算机仿真科学技术学科。
1965年,计算机图形学的重要奠基人Sutherland博士发表了一篇短文“The ultimate display“,以其敏锐的洞察力和丰富的想象力描绘了一种新的显示技术。
他设想在这种显示技术支持下,观察者可以直接沉浸在计算机控制的虚拟环境之中,就如同日常生活在真实世界一样。
同时,观察者还能以自然的方式与虚拟环境中的对象进行交互,如触摸感知和控制虚拟对象等。
Sutherland的文章从计算机显示和人机交互的角度提出了模拟现实世界的思想,推动了计算机图形图像技术的发展,并启发了头盔显示器、数据手套等新型人机交互设备的研究。
1966年,Sutherland I. E. 等开始研制头盔式显示器,随后又将模拟力和触觉的反馈装置加入到系统中。
1973年,Krueger M. 提出了“Artificial Reality”一词,这是早期出现的VR词语。
由于受计算机技术本身发展的限制,总体上说20世纪六七十年代这一方向的技术发展不是很快,处于思想、概念和技术的酝酿形成阶段。
20世纪90年代以后,随着计算机技术与高性能计算、人机交互技术与设备、计算机网络与通信等科学技术领域的突破和高速发展,以及军事演练、航空航天、复杂设备研制等重要应用领域的巨大需求,VR技术进入了快速发展时期。
[1]第三章关键技术3.1显示虚拟现实技术是多种技术的结合体,其中包括了计算机三维技术,立体显示技术,语音输入输出技术,对观察者头、手、眼的跟踪技术,以及触觉/力觉的反馈等技术。
人们在看周围的世界的时候双眼是至关重要的,两只眼睛的位置不同得到的图像也是不同的。
这些图像经过大脑的处理,就形成了一个关于周围世界的图像。
它包括了信息。
在VR系统中,双目立体视觉起到了很重要的作用。
用户的两只眼睛看到的不同的图像是分别产生的,显示在不同的显示器上。
当用户带上特殊的眼镜之后,一只眼睛只能看到奇帧图像,二另一只眼镜只能看到偶帧图像,奇偶帧之间的不同也就是产生了立体感。
用户(头、眼)的跟踪:在人造环境中,每个物体相对于系统的坐标系都有一个位置与姿态,而用户也是如此。
用户看到的景象是由用户的位置和头(眼)的方向来确定的。
跟踪头部运动的虚拟现实头套:在传统的计算机图形技术中,视场的改变是通过鼠标或键盘来实现的,用户的视觉系统和运动感知系统是分离的,而利用头部跟踪来改变图像的视角,用户的视觉系统和运动感知系统之间就可以联系起来,感觉更逼真。
另一个优点是,用户不仅可以通过双目立体视觉去认识环境,而且可以通过头部的运动去观察环境。
3.2声音人能够很好地判定声源的方向。
在水平方向上,我们靠声音的相位差及强度的差别来确定声音的方向,因为声音到达两只耳朵的时间或距离有所不同。
常见的立体声效果就是靠左右耳听到在不同位置录制的不同声音来实现的,所以会有一种方向感。
现实生活里,当头部转动时,听到的声音的方向就会改变。
但目前在VR系统中,声音的方向与用户头部的运动无关。
3.3语音语音技术分为语音识别技术和语音合成技术。
语音的输入输出也很重要。
这就要求虚拟环境能听懂人的语言,并能与人实时交互。
而让计算机识别人的语音是相当困难的,因为语音信号和自然语言信号有其“多边性”和复杂性。
语音识别是指将人说话的语音信号转换为可被计算机识别的文字信息。
语音识别的过程分为:参数提取、参数模式建立、模式识别等过程。
举一个例子来说明,当我们对着话筒讲话,这句话传入到系统中,系统先把他转换成数据文件,然后相应的软件便开始识别,主要是把用户输入的样本与事先存储好的样本进行对比,系统选出它认为最像的声音序列号,通过这些序列号的拼接,可以知道用户刚才念的是什么意思,然后执行相应的操作。
语音合成技术是指用人工的方法生成语音的技术,相当于是语音识别的逆过程。
一般来说,用户对于语音的要求是可懂、清晰、自然、具有表现力。
[2]第四章应用4.1 医学虚拟人体构建技术:数字化可视人体,或称虚拟可视人体,是根据人体解剖学研究的全部数据综合构成的一系列数字化三维图像,而且可以虚拟地进行人体的一切生理活动。
这种数字化可视人体可用于进行医学教学、模拟临床手术和放射治疗等,效果显著。
可视人计划发端于10 多年前的美国,该计划是世界上第一个获取人体数字图像信息的实验。
所获取的数据集是数字解剖学的基础,它的研究引起了广泛的关注。
目前国内正在开展建造具有东方人种特征的中国数字人。
人体结构的三维成像构造或数字化人体的概念是在医学领域提出来的。
构建数字化人体的过程式是,先利用三维或高维内科成像将人体组织的事件储存为一个三维数据库,再利用计算机技术将人体或人体的组织构建成三维的图像。
这样就可以在数字化的人体中进行对真正人体或人体的组织的回顾性观察和分析,而且,这种操作通过现代的计算机网络系统可以远程进行。
以某机构构建的人脑为例,先以人脑核磁图像为基础,利用虚拟现实建模语言对人体脑部结构进行三维重建可以对感兴趣的脑结构的空间形状、空间位置有更加直观的了解,并可进行人机交互式的操作,从各个方向、各个角度对之进行交互式观察。
原始数据来自MNI(蒙特利尔神经所),共有人脑核磁图像 181层,层间距为一毫米。
人工提取坐标点数据,共制作了人脑外部轮廓、脑室系统、苍白球、豆状核、丘脑、尾状核等结构的网格状模型和面状模型,下图为虚拟器官虚拟解剖训练:于真实人体解剖的数字化虚拟人体研究结合医学科学与计算机技术构建一个像真人一样的计算机模型,在数字解剖、手术计划与培训和很多非医学领域有广泛应用价值。
连续解剖切片图像的三维重建和显示,是一种重要的形态学研究方法。
三维重建过程中,首先要对连续切片图像进行配准,为三维显示奠定基础。
以构建颅面部组织为例,先基于网络重建颅面部组织的三维图像,并进行虚拟解剖。
用人头面部 Light-SpeedCT 扫描的原始数据,经对原始图像传输,读取后,兴趣区选择,利用Java编制基于网络运行的三维重建软件对其进行重建和解剖虚拟。
结果重建出的颅面部图像逼真,分层显示,能任意角度旋转,任意厚度多次切割和恢复。
同时能三维显示切除的组织结构。
实现了颅面部组织在Internet网上的重建和解剖虚拟,为计算机辅助解剖提供一条新的软系统。
虚拟手术训练:虚拟手术(Virtual Surgery)作为这一领域正在发展起来的研究方向,其目的是利用各种医学影像数据,采用虚拟现实技术,在计算机中建立一个模拟环境,医生借助虚拟环境中信息进行手术计划制定,手术演练手教学,手术技能训练。
虚拟手术仿真器是虚拟现实技术在医学上的一个重要应用。
[3]4.2军事20 世纪 90 年代初,美国率先将虚拟现实技术用于军事领域,近几年,随着科学技术的发展,虚拟现实技术已经渗透到军事生活的各个方面,并开始在军事领域中发挥着越来越大的作用。
世界各国都将虚拟现实技术在军事领域的应用列为高度军事机密。
目前,虚拟现实技术在军事领域的应用主要集中在虚拟战场环境、军事训练和武器装备的研制与开发等方面。
虚拟战场环境它是指利用虚拟现实技术,通过计算机系统和其他辅助设备对获取或存贮的战场要素数据,比如:战场地形、战场场景、战场态势、战场人员、战场武器装备等进行处理,最终显示出近似逼真的立体战场环境。
它能够使使用者有一种身临实际战场的感觉,将它用于军事训练能够大大提高训练的质量。
美国现在已经研制出一种被称为“激光沙盘”的虚拟现实系统,它能够产生虚拟战场环境。
军事训练虚拟现实技术为军事训练提供了新的方法。
将虚拟现实技术应用于军事训练既能比实兵演练节省大量的人力、物力,使官兵“身临其境”,又能够提高保密性,达到封锁消息不为外界所知的理想效果。
虚拟现实技术用于军事训练可实现战斗力的系统集成,并将军事训练推向实战化。
目前,虚拟现实技术在军事训练中的应用主要集中在单兵训练、战术训练和诸军兵种联合战役训练等方面。
[4]4.3游戏实际上,游戏本身就是一种特殊的虚拟现实技术,游戏自产生以来就一直向着虚拟现实技术去发展。
从最初的文字游戏,到二维游戏、三维游戏再到网络游戏。
电子游戏一直保持着它的实时性和交互性。
应用与游戏中的虚拟现实技术有体感交互技术、立体显示技术和三维虚拟声音生成技术以及触觉反馈技术。
体感交互作为一种进行虚拟现实交互的新型操作方式,可以完全摆脱传统的鼠标键盘和复杂的动作捕捉设备,用户通过使用自己身体和/或自己周围物体的移动(非遥控器,控制器、键盘、鼠标等)来操纵化身或应用的其他方面。
对虚拟现实应用来说,大大降低了使用的门槛,扩大了虚拟现实应用的范围,增加了虚拟现实表现的真实感,带来了一次全新的革命。
显示是游戏中最重视的部分,所以这部分的技术很重要,当然声音也很重要三维虚拟声音与人们熟悉的立体声音不同,三维虚拟声音,能使用户能够感觉到声音是来自围绕听着双耳的一个球形中任何地方,即声音可能出现在头部的上方、前方或后方。