空燃比传感器
- 格式:ppt
- 大小:377.50 KB
- 文档页数:29
空燃比传感器的工作原理
空燃比传感器是现代汽车发动机控制系统中非常重要的一个传感器,在控制发动机燃油混合物的配比和达到最佳燃烧状态方面发挥着重要的作用。
那么,空燃比传感器的工作原理是什么呢?
空燃比传感器工作原理的核心是利用了周围空气中含氧量的变化来感知发动机的空燃比。
传感器的外部构造看起来很简单,它包括一个外壳、一个O型密封圈、一个氧气传感层、一个产生电流的电极、引出线以及一个固定在传感器上的加热器。
在实际工作过程中,加热器可以提高整个传感器的温度,增加氧气传感层中的氧气浓度,并达到快速响应的目的。
在发动机工作时,空气和燃料进入发动机燃烧室,形成混合气体,接着汽车在进行燃烧反应时,需要提供足够量的氧气,才能让燃料完全燃烧,并且达到最优的燃烧状态。
在化学反应发生的同时,空燃比传感器会在周围空气中自动检测出氧气的浓度。
接着传感器中的电极就会测量氧气泵入后残留的氧气浓度,也就是断言当前空气中氧气的含量,并告诉控制单元当前发动机的空燃比是多少。
一般来说,汽车制造商会基于加速度、负载和转速之类的变量对燃油的浓度进行控制和调节。
然而,如果空燃比过高或过低,就可能使发
动机的性能不佳、油耗增加,排放物更多。
传感器的工作目的在于帮
助发动机控制系统实现稳定、高效的控制。
当空燃比传感器检测到发
动机的空燃比异常时,会立即通知控制单元,让系统采取适当的措施。
总而言之,空燃比传感器的工作原理非常简单,但是对于发动机控制
系统的性能却至关重要。
准确测量空气中氧气的浓度,能够为发动机
提供最佳的空燃比,确保劣质燃油、低质量空气和不削减氧气的状况下,始终完成燃烧工作,从而保证了燃油经济性和环保性。
丰田汽车空燃比传感器故障码及数据流检测车相关人士大多数人对传统的氧传感器都已十分了解并且觉得在故障判断时没什么问题,这一话题已是老生常谈,现在我们要谈的是比氧化器更加复杂更加年轻的表亲——空燃比(A/F)传感器。
空燃比(A/F)传感器的种类有很多,但本文只讨论丰田车用的空燃比传感器,因为丰田公司很早就采用了这种技术并应用于旗下许多车型。
空燃比传感器只用于催化转化器的上游,催化转化器的下游仍然采用传统的氧传感器。
怎样才能知道车上装的是氧传器还是空燃比传感器呢?并不是所有的丰田车都装有空燃比传感器,但使用空燃比传感器的丰田车会越来越多。
第一个要看的地方就是贴在发动机舱盖下的车辆排放控制标签(VECl),如图1所示。
当然有时我们会遇到这种情况,有些车的发动机舱盖已不是原车的,或者车辆排放控制标签已经没有了,这时我们就要请当地的经销商根据车辆识别代码(VIN)查一下。
不过有时根据车辆识别代码还是查不出该车是否使用了空燃比传感器,这时通过传感器接头处线束的色标也能确定该车是否使用了空燃比传感器。
首先来看一下空燃比传感器出问题时几个常见的故障码,随后再就几种高级的诊断技术和数据流分析进行深入探讨。
绝大多数情况下,空燃比传感器最常见的故障码是P1135和P1155,其含义分别是第一列缸或第二列缸空燃比传感器加热电路故障,这些是双行驶循环故障码。
传统的氧传感器温度达到650~850(1 =0.5℃)就可以正常工作了,但为了计量准确,丰田车空燃比传感器的工作温度要达到1200 。
诊断空燃比传感器加热电路的故障不难,与检查氧传感器加热电路故障的步骤相似。
有些车型的空燃比传感器加热电路有单独的保险丝,这些车装备的通常都是V6发动机,不过也有些车装备的是双列4缸发动机。
大多数用4缸直列发动机的车都没有单独的加热电路保险丝,这时如果汽车能够发动,就可以确定空燃比传感器的加热电路保险丝没有问题,因为喷油嘴也是通过此保险丝进行供电,如图2所示。
浅谈汽车空燃比传感器的结构原理与检修作者:陈成春来源:《海峡科学》2010年第12期[摘要] 随着汽车工业的发展,汽车保有量的不断增加,汽车节能减排技术越来越被人们所重视。
汽车空燃比传感器能够自动检测不同工况下的汽车混合气浓度,并通过电脑进行自动调节,是节能减排技术的重要应用。
为此,本文通过近期教学实践和维修实践过程中的不断总结,阐述了空燃比传感器的结构原理和检修方法。
[关键词] 空燃比;传感器;结构原理;检修随着社会的进步,汽车工业的不断发展,汽车尾气排放问题越来越被人们所关注,相关的汽车尾气排放标准也越来越严格,为了达到尾气标准,各种汽车控制装置正不断地装到汽车上。
氧传感器作为有效控制尾气排放的重要装置,能够给发动机电脑(简称ECU)提供混合气空燃比反馈信号,并使发动机在各种不同的工况下,都能达到控制理论空燃比(14.7:1)的目的,实现闭环控制,使三元催化转换器达到最佳的转换效果。
空燃比传感器作为新型的氧传感器,能在发动机不同工况时,准确地检测废气中氧的浓度,并及时地把信号传给电脑进行精确计算和控制混合气浓度,使发动机实现较理想的空燃比,燃烧更好,动力更足,油耗更低,排放污染更少,现在已在许多新的车型中逐步推广使用。
1 氧传感器的类型传统的氧传感器一般为杯型,传感器元件围着一个加热器,空燃比传感器一般为平面型,传感器最基本的部分是夹在两个铂电极之间的氧化锆固态电解质。
全范围单腔限流平板型空燃比传感器的传感元件多了一个特殊设计的限制空气扩散的扩散阻力层,并有一个封闭的空气腔。
空燃比传感器的加热器采用氧化铝制成,具有较好的导热性能和绝缘性能,以使传感器元件和加热器结合在一起,提高了传感器的加热性能。
2 工作原理空燃比传感器可能比传统的氧化锆型氧传感器能更精确地控制燃油,目前多数新型汽车采用了能够精确测量实际空燃比数值的全范围空燃比传感器,它代替了传统的氧传感器。
2.1 稀混合气浓度情况下在实际空燃比数值大、混合气稀工况条件下,尾气中氧气较多,实际空燃比数值越大、混合气越稀,尾气中的氧气就越多。
空燃比传感器的工作原理1. 空燃比传感器的概述2. 空燃比的定义和意义3. 空燃比传感器的分类3.1 压力式空燃比传感器3.2 氧传感器3.3 端子电位传感器4. 空燃比传感器的工作原理4.1 压力式空燃比传感器的工作原理4.1.1 压力传感器的结构和工作原理4.1.2 空燃比传感器的工作原理4.2 氧传感器的工作原理4.2.1 氧传感器的结构和工作原理4.2.2 空燃比传感器的工作原理4.3 端子电位传感器的工作原理4.3.1 端子电位传感器的结构和工作原理4.3.2 空燃比传感器的工作原理5. 空燃比传感器的应用领域6. 空燃比传感器的发展趋势1. 空燃比传感器的概述空燃比传感器是一种用于测量内燃机燃烧室中混合气的空气和燃料的比例的传感器。
它能提供有关燃烧状况的信息,帮助引擎控制系统调整燃料喷射量,以保持最佳的燃烧效率和排放控制。
2. 空燃比的定义和意义空燃比是指燃烧室中混合气的空气和燃料的化学计量比。
空气燃料混合物的空燃比过高或过低都会导致燃烧不完全、能量损失和尾气排放增加。
因此,准确测量和控制空燃比对于发动机性能和排放控制非常重要。
3. 空燃比传感器的分类空燃比传感器主要有三种类型,分别是压力式空燃比传感器、氧传感器和端子电位传感器。
3.1 压力式空燃比传感器压力式空燃比传感器通过测量进气歧管中的绝对压力和大气压力的差异来确定空燃比。
根据压力变化与空燃比的关系,系统可以精确计算出当前的空燃比数值。
3.2 氧传感器氧传感器通过测量进气歧管中的氧气浓度来确定空燃比。
氧传感器利用氧离子在高温下与氧离子传导体上的氧化物之间的反应作用,产生电压信号来指示空燃比的富瘤燃。
3.3 端子电位传感器端子电位传感器是利用燃烧过程中热电效应产生的电势差来测量空燃比。
它基于氧化物线性电导的原理,通过测量燃烧室内壁和燃烧室内混合气体之间的电势差,来从数值上确定燃烧室内的空燃比。
4. 空燃比传感器的工作原理4.1 压力式空燃比传感器的工作原理4.1.1 压力传感器的结构和工作原理压力式空燃比传感器通常由一个压力传感器和一个温度传感器组成。
雷克萨斯ES240空燃比传感器故障诊断排除一辆搭载直列4缸、2.4排量发动机的10款雷克萨斯ES240 轿车,行驶了20万公里,发动机故障灯点亮,故障码P0138。
本文通过实车实验,查阅相关资料,对比相同款式的试驾车数据流,然后将所有数据进行综合分析,最后确定1列1号空燃比传感器故障,更换后试车发现故障码没有再出现,故障排除。
标签:空燃比传感器;氧传感器;故障码;数据流1 故障现象一辆10款雷克萨斯ES240轿车,搭载直列4缸、2.4排量发动机,行驶20万公里。
车主反映,虽然车辆能够正常行驶,但发动机故障灯点亮,希望能够查找一下故障原因。
车辆能驾驶无异常感觉。
2 故障诊断与排除2.1 故障点的确定根据车主描述,首先进行了实车试验,发现车辆的确能够正常行驶,且驾驶过程中无明显异常,但发动机故障灯点亮。
为了进一步确定故障点,随即连接故障诊断仪:读取故障码为P0138,故障内容描述为:1列2号氧传感器输出高电压。
通过查阅相关资料,得出该故障码的出现,在一定时间内需要满足两个条件:一是加热型氧传感器输出的电压高于0.59V;二是目标空燃比过稀。
满足以上两个条件,该故障码就会成立,发动机故障灯会点亮。
检修车辆过程中,首先检查了相关线路,发现1列2号氧传感器到ECM电脑之间的线路无短路断路现象;然后查看数据流,发现1列2号后氧传感器怠速时的输出电压为0.88V,超出标准范围。
结合诊断仪所报故障码,考虑应该是后氧传感器故障,随即进行了更换,故障码也成功消除,输出电压恢复到0.4V—0.59V正常范围。
然而经过一段时间的试车后发现,发动机故障灯再次点亮,经故障诊断仪诊断后,故障内容还是1列2号后氧传感器输出高电压,查看数据流发现1列2号后氧传感器怠速时的输出电压重新变回0.88V。
显示此时发动机的混合气又偏浓了。
由此看来前面没有找到真正的故障点,再次查询相关资料得出,产生该类故障的故障点可能有以下四处:1、加热型氧传感器1列2号电路短路,即后氧传感器电路短路;2、加热型氧传感器1列2号本身故障;3、ECM发动机电脑故障;4、1列1号空燃比传感器故障。
空燃比分析仪与氧传感器的工作原理随着汽车市场的不断壮大,有越来越多的人从事汽车改装和维修工作。
空燃比分析仪作为一款测试混合气空燃比(AFR:Air Fuel Ratio)的专业工具,在汽车改装领域发挥着重要作用,市场上也出现多种类似产品。
接下来我将以市场上比较有代表性的空燃比分析仪为例,来介绍一下此款产品的工作原理,广大汽车爱好者和改装维修人员可以参考一下,更好的选择适合自己的那款产品。
介绍空燃比分析仪,就不得不从氧传感器说起。
1、氧传感器的功能测定发动机排气中氧气含量,确定混合气(燃料+空气)是否完全燃烧。
2、氧传感器的分类以及原理按材料分,分为能够产生电动势变化的氧化锆型(ZrO2)和能够产生电阻变化的氧化钛(TiO2)型。
氧化锆(ZrO2)型氧传感器的工作原理将ZrO2烧结成试管装并在内测和外侧镀有白金电极,其内测注入大气并使氧浓度保持一定,而外侧则处于接触排气的状态。
当内外层产生浓度差时,氧离子从氧浓度高的一侧向低的一侧流动,从而产生电动势。
氧化钛(TiO2)型氧传感器工作原理氧化钛(TiO2)在大气中具有绝缘性,而在某一温度以上时,钛和氧之家的结合性减弱,在氧气极少的状态下出现脱氧,变成低电阻的氧化半导体。
脱氧的氧化钛的电阻迅速下降。
但是,在存在氧气的环境汇总,它又能重新获取氧气,所以,电阻值又可以恢复到原来的值。
按工作测量范围分,分为宽域型氧传感器和窄域型氧传感器窄域型氧传感器能够测量过量空气系数(λ)大于1或小于1,即混合气是浓还是稀,但是浓多少货稀多少,窄域氧传感器是检测不出来。
宽域氧传感器能够测量混合气λ=0.5-∞,接下来我会重点介绍一下宽域型氧传感器的工作原理。
3、宽域型氧传感器的工作原理这里之所以要重点介绍宽域型氧传感器,是因为这种氧传感器是空燃比分析仪的核心部件,空燃比分析仪输出的空燃比信号都是通过宽域氧传感器获取的。
本文基于BOSCH公司的LSU宽域氧传感器为例,介绍其工作原理。