安徽省合肥一中2014届高三上学期段一考试物理试题 Word版含答案
- 格式:doc
- 大小:554.68 KB
- 文档页数:9
2014安徽省高考理综物理试题一、选择题(每题6 分,共120 分)1、在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律。
法国物理学家库仑在研究异种电荷的吸引问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系。
已知单摆摆长为l ,引力常量为G 。
地球的质量为M 。
摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为A .B. C.D.2、如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN是通过椭圆中心O点的水平线。
已知一小球从M点出发,初速率为v 0,沿管道MPN 运动,到N 点的速率为v 1,所需的时间为t 1;若该小球仍由M 点以初速率v 0出发,而沿管道MQN 运动,到N 点的速率为v 2,所需时间为t 2。
则A .v 1=v 2,t 1>t 2B .v 1<v 2,t 1>t 2C .v 1=v 2,t 1<t 2D .v 1<v 2,t 1<t 23、一简谐横波沿x 轴正向传播,图1是t =0时刻的波形图,图2是介质中某点的振动图象,则该质点的x 坐标值合理的是A .0.5mB .1.5mC .2.5mD .3.5m4、一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动。
取该直线为x轴,起始点O为坐标原点,其电势能EP与位移x的关系如右图所示。
下列图象中合理的是5、“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞。
已知等离子体中带电粒子的平均动能与等离子体的温度T成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子的运动半径不变。
由此可判断所需的磁感应强度B正比于A. B. C. D.6、如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定的角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止。
合肥一中2013-2014学年度第一学期段一考试高三年级物理试卷(考试时间:90 分钟满分:100分)一、选择题(每小题4分,共40分)每小题给出的四个选项中,只有一个选项正确。
1.一质点沿直线Ox方向做加速运动,它离开O点的距离随时间变化的关系为s=4+2t3(m),它的速度随时间变化的关系为v=6t2(m/s).则该质点在t=2 s时的瞬时速度和t=0到t=2 s间的平均速度分别为( )A.8 m/s、24 m/s B.24 m/s、8 m/sC.2 4m/s、10 m/s D.24 m/s、12 m/s【答案】B【考点】匀变速直线运动的位移与时间的关系;平均速度2.四个小球在离地面不同高度处同时由静止释放,不计空气阻力,从开始运动时刻起每隔相等的时间间隔,小球依次碰到地面.下图中,能反映出刚开始运动时各小球相对地面的位置的是( )【答案】C【考点】自由落体运动【KS5U解析】每隔相等的时间间隔小球依次碰到地面,可以知道第一个球经过T时间落地,第二球落地的时间为2T,依次3T、4T.逆过来看,相当于一个小球每经过相等时间所到达的位置.可以知道相等时间间隔内的位移越来越大,所以从下而上,相邻两个小球之间的竖直位移越来越大.故C正确,A、B、D错误.3. 如图所示,一小球从A点由静止开始沿斜面向下做匀变速直线运动,若到达B点时速度为v,到达C点时速度为2v,则x AB∶x BC等于().A.1∶1 B.1∶2 C.1∶3 D.1∶4【答案】C【考点】匀变速直线运动的速度与位移的关系【KS5U 解析】根据匀变速直线运动的速度位移公式2202ax v v -=知,22,22c B AB AC a a v v x x ==,所以:1:4AB AC =,则:1:3AB BC =.故C 正确,A 、B 、D 错误.4、图中弹簧秤、绳和滑轮的质量均不计,绳与滑轮间的摩擦力不计,物体的重力都是G ,在图甲、乙、丙三种情况下,物体都处于静止状态,弹簧秤的读数分别是F 1、F 2、F 3, 则( )A .213F F F =>B .213F F F >=C .321F F F ==D .321F F F =>【答案】B【考点】共点力平衡的条件及其应用【KS5U 解析】甲图:物体静止,弹簧的拉力1mg F =;乙图:对物体为研究对象,作出力图如图.根据平衡条件有:2sin 600.866mg mg F ==丙图:以动滑轮为研究对象,受力如图.由几何知识得3mg F =.故F3=F1>F25.“叠罗汉”是一种高难度的杂技。
2015-2016学年安徽省合肥一中高三〔上〕段考物理试卷〔三〕一、选择题〔此题共10小题,每一小题4分,共40分.每一小题给出的四个选项中,1-6题只有一项符合题目要求,7-10小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有错选的得0分.〕1.如下四组物理量中,均为矢量的是〔〕A.力、位移、功 B.位移、速度、加速度C.速度、加速度、动能D.重力、位移、重力势能2.如下列图,为一物体运动的位移﹣时间〔x﹣t〕图象.由图象可知〔〕A.物体一直做匀加速直线运动B.物体一直做匀减速直线运动C.物体以某一速率做往复运动D.物体有时做匀加速直线运动,有时做匀减速直线运动3.如下列图,甲、丙物体在水平外力F的作用下静止在乙物体上,乙物体静止在水平面上.现增大水平外力F,三物体仍然静止,如此如下说法正确的答案是〔〕A.乙对甲的支持力一定增大B.乙对地面的压力一定不变C.乙对甲的摩擦力一定增大D.甲对丙的摩擦力一直为零4.如下列图,金属板放在垂直于它的匀强磁场中,当金属板中有电流通过时,在金属板的上外表A和下外表A′之间会出现电势差,这种现象称为霍尔效应.假设匀强磁场的磁感应强度为B,金属板宽度为h、厚度为d,通有电流I,稳定状态时,上、下外表之间的电势差大小为U.如此如下说法中正确的答案是〔〕A.在上、下外表形成电势差的过程中,电子受到的洛仑兹力方向向下B.达到稳定状态时,金属板上外表A的电势高于下外表A′的电势C.只将金属板的厚度d减小为原来的一半,如此上、下外表之间的电势差大小变为D.只将电流I减小为原来的一半,如此上、下外表之间的电势差大小变为5.如下列图,在竖直平面内半径为R的四分之一圆弧轨道AB、水平轨道BC与斜面CD平滑连接在一起,斜面足够长.在圆弧轨道上静止着N个半径为r〔r<<R〕的光滑刚性小球,小球恰好将圆弧轨道铺满,从最高点A到最低点B依次标记为1、2、3…N.现将圆弧轨道末端B处的阻挡物拿走,N个小球由静止开始沿轨道运动,不计摩擦与空气阻力,如下说法正确的答案是〔〕A.N个小球在运动过程中始终不会散开B.第N个小球在斜面上能达到的最大高度为RC.第1个小球到达最低点的速度>v>D.第1个小球到达最低点的速度v<6.如下列图,图甲中MN为足够大的不带电薄金属板,在金属板的右侧,距离为d的位置上放入一个电荷量+q的点电荷O,由于静电感应产生了如下列图的电场分布.P是金属板上的一点,P点与点电荷O之间的距离为r,几位同学想求出P点的电场强度大小,但发现问题很难.几位同学经过仔细研究,从图乙所示的电场得到了一些启示,经过查阅资料他们知道:图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中两异号点电荷电荷量的大小均为q,它们之间的距离为2d,虚线是两点电荷连线的中垂线.由此他们分别对P点的电场强度方向和大小做出以下判断,其中正确的答案是〔〕A.方向沿P点和点电荷的连线向左,大小为B.方向沿P点和点电荷的连线向左,大小为C.方向垂直于金属板向左,大小为D.方向垂直于金属板向左,大小为7.我国研制并成功发射了“嫦娥二号〞探月卫星.假设卫星在距月球外表高度为h的轨道上以速度v做匀速圆周运动,月球的半径为R,如此〔〕A.卫星运行时的向心加速度为B.卫星运行时的角速度为C.月球外表的重力加速度为D.卫星绕月球外表飞行的速度为8.如下列图,I为电流表示数,U为电压表示数,P为定值电阻R2消耗的功率,Q为电容器C所带的电荷量,W为电源通过电荷量q时电源做的功.当变阻器滑动触头向右缓慢滑动过程中,如下图象能正确反映各物理量关系的是〔〕A.B.C.D.9.如下列图,质量分别为m1、m2的A、B两个物体放在斜面上,中间用一个轻杆相连,A、B 与斜面间的动摩擦因数分别为μ1、μ2,它们在斜面上加速下滑,关于杆的受力情况.如下分析正确的答案是〔〕A.假设μ1>μ2,m1=m2,如此杆受到压力B.假设μ1=μ2,m1>m2,如此杆受到拉力C.假设μ1<μ2,m1<m2,如此杆受到拉力D.假设μ1=μ2,m1≠m2,如此杆无作用力10.如下列图,一个质量为m的圆环套在一根固定的水平直杆上,杆足够长,环与杆的动摩擦因数为μ.现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F,F=kv〔k为常数,v为环的速率〕,如此环在整个运动过程中抑制摩擦力所做的功不可能为〔〕A. mv02B. mv02+C.0 D. mv02﹣二、实验题〔共2小题,总分为18分〕11.如图甲所示,一位同学利用光电计时器等器材做“验证机械能守恒定律〞的实验.有一直径为d、质量为m的金属小球由A处由静止释放,下落过程中能通过A处正下方、固定于B处的光电门,测得A、B间的距离为H〔H>>d〕,光电计时器记录下小球通过光电门的时间为t,当地的重力加速度为g.如此:〔1〕如图乙所示,用游标卡尺测得小球的直径d=mm.〔2〕小球经过光电门B时的速度表达式为.〔3〕屡次改变高度H,重复上述实验,作出随H的变化图象如图丙所示,当图中量t0、H0和重力加速度g与小球的直径d满足以下表达式:时,可判断小球下落过程中机械能守恒.〔4〕实验中发现动能增加量△E K总是稍小于重力势能减少量△E P,增加下落高度后,如此△E p﹣△E k将〔选填“增加〞、“减小〞或“不变〞〕.12.用图甲所示的电路,测定一节旧电池的电动势和内阻,除电池、开关和导线外,可供使用的实验器材还有:双量程电流表〔量程0~0.6A 0~3A〕双量程电压表〔量程0~3V 0~15V〕滑动变阻器:R1〔阻值范围0~10Ω额定电流2A〕R2〔阻值范围0~100Ω额定电流1A〕〔1〕为了调节方便,测量精度更高,实验中用选用电流表的量程为0~0.6A,电压表的量程为0~3V,应选用滑动变阻器〔填写滑动变阻器符合〕;〔2〕根据图甲将图乙中的实物正确连接,注意闭合开关时滑动变阻器的滑片P应处于正确的位置并选择正确的电表量程进展连线.〔3〕通过屡次测量并记录对应的电流表示数I和电压表示数U,利用这些数据在图丙中画出了U﹣I图线.由图线可以得出此干电池的电动势E=V〔保存3位有效数字〕,内电阻r=Ω〔保存2位有效数字〕.〔4〕引起该实验的系统误差的主要原因是.A.由于电压表的分流作用造成电流表读数总是比电源实际输出的电流小B.由于电压表的分流作用造成电流表读数总是比电源实际输出的电流大C.由于电流表的分压作用造成电压表读数总是比路端电压小D.由于电流表的分压作用造成电压表读数总是比路端电压大.三、计算题〔共3小题,总分为30分〕13.如下列图,水平面上两平行光滑金属导轨间距为L,左端用导线连接阻值为R的电阻.在间距为d的虚线MN、PQ之间,存在方向垂直导轨平面向下的磁场,磁感应强度大小只随着与MN的距离变化而变化.质量为m、电阻为r的导体棒ab垂直导轨放置,在大小为F的水平恒力作用下由静止开始向右运动,到达虚线MN时的速度为v0.此后恰能以加速度a在磁场中做匀加速运动.导轨电阻不计,始终与导体棒电接触良好.求:〔1〕导体棒开始运动的位置到MN的距离x;〔2〕磁场左边缘MN处的磁感应强度大小B;〔3〕导体棒通过磁场区域过程中,电阻R上产生的焦耳热Q R.14.如图甲所示,质量M=1.0kg的长木板A静止在光滑水平面上,在木板的左端放置一个质量m=l.0kg的小铁块B,铁块与木板间的动摩擦因数μ=0.2,对铁块施加水平向右的拉力F,F大小随时间变化如图乙所示,4s时撤去拉力.可认为A、B间的最大静摩擦力与滑动摩擦力大小相等,取重力加速度g=10m/s2.求:〔1〕0~1s内,A、B的加速度大小a A、a B;〔2〕B相对A滑行的最大距离s;〔3〕0~4s内,拉力做的功W.15.如图甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压U MN=U0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O1点以速度v0沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.〔1〕求带电粒子的比荷;〔2〕假设MN间加如图乙所示的交变电压,其周期,从t=0开始,前内U MN=2U,后内U MN=﹣U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U的值;〔3〕紧贴板右侧建立xOy坐标系,在xOy坐标第I、IV象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy坐标平面,要使在〔2〕问情景下所有粒子经过磁场偏转后都会聚于坐标为〔2d,2d〕的P点,求磁感应强度B的大小范围.四、【物理选修3-3】〔共2小题,总分为12分〕16.如下说法正确的答案是〔〕A.可以把热量从低温物体自发地传到高温物体,而不引起其他变化B.温度升高,说明物体中所有分子的动能都增大C.气体对容器壁有压强是气体分子对容器频繁碰撞的结果D.分子间的距离增大时,分子间的引力和斥力都减小E.在一个绝热容器内,不停地搅拌液体,可使液体的温度升高17.如下列图,内壁光滑、截面积不相等的圆柱形气缸竖直放置,气缸上、下两局部的横截面积分别为2S和S.在气缸内有A、B两活塞封闭着一定质量的理想气体,两活塞用一根长为l的细轻杆连接,两活塞导热性能良好,并能在气缸内无摩擦地移动.活塞A的质量是2m,活塞B的质量是m.当外界大气压强为p0、温度为T0时,两活塞静止于如下列图位置.〔1〕求此时气缸内气体的压强.〔2〕假设用一竖直向下的拉力作用在B上,使A、B一起由图示位置开始缓慢向下移动的距离,又处于静止状态,求这时气缸内气体的压强与拉力F的大小.设整个过程中气体温度不变.五、【物理选修3-4】〔共2小题,总分为0分〕18.〔2015•潍坊模拟〕一列简谐横波沿x轴传播,图甲是t=1s时的波形图,图乙是x=3m处质点的振动图象,如此该波的传播速度为m/s,传播方向为.19.〔2015•淮安三模〕如下列图,一半圆形玻璃砖半径R=18cm,可绕其圆心O在纸面内转动,M为一根光标尺,开始时玻璃砖的直径PQ与光标尺平行.一束激光从玻璃砖左侧垂直于PQ射到O点,在M上留下一光点O1.保持入射光方向不变,使玻璃砖绕O点逆时针缓慢转动,光点在标尺上移动,最终在距离O1点h=32cm处消失.O、O1间的距离l=24cm,光在真空中传播速度c=3.0×108m/s,求:①玻璃砖的折射率n;②光点消失后,光从射入玻璃砖到射出过程经历的时间t.六、【物理选修3-5】〔共2小题,总分为0分〕20.〔2015•荆门模拟〕如下说法正确的答案是〔〕A.假设使放射性物质的温度升高,其半衰期可能变小B.氢原子从第一激发态向基态跃迁只能辐射特定频率的光子C.α粒子散射实验能揭示原子具有核式结构D.Th核发生一次α衰变时,新核与原来的原子核相比,中子数减少了4E.太阳辐射的能量主要来自太阳内部的热核反响21.〔2015秋•合肥校级月考〕在足够长的水平光滑直导轨上,静止放着三个大小一样的小球A、B、C,质量分别为m A=3kg、m B=m c=1kg.现让A球以v0=2m/s的速度正对着B球运动,A、B两球发生弹性正碰后,B球向右运动并与C球发生正碰,C球的最终速度v c=2m/s.求:〔ⅰ〕B球与C球相碰前,A、B球各自的速度多大?〔ⅱ〕三球还会发生第三次碰撞吗?B、C碰撞过程中损失了多少动能?2015-2016学年安徽省合肥一中高三〔上〕段考物理试卷〔三〕参考答案与试题解析一、选择题〔此题共10小题,每一小题4分,共40分.每一小题给出的四个选项中,1-6题只有一项符合题目要求,7-10小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有错选的得0分.〕1.如下四组物理量中,均为矢量的是〔〕A.力、位移、功 B.位移、速度、加速度C.速度、加速度、动能D.重力、位移、重力势能【分析】矢量是既有大小又有方向的物理量,标量是只有大小没有方向的物理量.【解答】解:A、矢量是既有大小又有方向的物理量,力和位移为矢量,功只有大小,没有方向,是标量.故A错误.B、位移、速度和加速度都是矢量,故B正确.C、速度和加速度是矢量,动能为标量,故C错误.D、重力势能是标量,重力和位移是矢量,故D错误.应当选:B2.如下列图,为一物体运动的位移﹣时间〔x﹣t〕图象.由图象可知〔〕A.物体一直做匀加速直线运动B.物体一直做匀减速直线运动C.物体以某一速率做往复运动D.物体有时做匀加速直线运动,有时做匀减速直线运动【分析】由题是位移﹣时间〔x﹣t〕图象.其斜率大小等于物体运动的速度,斜率不变,如此物体的速度不变,做匀速直线运动.根据斜率的正负判断物体的运动方向.【解答】解:分析一个周期内物体的运动情况:0﹣1s内,物体从原点出发沿正方向做匀速直线运动;1﹣2s内,物体沿负方向做匀速直线运动,2s末回到出发点;2﹣3s内,物体从原点出发沿负方向做匀速直线运动;3﹣4s内,物体沿正方向做匀速直线运动,4s末返回原点.由于图线斜率大小不变,如此物体的速率不变.所以物体做速率不变的往复运动.应当选C.3.如下列图,甲、丙物体在水平外力F的作用下静止在乙物体上,乙物体静止在水平面上.现增大水平外力F,三物体仍然静止,如此如下说法正确的答案是〔〕A.乙对甲的支持力一定增大B.乙对地面的压力一定不变C.乙对甲的摩擦力一定增大D.甲对丙的摩擦力一直为零【分析】正确的受力分析是解决问题的关键,三物体仍然静止,说明物体处于平衡状态,所受外力合力为0,以甲乙丙整体为研究对象,当F增大时,地面对整体的摩擦力亦增大.再分别以甲、丙为研究对象即可求解.【解答】解:如图对甲进展受力分析有:F合x=Fcosθ+f﹣Gsinθ=0 (1)F合y=F N﹣Gcosθ﹣Fsinθ=0 (2)A、由〔2〕知,F N=Gcosθ+Fsinθ,当F增大时,如此支持力增大.故A正确;B、把甲乙丙看成一个整体,当F增加时,根据静摩擦力大小的判断f=﹣F外,可知,当F 增大时,地面给乙的摩擦力随之增大,使系统处于平衡状态,但地面对乙的压力没有变,那么乙对地面的压力也没变,故B正确;C、由〔1〕知f=Gsinθ﹣Fcosθ,由于未知摩擦力的方向,故当f为正值时,F增大如此f 减小,假设f为负值即沿斜面向下时,当F增大如此f亦增大,故C错误;D、对丙进展受力分析,丙处于静止状态,水平方向不受摩擦力,故D正确.应当选:ABD.4.如下列图,金属板放在垂直于它的匀强磁场中,当金属板中有电流通过时,在金属板的上外表A和下外表A′之间会出现电势差,这种现象称为霍尔效应.假设匀强磁场的磁感应强度为B,金属板宽度为h、厚度为d,通有电流I,稳定状态时,上、下外表之间的电势差大小为U.如此如下说法中正确的答案是〔〕A.在上、下外表形成电势差的过程中,电子受到的洛仑兹力方向向下B.达到稳定状态时,金属板上外表A的电势高于下外表A′的电势C.只将金属板的厚度d减小为原来的一半,如此上、下外表之间的电势差大小变为D.只将电流I减小为原来的一半,如此上、下外表之间的电势差大小变为【分析】金属中移动的是自由电子,根据左手定如此,判断出电子的偏转方向,从而得出电势的上下.最终电子受电场力和洛伦兹力平衡,根据平衡求出电势差的大小.【解答】解:A、B、电流向右、磁场向内,根据左手定如此,安培力向上;电流是电子的定向移动形成的,故洛伦兹力也向上;故上极板聚集负电荷,下极板带正电荷,故下极板电势较高;故A错误;B错误;C、D、电子最终达到平衡,有:evB=e如此:U=vBh电流的微观表达式:I=nevS=nevhd如此:v=,代入得:U=Bh=∝只将金属板的厚度d减小为原来的一半,如此上、下外表之间的电势差大小变为2U,故C 错误;只将电流I减小为原来的一半,如此上、下外表之间的电势差大小变为,故D正确.应当选:D.5.如下列图,在竖直平面内半径为R的四分之一圆弧轨道AB、水平轨道BC与斜面CD平滑连接在一起,斜面足够长.在圆弧轨道上静止着N个半径为r〔r<<R〕的光滑刚性小球,小球恰好将圆弧轨道铺满,从最高点A到最低点B依次标记为1、2、3…N.现将圆弧轨道末端B处的阻挡物拿走,N个小球由静止开始沿轨道运动,不计摩擦与空气阻力,如下说法正确的答案是〔〕A.N个小球在运动过程中始终不会散开B.第N个小球在斜面上能达到的最大高度为RC.第1个小球到达最低点的速度>v>D.第1个小球到达最低点的速度v<【分析】N个小球在BC和CD上运动过程中,相邻两个小球始终相互挤压,把N个小球看成整体,如此小球运动过程中只有重力做功,机械能守恒,在AB段时,高度在之上的小球只占总数的,如此整体在AB段时,重心低于,小球整体的重心运动到最低点的过程中,根据机械能守恒定律即可求解第一个小球到达最低点的速度.【解答】解:A、在下滑的过程中,水平面上的小球要做匀速运动,而曲面上的小球要做加速运动,如此后面的小球对前面的小球要向前压力的作用,所以小球之间始终相互挤压,冲上斜面后后面的小球把前面的小球往上压,所以小球之间始终相互挤压,故N个小球在运动过程中始终不会散开,故A正确;B、把N个小球看成整体,如此小球运动过程中只有重力做功,机械能守恒,弧AB的长度等于小球全部到斜面上的长度,而在圆弧上的重心位置比在斜面上的重心位置可能高也可能低,所以第N个小球在斜面上能达到的最大高度可能比R小,也可能比R大,故B错误;C、小球整体的重心运动到最低点的过程中,根据机械能守恒定律得:解得:v=同样对整体在AB段时,重心低于,所以第1个小球到达最低点的速度v<,故C错误,D正确.应当选:AD6.如下列图,图甲中MN为足够大的不带电薄金属板,在金属板的右侧,距离为d的位置上放入一个电荷量+q的点电荷O,由于静电感应产生了如下列图的电场分布.P是金属板上的一点,P点与点电荷O之间的距离为r,几位同学想求出P点的电场强度大小,但发现问题很难.几位同学经过仔细研究,从图乙所示的电场得到了一些启示,经过查阅资料他们知道:图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中两异号点电荷电荷量的大小均为q,它们之间的距离为2d,虚线是两点电荷连线的中垂线.由此他们分别对P点的电场强度方向和大小做出以下判断,其中正确的答案是〔〕A.方向沿P点和点电荷的连线向左,大小为B.方向沿P点和点电荷的连线向左,大小为C.方向垂直于金属板向左,大小为D.方向垂直于金属板向左,大小为【分析】根据等量异号电荷的电场分布特点和场强的叠加可知各点的场强大小.【解答】解:根据P点的电场线方向可以得P点的电场强度方向是垂直于金属板向左,两异号点电荷电荷量的大小均为q,它们之间的距离为2d,P点与点电荷O之间的距离为r,根据点电荷的场强公式E=P点的电场是由两异号点电荷分别产生的场强叠加产生的.根据场强的叠加法如此和几何关系得大小为.应当选:C7.我国研制并成功发射了“嫦娥二号〞探月卫星.假设卫星在距月球外表高度为h的轨道上以速度v做匀速圆周运动,月球的半径为R,如此〔〕A.卫星运行时的向心加速度为B.卫星运行时的角速度为C.月球外表的重力加速度为D.卫星绕月球外表飞行的速度为【分析】〔1〕物体在星球上或在星球附近〔不做圆周运动〕利用万有引力等于重力求解;如:求解星球外表的重力加速度.〔2〕物体围绕星球做圆周运动,利用万有引力提供向心力求解.如:求解向心加速度,线速度,角速度,周期,第一宇宙速度等.【解答】解:A、卫星运行时轨道半径为r=R+h,向心加速度为:a==;故A正确;B、卫星运行时轨道半径为r=R+h,角速度:ω=;故B正确;C、对于近月卫星,有:G;对于探测卫星,有:G=m;联立解得:g=;故C错误;D、对于近月卫星,有:mg=m;解得:v1==;故D正确;应当选:ABD.8.如下列图,I为电流表示数,U为电压表示数,P为定值电阻R2消耗的功率,Q为电容器C所带的电荷量,W为电源通过电荷量q时电源做的功.当变阻器滑动触头向右缓慢滑动过程中,如下图象能正确反映各物理量关系的是〔〕A.B.C.D.【分析】当变阻器滑动触头向右缓慢滑动过程中,接入电路的电阻减小,电路中电流增大,分别得到各个量的表达式,再进展分析.【解答】解:A、当变阻器滑动触头向右缓慢滑动过程中,接入电路的电阻减小,电路中电流增大,R2消耗的功率为P=I2R,P∝I2,故A正确.B、电容器C的电压U C=E﹣I〔R2+r〕,电荷量Q=CU C=C[E﹣I〔R2+r〕],如此=﹣C〔R2+r〕,保持不变,如此Q﹣I图象是向下倾斜的直线,故B正确.C、电压表示数 U=E﹣Ir,U﹣I图象应是向下倾斜的直线,故C错误.D、电源通过电荷量q时电源做的功 W=qE,E是电源的电动势,如此W﹣I是过原点的直线,故D错误.应当选:AB.9.如下列图,质量分别为m1、m2的A、B两个物体放在斜面上,中间用一个轻杆相连,A、B 与斜面间的动摩擦因数分别为μ1、μ2,它们在斜面上加速下滑,关于杆的受力情况.如下分析正确的答案是〔〕A.假设μ1>μ2,m1=m2,如此杆受到压力B.假设μ1=μ2,m1>m2,如此杆受到拉力C.假设μ1<μ2,m1<m2,如此杆受到拉力D.假设μ1=μ2,m1≠m2,如此杆无作用力【分析】假设杆无弹力,根据牛顿第二定律分别求解出A和B的加速度,比拟大小,然后判断AB的相对运动趋势,再判断AB间弹力的方向.【解答】解:假设杆无弹力,滑块受重力、支持力和滑动摩擦力,根据牛顿第二定律,有:m1gsinθ﹣μ1gcosθ=ma1解得:a1=g〔sinθ﹣μ1cosθ〕;同理a2=gsinθ﹣μ2cosθ;A、假设μ1>μ2,如此a1<a2,B加速度较大,如此杆受到压力,故A正确;B、假设μ1=μ2,如此a1=a2,两个滑块加速度一样,说明无相对滑动趋势,故杆无弹力,故B错误,D正确;C、假设μ1<μ2,如此a1>a2,A加速度较大,如此杆受到拉力,故C正确.应当选:ACD.10.如下列图,一个质量为m的圆环套在一根固定的水平直杆上,杆足够长,环与杆的动摩擦因数为μ.现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F,F=kv〔k为常数,v为环的速率〕,如此环在整个运动过程中抑制摩擦力所做的功不可能为〔〕A. mv02B. mv02+C.0 D. mv02﹣【分析】根据受力分析确定环的运动情况,当环受到合力向下时,随着环做减速运动向上的拉力逐渐减小,环将最终静止,当环所受合力向上时,随着环速度的减小,竖直向上的拉力逐渐减小,当环向上的拉力减至和重力大小相等时,此时环受合力为0,杆不再给环阻力环将保持此时速度不变做匀速直线运动,当环在竖直方向所受合力为0时,环将一直匀速直线运动,分三种情况对环使用动能定理求出阻力对环做的功即可.【解答】解:根据题意有对于小环的运动,根据环受竖直向上的拉力F与重力mg的大小分以下三种情况讨论:〔1〕当mg=kv0时,即v0=时,环做匀速运动,摩擦力为零,W f=0,环抑制摩擦力所做的功为零;〔2〕当mg>kv0时,即v0<时,环在运动过程中做减速运动,直至静止.由动能定理得环抑制摩擦力所做的功为W f=m;〔3〕当mg<kv0时,即v0>时,环在运动过程中先做减速运动,当速度减小至满足mg=kv 时,即v=时环开始做匀速运动.由动能定理得摩擦力做的功W f=mv2﹣=﹣,即环抑制摩擦力所做的功为﹣.应当选B二、实验题〔共2小题,总分为18分〕11.如图甲所示,一位同学利用光电计时器等器材做“验证机械能守恒定律〞的实验.有一直径为d、质量为m的金属小球由A处由静止释放,下落过程中能通过A处正下方、固定于B处的光电门,测得A、B间的距离为H〔H>>d〕,光电计时器记录下小球通过光电门的时间为t,当地的重力加速度为g.如此:〔1〕如图乙所示,用游标卡尺测得小球的直径d= 7.25 mm.〔2〕小球经过光电门B时的速度表达式为.。
2014 年安徽省高考物理试卷参照答案与试题分析一、选择题(本卷共20 个小题,每题 6 分,共 120 分)14.(6 分)( 2014? 安徽)在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推断未知现象的特征和规律.法国物理学家库伦在研究异种电荷的吸引问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为 G,地球质量为 M,摆球到地心的距离为 r ,则单摆振动周期 T 与距离 r 的关系式为()A.T=2πr B.T=2π r C.T=D.T=2πl考点:单摆周期公式;万有引力定律及其应用.专题:单摆问题.剖析:先依据万有引力等于重力列式求解重力加快度,再依据单摆的周期公式列式,最后联立获取单摆振动周期T 与距离 r 的关系式.解答:解:在地球表面,重力等于万有引力,故:mg=G解得:g=①单摆的周期为:T=2π②联立①②解得:T=2πr应选: B.评论:此题重点是记着两个公式,地球表面的重力加快度公式和单摆的周期公式,基础题目.15.( 6 分)( 2014? 安徽)以下图,有一内壁圆滑的闭合椭圆形管道,置于竖直平面内,MN是经过椭圆中心O点的水平线.已知一小球从M点出发,初速率为v0,沿管道 MPN运动,到 N 点的速率为v1,所需时间为t 1;若该小球仍由M点以初速率v0出发,而沿管道MQN运动,到 N 点的速率为v2,所需时间为t 2,则()A. v1=v2, t 1> t 2B.v1<v2, t 1> t 2C. v1=v2, t 1< t 2D. v1< v2, t 1< t 2考点:匀变速直线运动的位移与时间的关系.专题:直线运动规律专题.剖析:依据机械能守恒定律剖析小球抵达N点时速率关系,联合小球的运动状况,剖析均匀速率关系,即可获取结论.解答:解:因为小球在运动过程中只有重力做功,机械能守恒,抵达N点时速率相等,即有v1=v2.小球沿管道MPN运动时,依据机械能守恒定律可知在运动过程中小球的速率小于初速率 v0,而小球沿管道MQN运动,小球的速率大于初速率v0,因此小球沿管道的均匀速率小于沿管道MQN运动的均匀速率,而两个过程的行程相等,因此有t 2.故 A 正确.MPN运动t 1>应选: A评论:解决此题重点要掌握机械能守恒定律,并能用来剖析小球速率的大小,知道均匀速率等于行程与时间之比.16.(6 分)( 2014? 安徽)一简谐横波沿x 轴正向流传,图 1 是 t=0 时辰的波形图,图 2 是介质中某质点的振动图象,则该质点的x 坐标值合理的是()A. 0.5m B.1.5m C. 2.5m D. 3.5m考点:简谐运动的振动图象;横波的图象;波长、频次和波速的关系.专题:振动图像与颠簸图像专题.剖析:从图 2 获取 t=0 时辰质点的位移和速度方向,而后再到图 1 中找寻该点.解答:解:从图 2 获取 t=0 时辰质点的位移为负且向负y 方向运动;在图 1 中位移为负y 方向,大小与图 2 相等,且速度为﹣ y 方向的是 2.5 地点的质点;应选: C.评论:此题重点是明确颠簸图象和振动图象的差别,振动图象反应了某个质点在不一样时间的位移状况,颠簸图象反应的是不一样质点在同一时辰的位移状况,不难.17.(6 分)( 2014? 安徽)一带电粒子在电场中仅受静电力作用,取该直线为x 轴,开端点O为坐标原点,其电势能E P与位移中合理的是()做初速度为零的直线运动,x 的关系以下图,以下图象A.B.电场强度与位移关系粒子动能与位移关系C.D.粒子速度与位移关系粒子加快度与位移关系考点:电势能;电场强度.专题:电场力与电势的性质专题.剖析:粒子仅受电场力作用,做初速度为零的加快直线运动;依据功能关系获取Ep﹣x 图象的斜率的含义,得出电场力的变化状况;而后联合加快度的含义判断加快度跟着位移的变化状况.解答:解:粒子仅受电场力作用,做初速度为零的加快直线运动,电场力做功等于电势能的减小量,故:F=|| ,即 Ep﹣ x 图象上某点的切线的斜率表示电场力;A、Ep﹣ x 图象上某点的切线的斜率表示电场力,故电场力渐渐减小,依据E= ,故电场强度也渐渐减小;故 A 错误;B、依据动能定理,有:F? △x=△Ek,故Ek﹣ x 图线上某点切线的斜率表示电场力;因为电场力渐渐减小,与 B 图矛盾,故 B 错误;C、题图 v﹣ x 图象是直线,同样位移速度增添量相等,又是加快运动,故增添相等的速度需要的时间渐渐减小,故加快度渐渐增添;而电场力减小致使加快度减小;故矛盾,故 C 错误;D、粒子做加快度减小的加快运动,故 D 正确;应选: D.评论:此题切入点在于依据Ep﹣x 图象获取电场力的变化规律,打破口在于依据牛顿第二定律获取加快度的变化规律,而后联合动能定理剖析;不难.18.( 6 分)( 2014? 安徽)“人造小太阳”托卡马克装置使用强磁场拘束高温等离子体,使此中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的均匀动能与等离子体的温度T 成正比,为拘束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感觉强度 B 正比于()A.B.T C.D. T2考点:带电粒子在匀强磁场中的运动.专题:带电粒子在磁场中的运动专题.剖析:粒子在磁场中做匀速圆周运动,由牛顿第二定律求出磁感觉强度,而后依据题意解题.解答:解:由牛顿第二定律得:qvB=m,解得: E K= mv2=,得: B= ,均匀动能与等离子体的温度T 成正比,则磁感觉强度 B 正比于;应选: A.评论:此题考察了求磁感觉强度与热力学温度的关系,粒子在磁场中做匀速圆周运动,应用牛顿第二定律即可正确解题.19.( 6 分)( 2014? 安徽)以下图,一倾斜的匀质圆环绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离 2.5m 处有一小物体与圆盘一直保持相对静止,物体与盘面间的动摩擦因数为,(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m/s2,则ω的最大值是()A.rad/s B.rad/s C. 1.0rad/s D. 0.5rad/s考点:向心力;线速度、角速度和周期、转速.专题:匀速圆周运动专题.剖析:当物体转到圆盘的最低点,由重力沿斜面向下的分力和最大静摩擦力的协力供给向心力时,角速度最大,由牛顿第二定律求出最大角速度.解答:解:当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:2μm gcos30°﹣ mgsin30°=mω r则ω==rad/s=1rad/s应选: C评论:此题重点要剖析向心力的根源,明确角速度在什么地点最大,由牛顿第二定律进行解题.20.( 6 分)(2014? 安徽)英国物理学家麦克斯韦以为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r 的绝缘体圆环水平搁置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为 +q 的小球.已知磁感觉强度 B 随时间均匀增添,其变化率为k,若小球在环上运动一周,则感生电场对小球的作使劲所做功的大小是()B.r2qk 2 2A. 0 C. 2πr qk D.πr qk考点:感生电动势、动生电动势;闭合电路的欧姆定律.专题:电磁感觉与电路联合.剖析:依据法拉第电磁感觉定律求解感觉电动势,依据楞次定律判断感觉电动势的方向,然后依据 W=qU求解电功.解答:解:磁感觉强度 B 随时间均匀增添,其变化率为k,故感觉电动势为:2U=S=πr k依据楞次定律,感觉电动势的方向为顺时针方向;小球带正电,小球在环上运动一周,则感生电场对小球的作使劲所做功的大小是:W=qU=πr2qk应选: D.评论:此题重点是明确感觉电动势的大小求解方法和方向的判断方法,会求解电功,基础问题.二、非选择题21.( 9 分)( 2014? 安徽)图 1 是“研究平抛物体运动”的实验装置图,经过描点画出平抛小球的运动轨迹.(1)以下是实验过程中的一些做法,此中合理的是ac.a.安装斜槽轨道,使其尾端保持水平b.每次小球开释的初始地点能够随意选择c.每次小球应从同一高度由静止开释d.为描出小球的运动轨迹,描述的点能够用折线连结(2)实验获取平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,丈量2c.(3)图 3 是某同学依据实验画出的平抛小球的运动轨迹,O为平抛的起点,在轨迹上任取三点 A、 B、 C,测得 A、 B 两点竖直坐标y1为 5.0cm, y2为 45.0cm , A、 B 两点水平间距△x为 40.0cm ,则平抛小球的初速度 v0为 2.0 m/s ,若 C点的竖直坐标 y3为 60.0cm,则小球在 C 点的速度 v C为 4.0 m/s(结果保存两位有效数字,g 取 10m/s2).考点:研究平抛物体的运动.专题:实验题.剖析:(1)保证小球做平抛运动一定经过调理使斜槽的尾端保持水平,因为要画同一运动的轨迹,一定每次开释小球的地点同样,且由静止开释,以保证获取同样的初速度,实验要求小球滚下时不可以遇到木板平面,防止因摩擦而使运动轨迹改变,最后轨迹应连成光滑的曲线.(2)平抛运动竖直方向做自由落体运动,水平方向做匀速直线运动;联立求得两个方向间的位移关系可得出正确的图象.(3)依据平抛运动的办理方法,直方向做自由落体运动,水平方向做匀速直线运动即可求解.解答:解:( 1)A、经过调理使斜槽尾端保持水平,是为了保证小球做平抛运动,故A 正确;BC、因为要画同一运动的轨迹,一定每次开释小球的地点同样,且由静止开释,以保证获取同样的初速度,故 B 错误, C 正确;D、用描点法描述运动轨迹时,应将各点连成光滑的曲线,不可以练成折线或许直线,故D错误.应选:AC.( 2)物体在竖直方向做自由落体运动,y= gt 2;水平方向做匀速直线运动,x=vt ;联立可得: y=,因初速度同样,故为常数,故y﹣ x2应为正比率关系,故 C正确, ABD错误.应选: C.(3)依据平抛运动的办理方法,竖直方向做自由落体运动,水平方向做匀速直线运动,因此 y1= g①y2=②水平方向的速度,即平抛小球的初速度为v0=③联立①②③代入数据解得:v0=2.0m/s若 C 点的竖直坐标y3为 60.0cm ,则小球在 C 点的对应速度v C:据公式可得:=2gh,因此 v 下=2=3.5m/s=4.0m/s因此 C点的速度为:v c=故答案为: 2.0 ;4.0评论:解决平抛实验问题时,要特别注意实验的注意事项,在平抛运动的规律研究活动中不必定限制于课本实验的原理,要着重学生对研究原理的理解,提升解决问题的能力;灵巧应用平抛运动的办理方法是解题的重点.22.( 9 分)( 2014? 安徽)某同学为了丈量一个量程为3V 的电压表的内阻,进行了以下实验:(1)他先用多用电表进行了正确的丈量,丈量时指针地点如图 1 所示,得出电压表的内阻为 3.00 ×10 3Ω,此时电压表的指针也偏转了.已知多用表欧姆档表盘中央刻度值为“15”,表内电池电动势为 1.5V ,则电压表的示数为 1.0 V(结果保存两位有效数字).(2)为了更正确地丈量该电压表的内阻R V,该同学设计了图 2 所示的电路图,实验步骤如下:A.断开开关 S,按图 2 连结好电路;B.把滑动变阻器 R的滑片 P 滑到 b 端;C.将电阻箱 R0的阻值调到零;D.闭合开关 S;E.挪动滑动变阻器R 的滑片 P 的地点,使电压表的指针指到3V 地点;F.保持滑动变阻器R 的滑片 P 地点不变,调理电阻箱R0的阻值使电压表指针指到 1.5V 位置,读出此时电阻箱R0的阻值,此值即为电压表内阻R V的丈量值;G.断开开关 S.实验中可供选择的实验器械有:a.待测电压表b.滑动变阻器:最大阻值2000Ωc.滑动变阻器:最大阻值10Ωd.电阻箱:最大阻值 9999.9 Ω,阻值最小该变量为0.1 Ωe.电阻箱:最大阻值 999.9 Ω,阻值最小该变量为0.1 Ωf .电池组:电动势约6V,内阻可忽视g.开关,导线若干依据这位同学设计的实验方法,回答以下问题:①要使丈量更精准,除了采纳电池组、导线、开关和待测电压表外,还应从供给的滑动变阻器中采纳 c (填“ b”或“ c”),电阻箱中采纳 d (填“ d”或“ e”).②电压表内阻 R V的丈量值 R测和真切值 R 真对比, R 测> R真(填“>”或“<”);若 R V越大,则越小(填“大”或“小”).考点:伏安法测电阻.专题:实验题.剖析:( 1)欧姆表的内电阻等于中值电阻,依据闭合电路欧姆定律列式求解即可;(2)①采纳电压表半偏法丈量电压表内电阻,要保证电压表与电阻箱的总电压保持不变,需要使电压表电阻远大于滑动变阻器的电阻,电阻箱最大电阻不可以小于电压表电阻;②实验中要保证电压表与电阻箱的总电压不变,但实质上该电压是变化的,当电阻箱电阻增添时,电压表与电阻箱的总电压稍微增添,故调理电阻箱 R0的阻值使电压表指针指到 1.5V 地点,此时电阻箱的电压大于 1.5V ;解答:解:( 1)欧姆表的内电阻等于中值电阻,为:R=15×100=1500Ω;电压表的内电阻为:R V=3000Ω;故电压表读数为:U=IR V===1.0V(2)①采纳电压表半偏法丈量电压表内电阻,要保证电压表与电阻箱的总电压保持不变,需要使电压表电阻远大于滑动变阻器的电阻,故滑动变阻器选择小电阻,即选择 c;电阻箱最大电阻不可以小于电压表电阻,电压表内电阻约为3000 欧姆,故电阻箱选择d;②实验中要保证电压表与电阻箱的总电压不变,但实质上该电压是变化的;当电阻箱电阻增添时,电压表与电阻箱的总电压稍微增添;实验中以为电阻箱和电压表电阻相等,故调理电阻箱R0的阻值使电压表指针指到 1.5V地点,此时电阻箱的电压大于 1.5V ,故电阻箱的电阻大于电压表的电阻,大;当 R v越大,电压表与电阻箱的总电压偏差越小,系统偏差越小,故当即丈量值偏R v越大,则越小;故答案为:( 1)1.0 ;( 2)① c、 d;②>,小.评论:此题考察了用半偏法丈量电压表电阻,重点是明的确验原理,从实验原理角度选择器械、剖析偏差根源,不难.23.( 14 分)( 2014? 安徽)以下图,充电后的平行板电容器水平搁置,电容为 C,极板间距离为d,上极板正中有一小孔,质量为 m、电荷量为 +q 的小球从小孔正上方高 h 处由静止开始着落,穿过小孔抵达下极板处速度恰为零(空气阻力忽视不计,极板间电场可视为匀强电场,重力加快度为g),求:(1)小球抵达小孔处的速度;(2)极板间电场强度大小和电容器所带电荷量;(3)小球从开始着落运动到下极板处的时间.考点:匀强电场中电势差和电场强度的关系;动量定理;动能定理的应用.专题:电场力与电势的性质专题.剖析:( 1)小球抵达小孔前是自由落体运动,依据速度位移关系公式列式求解即可;( 2)对从开释到抵达下极板处过程运用动能定理列式求解电场强度,而后依据 Q=CU 求解电容器的带电量;( 3)对加快过程和减速过程分别运用动量定理列式求解时间,而后乞降即可.解答:解:( 1)小球抵达小孔前是自由落体运动,依据速度位移关系公式,有:v2=2gh解得:v=①( 2)对从开释到抵达下极板处过程运用动能定理列式,有:mg( h+d)﹣ qEd=0解得:E=②电容器两极板间的电压为:U=Ed=,电容器的带电量为:Q=CU=.( 3)加快过程:mgt1=mv③减速过程,有:(mg﹣qE) t 2=0﹣mv④t=t 1+t 2⑤联立①②③④⑤解得:t=.答:( 1)小球抵达小孔处的速度为;( 2)极板间电场强度大小为,电容器所带电荷量为;( 3)小球从开始着落运动到下极板处的时间为.评论:此题重点是明确小球的受力状况和运动规律,而后联合动能定理和动量定理列式剖析,不难.24.( 16 分)( 2014? 安徽)如图 1 所示,匀强磁场的磁感觉强度 B 为 0.5T ,其方向垂直于倾角θ为 30°的斜面向上.绝缘斜面上固定有“ A”形状的圆滑金属导轨MPN(电阻忽视不计),MP和 NP长度均为 2.5m ,MN连线水平,长为3m,以 MN的中点 O为原点, OP为 x 轴建立一维坐标系 Ox,一根粗细均匀的金属杆CD,长度 d 为 3m,质量 m为 1kg,电阻 R 为 0.3 Ω,在拉力 F 的作用下,从 MN处以恒定速度v=1m/s 在导轨上沿 x 轴正向运动(金属杆与导轨接触优秀),g 取 10m/s 2.(1)求金属杆 CD运动过程中产生的感觉电动势 E 及运动到 x=0.8m 处电势差 U CD;(2)推导金属杆 CD从 MN处运动到 P 点过程中拉力 F 与地点坐标 x 的关系式,并在图 2 中画出 F﹣ x 关系图象;(3)求金属杆CD从 MN处运动到P 点的全过程产生的焦耳热.考点:导体切割磁感线时的感觉电动势.专题:电磁感觉与电路联合.剖析:( 1)导体棒切割磁感线产生感觉电动势,由几何关系求得x=0.8m 处的电动势,由欧姆定律即可求得CD之间的电势差;( 2)依据上述发现,感觉电流大小与导体长度没关,则电流恒定,因此由电量表达式联合时间即可求解;(3)当导体棒匀速运动,由有效长度可列出安培力大小对于向下运动位移的表达式,依据安培力与位移成线性关系,可利用安培力均匀值来求出产生焦耳热.解答:解:( 1)导体棒开始运动时,回路中产生的感觉电动势为:E=Bdv=0.5×3×1=1.5V;由几何关系得:m,,接入导轨之间的有效长度:L=2? ( 2.0 ﹣ vt )? tan ∠MPO=1.5×( 2.0 ﹣ vt ),金属杆 CD运动过程中产生的有效感觉电动势E:E=BLv=0.5×1.5 ×( 2.0 ﹣x)× 1=0.75 ( 2.0 ﹣ x),运动到 x=0.8m 处时的有效电动势:E1=0.75 ( 2.0 ﹣x)=0.75 ×( 2.0 ﹣ 0.8 ) V=0.9V.这一段相当于相当于电源,并且轨道没有电阻,因此电源是被短接的,那么接入回路中的这一部分电势到处相等,因此 CD两头电势差就由节余两头的导体棒产生,又由右手定章判断 D比 C 电势高;因此: U DC=E﹣ E1=1.5V ﹣0.9V=0.6V ,U CD=﹣ 0.6V ;( 2)接入电路的导体棒的电阻:感觉电流: A安培力 F 安 =BIL=0.5 ×10×0.75 ( 2.0 ﹣ x) =3.75 ( 2.0 ﹣x)由均衡条件得: mgsinθ+F安=F得拉力 F 与地点坐标x 的关系式: F=5+3.75 (2.0 ﹣ x)x=0 时, F=12.5 ;x=2.0 时, F=5N画出 F﹣ x 关系图象如图:( 3)设导体棒经t 时间沿导轨匀速向上运动的位移为x,则 t 时辰导体棒切割的有效长度L x=L﹣ 2x导体棒在导轨上运动时所受的安培力: F 安=3.75 ( 2.0 ﹣ x)因安培力的大小 F 安与位移 x 成线性关系,故经过导轨过程中导体棒所受安培力的平均值:N产生的焦耳热:J答:( 1)金属杆CD运动过程中产生的感觉电动势E=1.5V,运动到x=0.8m 处CD之间的电势差是﹣0.6V ;( 2)金属杆 CD从 MN处运动到 P 点过程中拉力 F 与地点坐标 x 的关系式是 F=5+3.75( 2.0 ﹣x),并在图 2 中画出 F﹣ x 关系图象如图;( 3)金属杆CD从 MN处运动到 P 点的全过程产生的焦耳热是7.5J .评论:考察法拉第电磁感觉定律,闭合电路欧姆定律,共点力均衡条件及安培力表达式.本题打破口:产生感觉电流与导体棒有效长度没关,同时巧用安培力与位移成线性关系,由安培力均匀值来求焦耳热.第三小问另一种解法:设导体棒经t 时间沿导轨匀速向下运动的位移为x,则 t 时辰导体棒切割的有效长度L x=L﹣ 2x,求出导体棒在导轨上运动时所受的安培力,作出安培力大小随位移x 变化的图象,图象与坐标轴围成面积表示导体棒战胜安培力作功,也为产生的焦耳热.25.(20 分)( 2014? 安徽)在圆滑水平面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离以下图,L 为 1.0m,凹槽与物块的质量均为m,二者之间的动摩擦因数μ为 0.05 ,开始时物块静止,凹槽以 v0=5m/s 初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计, g 取 10m/s2,求:(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到二者相对静止物块与右边槽壁碰撞的次数;(3)从凹槽开始运动到二者刚相对静止所经历的时间及该时间内凹槽运动的位移大小.考点:动量守恒定律.专题:动量定理应用专题.剖析:( 1)碰撞过程中动量守恒,依据动量守恒定律列式即可求解;(2)整个过程,对整体依据动能定理列式即可求解;(3)设凹槽与物块碰前的速度分别为 v1、 v2,碰后的速度分别为 v1′、 v2′.依据动量守恒定律及能量守恒定律列式可知,每碰撞一次凹槽与物块发生一次速度互换,在同一坐标系上二者的速度图线,依据碰撞次数可分为13 段,凹槽、物块的v﹣t 在两条连续的匀变速运动图线间变换,故可用匀变速直线运动规律求时间,凹槽的﹣ t 图象所包围的暗影面积即为凹槽的位移大小.解答:解:( 1)设二者间相对静止时的速度为v,由动量守恒定律得:图象vmv0=2mv解得: v=(2)物块与凹槽间的滑动摩擦力f= μN=μmg设二者间相对静止前,相对运动的行程为s1,由动能定理得:解得: s1 =12.5m已知 L=1m,可推知物块与右边槽壁共发生 6 次碰撞.( 3)设凹槽与物块碰前的速度分别为v1、 v2,碰后的速度分别为v1′、 v2′.有mv1+mv2=mv1′+mv2′,得 v 1′=v 2, v2′=v1即每碰撞一次凹槽与物块发生一次速度互换,在同一坐标系上二者的速度图线以下图,依据碰撞次数可分为 13 段,凹槽、物块的 v﹣ t 图象在两条连续的匀变速运动图线间变换,故可用匀变速直线运动规律求时间.则v=v0 +at,a=﹣μg解得: t=5s凹槽的 v﹣ t 图象所包围的暗影面积即为凹槽的位移大小 s2(.等腰三角形面积共分 13 份,第一份面积为 0.5L .其他每份面积均为 L.)答:( 1)物块与凹槽相对静止时的共同速度为 2.5m/s ;( 2)从凹槽开始运动到二者相对静止物块与右边槽壁碰撞的次数 6 次;( 3)从凹槽开始运动到二者刚相对静止所经历的时间为5s,该时间内凹槽运动的位移大小为12.75m.评论:此题主要考察了动量守恒定律、动能定理及能量守恒定律的直策应用,要求同学们能正确剖析物体的运动状况,能依据题意画出速度﹣时间图象,难度适中.。
2014年普通高等学校招生全国统一考试(安徽卷)理综——物理第Ⅰ卷(选择题 共120分)本卷共20小题,每小题6分.共120分。
在每题给出的四个选项中,只有一项是最符合题目要求的。
14. 在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律。
法国物理学家库伦在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系。
已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( B ) A. l GM rT π2= B. GM l r T π2= C. l GM r T π2= D. GMrl T π2= 15.如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN 是通过椭圆中心O 点的水平线。
已知一小球从M 点出发,初速率为v 0,沿管道MPN 运动,到N 点的速率为v 1,所需时间为t 1;若该小球仍由M 点以出速率v 0出发,而沿管道MQN 运动,到N 点的速率为v 2,所需时间为t 2.则( A )16.一简谐横波沿x 轴正向传播,图1示t =0时刻的波形图,图2是介质中某质点的振动图像,则该质点的x 坐标值合理的是( C )A.0.5mB. 1.5mC. 2.5mD. 3.5m17. 一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动,取该直线为x 轴,起始点O 为坐标原点,其电势能Ep 与位移x 的关系如右图所示,下列图象中合理的是( D )18.“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞 已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变 由此可判断所需的磁感应强度B 正比于B.T D.2T19.如图所示,一倾斜的匀质圆盘垂直于盘面的固定对称轴以恒定的角速度ω转动,盘面上离转轴距离2.5m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为2。
姓名 座位号(在此卷上答题无效)绝密★启用前2014年普通高等学校招生全国统一考试(安徽卷)理科综合能力测试(物理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第5页,第Ⅱ卷第6页至第12页。
全卷满分300分,时间150分钟。
考生注意事项:1、答题前,务必在试题卷,答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2、答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
............................ 4、考试结束后,务必将试题卷和答题卡一并上交。
第Ⅰ卷(选择题 共120分)本卷共20小题,每小题6分,共120分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
14.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律。
法国物理学家库仑在研究异种电荷的吸引问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系。
已知单摆摆长为l ,引力常量为G 。
地球的质量为M 。
摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为 A.2T π=B.2T π=C.T =D.2T π=【答案】B【解析】由于万有引力使物体产生加速度,由牛顿第二定律得:2MmGmg r=,而单摆的振动周期公式为2T =,联立得:2T π=B 正确。
高三物理试题答案第1页(共3页)合肥市2014年高三第一次教学质量检测物理试题参考答案及评分标准一㊁选择题(每小题4分,共40分)每小题给出的四个选项中,只有一个正确选项㊂题号12345678910选项A A D A C BC D DC二㊁实验题与填空题(11题2分,12题6分,13题8分,共16分)11.A C12.①0.25s ;0.5m /s ;一条倾斜直线;②0.42m /s 2;0.53m /s㊂13.①0.183(0.181~0.185);②V 1,A 1,R 1;③见答图;④πd 2U 04I L 0说明:答图中电压表连接接线柱b ㊁c 也正确㊂三.计算题(14题8分,15题10分,16题12分,17题14分,共44分)14.(1)A B 段加速度a 1=2x 1t 21=0.5m /s22分根据牛顿第二定律,有F c o s α-μ(m g -F s i n α)=m a 11分解得:F =m a 1+μm g c o s α+μs i n α=2ˑ0.5+0.5ˑ2ˑ100.6+0.5ˑ0.8N=11N1分(2)v =a 1t 1=2m /s 在B C 段由机械能守恒,由m gs i n α㊃x 2=12m v 2解得:x 2=0.25m2分(3)小物块从B 向A 运动过程中,由μm g =m a 2㊀解得:a 2=μg =5m /s 21分滑行的位移x 3=v 22a 2=222ˑ5m=0.4m 小物块停止运动时,离B 点的距离为0.4m1分高三物理试题答案第2页(共3页)15.(1)以金属杆为研究对象,由v =a t ㊀E =B l v ㊀㊀I =E R =B l v R㊀F -I B l =m a4分解得:F =m a +B 2l2Ra t1分由图线上取两点坐标(0,0.l N )和(10s ,0.2N )代入方程,解得:a =1m /s 2;m =0.1k g1分(2)从静止开始运动的t 时间内杆的位移为:x =12a t21分穿过回路的磁通量的变化:Δφ=B ΔS =B l x 1分所以通过电阻R 的电量为:q =I t =E R t =ΔϕR =B a l t 22R 2分或:Δq =I Δt =B l v R Δt =B l R Δx ㊀㊀得:q =ΣΔq =B l R ΣΔx =B l R x =B a l t22R16.(1)若离子由电场射出进入磁场后垂直打在荧光屏上,则离子在磁场中速度方向偏转了 190ʎ,离子在磁场中做圆周运动的径迹如图所示㊂由几何知识可知,离子在磁场中做圆周运动的圆半径r 1=R =103c m 2分设离子进入磁场时的速度为v 1,由q v 1B =m v 21r 1,㊀㊀得r 1=m v 1qB 2分设两金属板间的电压为U ,离子在电场中加速,由动能定理有:q U 1=12m v 21㊀㊀可得U 1=B 2r 21q 2m2分代入有关数值可得U 1=60V ,也就是电压表示数为60V ㊂(2)两金属板间的电压越小,离子经电场加速后速度也越小,离子在磁场中作圆周运动的半径越小,射出电场时的偏转角越大,在磁场中运动的时间越长㊂所以滑片在变阻器R 2 2的左端时,离子在磁场中运动的时间最长㊂由闭合电路欧姆定律有,I =E R 1+R 2+r =1A1分两金属板间电压U m i n =I R 1=20V 由q U m i n =12m v 22㊀及r 2=m v 2qB ㊀得:r 2=0.1m 1分高三物理试题答案第3页(共3页)粒子进入磁场后的径迹如图2所示,O 1为径迹圆的圆心㊂由图可得:t a n α=R r 2=3㊀㊀所以α=60ʎ2分故离子在磁场中运动的最长时间为t =120360T =13㊃2πm q B =π6ˑ104s ʈ5.2ˑ10-5s 1分在ΔO O ᶄA 中,θ=30o,所以A ㊁O ᶄ间距离x =H t a n θ=203ˑ33c m=20c m 1分17.(1)滑块C 滑上传送带后做加速运动,设发生的位移为x 时,速度达到传送带的速度v ,根据动能定理:μm g x =12m (v 2-v 2C )2分解得:x =1.25m<L1分即滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v =3.0m /s 1分(2)设A ㊁B 碰撞后的速度为v 1,A ㊁B 与C 分离时的速度为v 2,由动量守恒定律㊀㊀m v 0=2m v 12分㊀㊀2m v 1=2m v 2+m v C1分由能量守恒得E P +122m v 21=12ˑ2m v 22+12m v 2C 1分解得㊀㊀㊀㊀E P =1.0J1分(3)在题设条件下,滑块C 滑上传送带后一直减速运动到传送带右端时,速度应当恰好等于传递带的速度v ,据动能定理:-μm g L =12m (v 2-v C ᶄ2)1分解得㊀㊀v C ᶄ=5m /s1分设滑块C 在传送带上运动时间为t 1分因L =12(v +v C ᶄ)t ㊀㊀得t =1s 1分所以滑块C 与传送带间因摩擦产生的热量Q 为:Q =μm g (L -v t )=0.20ˑ1ˑ10ˑ(4-3ˑ1)J =2J 1分。
2014年安徽省高考物理试卷一、选择题(本卷共20个小题,每小题6分,共120分)14、(6分)在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律、法国物理学家库伦在研究异种电荷的吸引问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系、已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为()A、T=2πrB、T=2πrC、T=D、T=2πl15、(6分)如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN 是通过椭圆中心O点的水平线、已知一小球从M点出发,初速率为v0,沿管道MPN运动,到N点的速率为v1,所需时间为t1;若该小球仍由M点以初速率v0出发,而沿管道MQN运动,到N点的速率为v2,所需时间为t2,则()A、v1=v2,t1>t2B、v1<v2,t1>t2C、v1=v2,t1<t2D、v1<v2,t1<t216、(6分)一简谐横波沿x轴正向传播,图1是t=0时刻的波形图,图2是介质中某质点的振动图象,则该质点的x坐标值合理的是()A、0.5mB、1.5mC、2.5mD、3.5m17、(6分)一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动,取该直线为x轴,起始点O为坐标原点,其电势能E P与位移x的关系如图所示,下列图象中合理的是()A、电场强度与位移关系B、粒子动能与位移关系C、粒子速度与位移关系D、粒子加速度与位移关系18、(6分)“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞、已知等离子体中带电粒子的平均动能与等离子体的温度T成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变、由此可判断所需的磁感应强度B正比于()A、B、T C、 D、T219、(6分)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为,(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10m/s2,则ω的最大值是()A、rad/sB、rad/sC、1.0rad/sD、0.5rad/s20、(6分)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场、如图所示,一个半径为r的绝缘体圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球、已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是()A、0B、r2qkC、2πr2qkD、πr2qk二、非选择题21、(9分)图1是“研究平抛物体运动”的实验装置图,通过描点画出平抛小球的运动轨迹、(1)以下是实验过程中的一些做法,其中合理的是、a、安装斜槽轨道,使其末端保持水平b、每次小球释放的初始位置可以任意选择c、每次小球应从同一高度由静止释放d、为描出小球的运动轨迹,描绘的点可以用折线连接(2)实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x和竖直坐标y,图2中y﹣x2图象能说明平抛小球运动轨迹为抛物线的是、(3)图3是某同学根据实验画出的平抛小球的运动轨迹,O为平抛的起点,在轨迹上任取三点A、B、C,测得A、B两点竖直坐标y1为5.0cm,y2为45.0cm,A、B两点水平间距△x为cm,则平抛小球的初速度v0为m/s,若C点的竖直坐标y3为60.0cm,则小球在C点的速度v C为m/s(结果保留两位有效数字,g取10m/s2)、22、(9分)某同学为了测量一个量程为3V的电压表的内阻,进行了如下实验:(1)他先用多用电表进行了正确的测量,测量时指针位置如图1所示,得出电压表的内阻为3.00×103Ω,此时电压表的指针也偏转了、已知多用表欧姆档表盘中央刻度值为“15”,表内电池电动势为1.5V,则电压表的示数为V(结果保留两位有效数字)、(2)为了更准确地测量该电压表的内阻R V,该同学设计了图2所示的电路图,实验步骤如下:A、断开开关S,按图2连接好电路;B、把滑动变阻器R的滑片P滑到b端;C、将电阻箱R0的阻值调到零;D、闭合开关S;E、移动滑动变阻器R的滑片P的位置,使电压表的指针指到3V位置;F、保持滑动变阻器R的滑片P位置不变,调节电阻箱R0的阻值使电压表指针指到1.5V位置,读出此时电阻箱R0的阻值,此值即为电压表内阻R V的测量值;G、断开开关S、实验中可供选择的实验器材有:a、待测电压表b、滑动变阻器:最大阻值2000Ωc、滑动变阻器:最大阻值10Ωd、电阻箱:最大阻值9999.9Ω,阻值最小改变量为0.1Ωe、电阻箱:最大阻值999.9Ω,阻值最小改变量为0.1Ωf、电池组:电动势约6V,内阻可忽略g、开关,导线若干按照这位同学设计的实验方法,回答下列问题:①要使测量更精确,除了选用电池组、导线、开关和待测电压表外,还应从提供的滑动变阻器中选用(填“b”或“c”),电阻箱中选用(填“d”或“e”)、②电压表内阻R V的测量值R测和真实值R真相比,R测R真(填“>”或“<”);若R V越大,则越(填“大”或“小”)、23、(14分)如图所示,充电后的平行板电容器水平放置,电容为C,极板间距离为d,上极板正中有一小孔,质量为m、电荷量为+q的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g),求:(1)小球到达小孔处的速度;(2)极板间电场强度大小和电容器所带电荷量;(3)小球从开始下落运动到下极板处的时间。
合肥一中2013-2014学年度第一学期段一考试高 三 年 级 物 理 试 卷(考试时间:90 分钟 满分:100分)一、选择题(每小题4分,共40分)每小题给出的四个选项中,只有一个选项正确。
1.一质点沿直线Ox 方向做加速运动,它离开O 点的距离随时间变化的关系为s =4+2t 3(m),它的速度随时间变化的关系为v =6t 2(m/s).则该质点在t =2 s 时的瞬时速度和t =0到t =2 s 间的平均速度分别为( ) A .8 m/s 、24 m/s B .24 m/s 、8 m/s C .2 4m/s 、10 m/s D .24 m/s 、12 m/s2.四个小球在离地面不同高度处同时由静止释放,不计空气阻力,从开始运动时刻起每隔相等的时间间隔,小球依次碰到地面.下图中,能反映出刚开始运动时各小球相对地面的位置的是( )A BC D 3. 如图所示,一小球从A 点由静止开始沿斜面向下做匀变速直线运动,若到达B 点时速度为v ,到达C 点时速度为2v ,则x AB ∶x BC 等于( ).A .1∶1B .1∶2C .1∶3D .1∶44、图中弹簧秤、绳和滑轮的质量均不计,绳与滑轮间的摩擦力不计,物体的重力都是G ,在图甲、乙、丙三种情况下,物体都处于静止状态,弹簧秤的读数分别是F 1、F 2、F 3, 则( )A .213F F F =>B .213F F F >=C .321F F F ==D .321F F F => 5.“叠罗汉”是一种高难度的杂技。
由六人叠成的三层静态造型如图所示,假设每个人的质图2-9量均为m ,下面五人弯腰后背部呈水平状态,则最底层正中间的人的一只脚对水平地面的压力约为(重力加速度为g ) ( ) A .mg 43 B .mg C .mg 45 D .mg 236.如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A ,A 的左端紧靠竖直墙,A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态,若把A 向右移动少许后,它们仍处于静止状态,则( ) A .球B 对墙的压力增大B .物体A 与球B 之间的作用力增大C .地面对物体A 的摩擦力减小D .物体A 对地面的压力减小7.一倾角为30°的斜劈放在水平地面上,一物体沿斜劈匀速下滑。
现给物体施加如图所示力F ,F 与竖直方向夹角为30°,斜劈仍静止,物体加速下滑,则此时地面对斜劈的摩擦力为( ) A .大小为零 B .方向水平向右 C .方向水平向左 D .无法判断大小和方向8.如图所示,A 、B 两小球质量分别为M A 和M B 连在弹簧两端, B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为:( ) A.都等于2g B. 2g和0 C.2g M M M B B A ⋅+和0 D.0和2g M MMB B A⋅+9.一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连。
小球某时刻正处于图示状态。
设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是( ) A.若小车向左运动,N 可能为零B.若小车向左运动,T 不可能为零C.若小车向右运动,N 不可能为零D.若小车向右运动,T 不可能为零10.如图所示,A 、B 两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物。
已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t ,则 ( )A .当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于tB .当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于tC .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t二、实验题(第11题8分,第12题8分,每题中每空2分,共16分)不要写演算过程。
11.在探究求合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳。
实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度的拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条。
(1) 实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的 (填字母代号)。
A .将橡皮条拉伸相同长度即可 B .将橡皮条沿相同方向拉到相同长度 C .将弹簧秤都拉伸到相同刻度 D .将橡皮条和绳的结点拉到相同位置 (2) 在操作过程中,对减小实验误差有益的说法有 (填字母代号)。
A .两细绳必须等长B .弹簧秤、细绳、橡皮条都应与木板平行C .拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些D .用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大(3) 如图所示,每根细绳分别连着一个量程为5 N 、最小刻度为0.1 N 的弹簧测力计,沿着两个不同的方向拉弹簧测力计,请从图中读出两拉力大小分别为________ N 和________N.12 (1)某同学设计了如上图所示的装置来探究加速度与力的关系。
弹簧秤固定在一合适的木板上,桌面的右边缘固定一支表面光滑的铅笔以代替定滑轮,细绳的两端分别与弹簧秤的挂钩和矿泉水瓶连接。
在桌面上画出两条平行线MN 、PQ ,并测出间距d 。
开始时将木板置于MN 处,现缓慢向瓶中加水,直到木板刚刚开始运动为止,记下弹簧秤的示数F 0,以此表示滑动摩擦力的大小。
再将木板放回原处并按住,继续向瓶中加水后,记下弹簧秤的示数F 1,然后释放木板,并用秒表记下木板运动到PQ 处的时间t 。
(1)木板的加速度可以用d ,t 表示为a = ;为了减小测量加速度的偶然误差可以 采用的方法是(一种即可) 。
(2)改变瓶中水的质量重复实验,确定加速度a 与弹簧秤示数F 1的关系。
下列图象能表示该同学实验结果的是 。
(3)用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点有 。
a .可以改变滑动摩擦力的大小 b .可以更方便地获取多组实验数据 c .可以比较精确地测出摩擦力的大小 d .可以获得更大的加速度以提高实验精度三、计算题(第13题10分、14题8分,第15题12分,第16题14分,共44分)解答应写出必要的文字说明、方程式和重要演算步骤,明确写出结果。
13.一辆值勤的警车停在直公路边,当警员发现从他旁边以s m v /10=的速度匀速行驶的货车有违章行为时,决定去追赶,经s t 20=警车发动起来,以加速度2/2s m a =做匀加速运动,试问:(1)在警车追上货车之前,两车间的最大距离是多少?(2)若警车能达到的最大速度是s m v m /12=,达到最大速度后匀速运动。
则警车发动起来后至少要多长的时间才能追上违章的货车?14.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2。
求:(1)小环的质量m ;(2)细杆与地面间的倾角α。
15..图l 中,质量为m 的物块叠放在质量为2m 的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为μ=0.2.在木板上施加一水平向右的拉力F ,在0~3s 内F 的变化如图2所示,图中F 以mg 为单位,重力加速度210m/s g =.整个系统开始时静止. (1)求1s 末木板与物块各自的速度. (2)求2s 末木板与物块各自的速度.(3)在同一坐标系中画出0~3s 内木板和物块的t -v 图象,据此求0~3s 内物块相对于木板滑过的距离。
16.某校举行托乒乓球跑步比赛,赛道为水平直道,比赛距离为s 。
比赛时,某同学将球置于球拍中心,以大小为a 的加速度从静止开始做匀加速直线运动,当速度达到v 0时,再以v 0做匀速直线运动跑至终点.整个过程中球一直保持在球拍中心不动.比赛中,该同学在匀速直线运动阶段保持球拍的倾角为θ0,如图所示,设球在运动中受到的空气阻力大小与其速度大小成正比,方向与运动方向相反,不计球与球拍之间的摩擦,球的质量为m ,重力加速度为g .(1)求空气阻力大小与球速大小的比值k ;(2)求在加速跑阶段球拍倾角θ随速度v 变化的关系式; (3)整个匀速跑阶段,若该同学速度仍为v 0,而球拍的倾角比θ0大了β并保持不变,不计球在球拍上的移动引起的空气阻力变化,为保证到达终点前球不从球拍上距离中心为r 的下边沿掉落,求β应满足的条件.合肥一中2013-2014学年度第一学期段一考试高 三 年 级 物 理 答 题 卷一、选择题(每小题4分,共40分)每小题四个选项中,只有一个选项正确。
二、实验题(第11,12题各8分,每题中每空2分,共16分)不要写演算过程。
11.(1) (2) (3) , 12.(1) ,(2) (3)三、计算题(第13题10分、14题8分,第15题12分,第16题14分,共44分)解答应写出必要的文字说明、方程式和重要演算步骤,明确写出结果。
姓名 班级 准考证号--------------------------密--------------封----------------线---------------内--------------不------------准---------答---------题----------------------座位号4 41。