离散数学(本)阶段练习一
- 格式:doc
- 大小:304.59 KB
- 文档页数:6
最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
离散数学1-6章练习题及答案离散数学练习题第⼀章⼀?填空1?公式(p q) ( p q)的成真赋值为01; 102?设p, r为真命题,q, s为假命题,则复合命题(p q) ( r s)的真值为03?公式(p q)与(p q) ( p q)共同的成真赋值为01 ;104?设A为任意的公式,B为重⾔式,则A B的类型为重⾔式5. 设p, q均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。
⼆.将下列命题符合化1. ■ 7不是⽆理数是不对的。
解:(p),其中p:. 7是⽆理数;或p,其中p: . 7是⽆理数。
2?⼩刘既不怕吃苦,⼜很爱钻研。
解:p q,其中p:⼩刘怕吃苦,q :⼩刘很爱钻研3?只有不怕困难,才能战胜困难。
解:q p,其中p:怕困难,q:战胜困难或p q,其中p:怕困难,q:战胜困难4?只要别⼈有困难,⽼王就帮助别⼈,除⾮困难解决了。
解:r (p q),其中p:别⼈有困难,q:⽼王帮助别⼈,r:困难解决了或:(r p) q,其中p:别⼈有困难,q:⽼王帮助别⼈,r:困难解决了5?整数n是整数当且仅当n能被2整除。
解:p q,其中p:整数n是偶数,q:整数n能被2整除三、求复合命题的真值P:2能整除5, q:旧⾦⼭是美国的⾸都,r:在中国⼀年分四季1. ((p q) r) (r (p q))2?((q p) (r p)) (( p q) r解:p, q为假命题,r为真命题1. (( p q) r) (r (p q))的真值为02. (( q p) (r p)) (( p q) r 的真值为1四、判断推理是否正确设y 2x为实数,推理如下:若y在x=0可导,则y在x=0连续。
y在x=0连续,所以y在x=0可导。
解:y 2x,x为实数,令p: y在x =0可导,q: y在x=0连续。
P为假命题,q为真命题,推理符号化为:(p q) q p,由p, q得真值可知,推理的真值为0,所以推理不正确。
离散数学-习题集《离散数学》习题集第⼀部分判断题⼀、第⼀章—集合1、()已知集合A的元素个数为10,则集合A的幂集的基=102。
2、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。
2、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。
3、( ) 已知两个集合A={Ф,{Ф}},B={Ф},则A∩B={Ф}。
4、()已知两个集合A={Ф,{Ф}},B={Ф},则A∩B=Ф。
5、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。
6、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。
7、()已知集合A的元素个数为n,则A×A的幂集的元素个数为n2。
8、()已知两个集合A、B,则A-B是由属于B但不属于A的元素构成的集合。
⼆、第⼆章—⼆元关系1、()若R是A上的⼆元关系,I A是A上的恒等关系,则当且仅当I A∈R时,R是A上的⾃反关系。
2、(√)若R是集合A上的⼆元关系,且当(a,b)∈R且(a,c)∈R时,就有(b,c)∈R,则R是A 上的可传递关系。
3、()设A是集合,A1、A2、...A n都是A的⾮空⼦集,令S={A1,A2,...,A n},则如果S是集合A的⼀个划分,那么S⼀定是集合A的⼀个完全覆盖;反之亦然。
5、()R是⾮空集合A上的等价⼆元关系,则A关于R的商集A/R是集合A的⼀个划分,但不是A的⼀个完全覆盖。
6、()已知集合A有4元素,易知集合A共有24个互不相同的⼦集合,所以在集合A上⼀共可定义24个互不相同的⼆元关系。
7、()若R1和R2都是集合A上的可传递⼆元关系,则R1∪R2也是A上的传递关系。
8、()设R是有限的⾮空集合A上的偏序关系,则A必有极⼤(⼩)元和最⼤(⼩)元。
9、()若R1和R2都是集合A上的相容关系,则R1∩R2也是A上的相容关系。
10、()若R1和R2都是集合A的可传递⼆元关系,则R1∩R2也是A上的传递关系。
离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。
A。
p∧┐p∧qB。
┐p∨qC。
┐p∧qD。
┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。
A。
p→┐qB。
p∨┐qC。
p∧qD。
p∧┐q3.只有语句“1+1=10”是命题(A)。
A。
1+1=10B。
x+y=10___<0D。
x mod 3=24.下列等值式不正确的是(C)。
A。
┐(x)A(x)┐AB。
(x)(B→A(x))B→(x)A(x)C。
(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。
(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。
A。
(x)Q(x,z)→(x)(y)R(x,y,z))B。
Q(x,z)→(y)R(x,y,z)C。
Q(x,z)→(x)(y)R(x,y,z)D。
Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。
}∪IA则对应于R的A的划分是(D)。
A。
{{a},{b,c},{d}}B。
{{a,b},{c},{d}}C。
{{a},{b},{c},{d}}D。
{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。
A。
{Ø,{Ø}}∈BB。
{{Ø,Ø}}∈BC。
{{Ø},{{Ø}}}∈BD。
{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。
A。
(X-Y)-Z=X-(Y∩Z)B。
(X-Y)-Z=(X-Z)-YC。
(X-Y)-Z=(X-Z)-(Y-Z)D。
(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。
A。
a*b=min(a,b)B。
a*b=a+bC。
a*b=GCD(a,b) (a,b的最大公约数)D。
离散数学第一部分测试题 一、 填空题1.当p,q,r 分别取1,0,1时,(p→q) (p→r)的真值为 假,或02.设P :他富有,Q :他幸福,“他既不富有也不幸福” 的符号化为 ┐ P ∧┐ Q3.“所有的人都长着黑头发”用谓词表达式符号化为 M(x):x 为人,F(x): x 长着黑头发, x(M(x)→F(x))4.如果6大于4,则4大于5用谓词表达式符号化为 G(x,y): x ﹥y ,G(6,4) →G(4,5)二、 选择题1.2x+3<4( C )A.是命题也是复合命题B.是命题但不是复合命题C.不是命题D.以上都不对2. 下列语句是命题的有( D )A. 什么时候开会呀?B. 请快开门!C. x+y>10。
D. 苹果树和梨树都是落叶乔木。
3.设p 表示命题“天下大雨”,q 表示命题“他乘公共汽车上班”,r 表示命题“他骑自行车上班”。
则命题“如果天不下大雨,他乘公共汽车上班或者骑自行车上班。
”符号化为( B )A .(⌝p ∧q) →rB .⌝p →(q ∨r )C .⌝p ∧(q →r )D .p →(q ∧r )三、 计算题1.求(p ∨q) →r 的主析取范式解 本公式含有三个命题变项,所以极小项均含有三个文字。
75310)()()()()()()()()()()())()(()()()()()(m m m m m r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q q p p r r q p rq p rq p rq p ∨∨∨∨⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∨⌝∧∨⌝∨∨⌝∧⌝∧⌝⇔∨⌝∧⌝⇔∨∨⌝⇔→∨2.求公式的主合取范式:()()R Q Q P ∧→∨证明:()()()()P Q Q R P Q Q R ∨→∧⇔⌝∨∨∧()()P Q Q R ⇔⌝∧⌝∨∧()()()()()P Q Q P P Q R ⇔⌝∧⌝∨∧⌝∨∧∧()()()()()()R Q P P R R Q P ∧∧∨⌝∨∨⌝∧⌝∧⌝⇔()()()()R Q P R Q P R Q P R Q P ∧∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔四、 证明题1.用等演算法证明下面等值式。
1-5 题:× × × ×√6-10 题:× ×√√√11-15题:× ×√ ×√16-17题:√ ×二、单项选择题1 A C2 C3 C 4. B 5 A6 B7 B8 C9 B 10 B11 D 12 A 13 C 14 C三、填空题1 ┐Q→P 或┐P→Q,Q→P2 A B={{a,b}, {a},{b},{c}},A B={{c}},A B-={{a,b}},A B⊕={{a,b},{a},{b}}。
3.{}ΦΦ=Φ,{,{}}ΦΦ-Φ={Φ,{ Φ}},ΦΦ={Φ}。
{,{}}{}ΦΦ-Φ={{Φ}},{}4.A={1,2,3,……,12},R是A上的整除关系,子集B={2,4,6}。
则B的最大元是:无,最小元是:2,极大元是:4,6,极小元是:2,上界是:12,下界是:2,上确界是:12,下确界是:2。
5. g g g6 R, T7. 略8.极大元:{a,b}, {b,c},最大元:无,上界:{a,b,c},下确界:Φ。
( )1.设A ,B ,C 为任意的命题公式,若A C B C ∨⇔∨,则A B ⇔。
( )2.公式P Q ∧是合取范式,不是析取范式。
( )3.公式()()P Q P Q ⌝∨∧→与公式()P Q R →∧等价。
( )4.()(()())()()()()x A x B x x A x x B x ∀∨⇔∀∨∀。
( )5.谓词公式()()((,)(,))x y P x y Q y z ∀∀∨中,x,y 是约束变元,z 是自由变元。
( )6.对谓词公式()(()(,))(,)x P y Q x y R x y ∀→∧中的自由变元进行代入后得到公式()(()(,))(,)x P z Q x z R x y ∀→∧。
( )7.对谓词公式()(()(,))(,)x P x Q x y R x y ∀→∧中的约束变元进行换名后得到公式()(()(,))(,)y P y Q y y R x y ∀→∧。
离散数学本试题及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3,4}中,元素3的补集是()。
A. {1,2,4}B. {1,2,3,4}C. {1,2,3}D. {2,4}答案:A2. 命题“若x>0,则x>1”的逆否命题是()。
A. 若x≤1,则x≤0B. 若x≤1,则x<0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:A3. 函数f(x)=x^2在区间[0,1]上是()。
A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:A4. 逻辑运算符“与”的符号是()。
A. ∧B. ∨C. →D. ¬答案:A5. 集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1,2,3}B. {2,3}C. {1,2,4}D. {1,3,4}答案:B6. 命题“若x>0,则x>1”的否定是()。
A. 若x≤0,则x≤1B. 若x≤0,则x>1C. 若x>0,则x≤1D. 若x≤0,则x≤1答案:C7. 函数f(x)=x^2在区间[-1,1]上是()。
A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:D8. 逻辑运算符“或”的符号是()。
A. ∧B. ∨C. →D. ¬答案:B9. 集合A={1,2,3},B={2,3,4},则A∪B=()。
A. {1,2,3}B. {2,3}C. {1,2,4}D. {1,2,3,4}答案:D10. 命题“若x>0,则x>1”的逆命题是()。
A. 若x≤1,则x≤0B. 若x>1,则x>0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:B二、填空题(每题3分,共30分)11. 集合{1,2,3}的子集个数为______。
答案:812. 命题“若x>0,则x>1”的逆命题是“若x>1,则x>0”,其真假性为______。
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
国家开放大学最新《离散数学(本)》形考任务(1-4 )试题及答案解析形考任务1(正确答案解析附题冃之后)单项选择题题冃1正确获得5.00分中的5.00分未标记标记题目题干设A={1, 2, 3, 4, 5, 6, 7, 8}, R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()■选择一项:A.无、2、无、2B.8、2、8、2C.8、1、6、1D.6、2、6、2反馈你的回答正确正确答案是:无、2、无、2题目2正确获得5.00分中的5.00分未标记标记题目题干设集合A={1,2,3,4}上的二元关系R={<l z 1>, <2, 2>, <2, 3>, <4, 4>}. S={<1, 1>, <2,2>, <2, 3>, <3,2>, <4,4>},则S 是日的()闭包.选择一项:A.自反和传递B.传递C.自反D.对称反馈你的回答正确正确答案是:对称题目3正确获得5.00分中的5.00分未标记标记题冃题干若集合A的元素个数为10,则其暴集的元素个数为( ).选择一项:A.1024B. 1C.100D.10反馈你的回答正确正确答案是:1024题目4正确获得5.00分中的5.00分未标记标记题目题干设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如图所示,若A的子集B = {3, 4, 5},则元素3为B的( )・选择一项:A.最大下界B.下界C.最小元D.最小上界反馈你的回答正确正确答案是:最小上界题目5正确获得5.00分中的5.00分未标记标记题冃题干设集合A=(1, 2, 3), B={3, 4, 5}, C={5, 6, 7), WJ AUB~C=( ).选择一项:A.(4, 5, 6, 7)B.{1, 2, 3, 5)C.(2, 3, 4, 5)D.{1, 2, 3, 4}反馈你的回答正确正确答案是:{1,2, 3, 4}题目6正确获得5.00分中的5.00分未标记标记题目题干设集合A={1, 2, 3, 4, 5},偏序关系是A上的整除关系,则偏序夷<A, > 上的元素5是集合A的( )・选择一项jA.极大元B.最大元C.最小元D.极小元反馈你的回答正确正确答案是:极大元题目7正确获得5.00分中的5.00分未标记标记题冃题干设集合A ={1,2, 3}上的函数分别为:f = {<l,2>, <2,1>, <3,3>},g = {<1, 3>, <2,2>, <3, 2>),h = {<l,3>, <2,1>, <3,1>},则h=( ).选择一项:A.g%B.g°fC.何D.f°g反馈你的回答正确正确答案是:f°g题冃8正确获得5.00分中的5.00分未标记标记题冃题干设集合A={2,4,6,8}, B={1,3,5,7} , A 到 B 的关系R={<x, y>| y = x+l),则R=( )•选择一项:A.{<2, 2>, <3, 3>, <4, 6>}B.(<2,1>, <4, 3>, <6, 5>}C.(<2, 3>, <4, 5>, <6, 7>)D.{<2,1>, <3, 2>, <4, 3>}反馈你的回答正确正确答案是:{<2, 3>, <4, 5>, <6, 7>}题冃9正确获得5.00分中的5.00分未标记标记题目题干集合A=(1, 2, 3, 4}上的关系R={<x, y>|x=y且x, yA},则R的性质为( ).选择一项:A.反自反B.不是对称的C.传递的D.不是自反的反馈你的回答正确正确答案是:传递的题目10正确获得5.00分中的5.00分未标记标记题冃题干集合A=(1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x, y>|x+y=10 且x, yA},则R 的性质选择一项:A.传递且对称的B.反自反且传递的C.自反的D.对称的反馈你的回答正确正确答案是:对称的未标记标记题冃信息文本判断题题目11正确获得5.00分中的5.00分未标记标记题日题干空集的幕集是空集.()选择一项:对错反馈正确的答案是“错”。
离散数学练习题(一)一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E +正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23;B . 32 ;C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( )A .A ;B .P(A) ;C .{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D .{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A 上包含关系“⊆”的哈斯图为( )7、下列函数是双射的为( )A .f : I →E , f (x) = 2x ;B .f : N →N ⨯N, f (n) = <n , n+1> ;C .f : R →I , f (x) = [x] ;D .f :I →N, f (x) = | x | 。
离散数学习题一二参考答案----a3039d74-7162-11ec-90d9-7cb59b590d7d离散数学习题一二参考答案离散数学练习1的参考答案第一节集合的基数1.证明两个可数集的并是可数的。
证明:设a,b是两可数集,a={a1,a2,a3,,an,},b={b1,b2,b3,,bn,}⎧ab→n⎧f:⎧ai2i-1,f是一一对应关系,所以|a∪b|=|n|=ℵ0。
⎧b2jj⎧2.证明有限可数集的并是可数集证明:设A1,A2和a3ak是有限可数集,AI=(Ai1,AI2,ai3,ain,),I=1,2,3,Kk⎧k⎧a=ai→n,f是一一对应关系,所以|a|=|ai|=|n|=ℵ0。
f:⎧i=1i=1⎧aijj(k-1)+i⎧3.证明可数个可数集的并是可数集。
证明:设A1,A2和a3ak为无限可数集,AI=(Ai1,AI2,ai3,ain,),I=1,2,3,∞⎧a=ai→n⎧⎧i=1f:⎧,1⎧aij(i+j-1)(i+j-2)+i⎧2⎧所以f是一对一的对应,所以|a |=|a |=|n |=ℵ. 我∞04.证明整系数多项式所构成的集合是可数集。
证明了具有整系数的n次多项式之和可以写成an={a0xn+a1xn-1++an-1x+an|ai∈z}那么整系数为a=an的多项式集;由于xk的系数ak是整数,那么所有xk的系数的全体所构成的集合是可数集,由习题2“有限个可数集的并是可数集”可得an是可数集,再又习题4“可数个可数集的并是可数集”得出整系数多项式所构成的集合a=an也是可数集。
5.证明不存在等于其真子集的有限集证明:设集合a是有限集,则|a|=n,若b是a的真子集,则|b|≤|a|=n,a-b≠φ,即|a-b|=|a|-|ab|>0;又a=(a-b)∪b,(a-b)b=φ,所以,,就是|a|>|b|,即得结论。
6.证明正有理数集是可数的,从而证明有理数集是可数的。
m证明:因为q+={|m,n∈n},是正分数集,n∞ n+让AI={|n∈ n} ,I=1,2,3,4,m},AI是可数集,q=AIII=1由可数集性质4“可数个可数集的并仍然是可数集”,所以正有理数集合是可数集。
第1次作业一、单项选择题(本大题共30分,共15小题,每小题2分)1.A.4B.5C.6D.32.在完全m叉树中,若树叶数为t,分枝点数为i,则有()A.(m-1)i<t-1B.(m-1)i>t-12C.(m-1)i=t-1D.(m-1)i <t -13.命题a):如果天下雨,我不去。
写出命题a)的逆换式______________A.如果我不去,天下雨。
B.如果我去,天下雨。
C.如果天下雨,我去。
D.如果天不下雨,我去。
4. 设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点, 问该图有多少个顶点()A.B.C.42D.65. 假设A={a,b,c,d}, 考虑子集S={{a,b},{b,c},{d}} ,则下列选项正确的是( )。
A.S 是A 的覆盖B.S是A的划分C.S既不是划分也不是覆盖D.以上选项都不正确6. 没有不犯错误的人。
M(x): x为人。
F(x): x犯错误。
则命题可表示为( )。
A.(? x)(M(x) —F(x)B.(? x)(M(x) ? F(x)C.(? x) (M(x) ? F(x))D.(? x)(M(x) —F(x)7. 命题逻辑演绎的CP规则为()A.在推演过程中可随便使用前提B.在推演过程中可随便使用前面演绎出的某些公式的逻辑结果C.如果要演绎出的公式为B—C形式,那么将B作为前提,演绎出CD.设? (A)是含公式A的命题公式,B<=>A则可以用B替换? (A)中的A8. 设G是有6个结点的完全图,从G中删去()条边,则得到树。
A.6B.9C.159. 设A B两个集合,当()时A-B=B10A.A=BB.A? BC.B? AD.A=B=?10. 设U={1,2,3,4,5} ,A={2,4} ,B={4,3,5} ,C={2,5,3} ,确定集合(A-C)-B = ()。
A.{1,4}B.{2,3,4,5}C.{4}D.11.下图的最小生成树的权为()A.40B.44C.48D.5212.对偶式为P T Q表达式是_______________A.P A QB.P J QC.P V QD.i Q13. 下列语句是命题,并且真值为0 的是()A. 雪式白的。
离散数学练习题Chapter 1 集合、映射与运算1. 下列集合运算的结果中与其余三个不同的是().(A ){}ΦΦ(B ){}{}ΦΦ(C ){}{}{}Φ-ΦΦ, (D ){}{}{}{}Φ-ΦΦ, 2. 设A 为⾮空集合,则下列各式中正确的是().(A ))(A P A ? (B ))(A P A ? (C ){})(A P A ∈(D ){})(A P A ? 3. ( )是错误的.(A ){}{}{}a a ∈(B ){}{}{}a a a ,∈(C ){}{}{}a a a ,? (D ){}{}{}a a ? 4. 设{}{}a a A ,=,下列各式中错误的是().(A ){}()A P a ∈(B ){}()A P a ? (C ){}{}()A P a ∈(D ){}{}()A P a ? 5. 设{})(,A P B A =Φ=,则A B -是(). (A )Φ(B ){}Φ(C ){}{}Φ(D ){}{}ΦΦ, 6. 对任⼀集合A ,能成⽴的是().(A ))(A P A ∈(B ){})(A P A ∈(C )Φ-∈A A (D )Φ⊕∈A A 7. 证明a) A C B A C A B -=--)()()( b) )()()(C B C A C B A ---=-- c) ()()()C A B A C B A -=-- 8. 下列等式说明集合A,B 有何关系? a) A B A =b) A B A =c)A B A =-d) A B B A =e) A B B A -=-9. 判断题.(1)设2N ,3N 分别为2,3的倍数集,则{}N N 3,2是N 的划分. ()(2)若{}A B B A -, 是B A 的⼀个划分,则Φ=-B A . ()(3)若Φ==B A B B A ,,则Φ=A . ()(4)若A B B A ?=?,则B A =. ()(5)设B A ,为任意集合,则有()()()B P A P B A P = ()(6)若Φ=-B A ,则B A =.()10. 求1000~1中能被8,6,5之⼀整除的整数个数.11. 在校运会中,某班有10⼈,12⼈,8⼈分别参加了长跑,短跑和跳远,其中有6⼈三项全参加.已知该班共40⼈,问该班⾄少有多少⼈没有参加任何项⽬?12. 设}}{{5,2,1,4,3,2,1==B A ,求)()(B P A P ⊕.参考答案: 1-6:CDDBCA7. a) ()()()右左===A C B A C A B b)右=()()()()()()()C B A C C A B C A C B C A C B C A ====左c)左=()()()()()C A B A C B A C B A C B A ===-=右 8. a)A B ?, b)B A ?, c)Φ=B A , d)⽆, e)B A = 9.×√√××× 10. 20051000=, 16661000=,12581000=, 33651000=?,25851000=?,41241000=,81201000=??200+166+125-33-25-41+8=40011.40-(10+12+8-6-6-6+6)=2212.16Chapter 2 关系1. 设S R ,是集合A 上的等价关系,则是等价关系. ()(A )R A A -? (B )2R (C )S R - (D )()S R r -2. 设A 为某⼀⾮空集合,)(A P 为A 的幂集,在)()(A P A P ?上定义函数:f ()=21,S S f ()2121,S S S S ,)(,21A P S S ∈?,则f 是 .()(A )单射但不是满射(B )满射但不是单射(C )双射(D )既⾮单射⼜⾮满射3. 集合A 上的关系21,R R 具有下列哪个性质,使21R R 也具有同样的性质?()(A )⾃反(B )反⾃反(C )对称(D )传递4. 设4=A ,则A 上有个等价关系. ()(A )11 (B )14 (C )15 (D )175. 若A 上的函数f 满⾜A I f=2,则f 是双射. () 6. 若A 上的函数f 满⾜A I f =3,则f 是双射. () 7. 若集合A 上的关系21,R R 都是⾃反的,则21R R 也是⾃反的.()8. 设n A =,则A 上有个关系,有个⾃反关系,有个函数,有个双射.9. 设集合{}c b a S ,,=,求S 上所有满⾜b a f =)(且f f=2的函数10. 已知(){}1,,,=-∈=i j I j i j i R ,求R 的三种闭包. 11. 设n A =,则A 上有多少商集的基数为2的等价关系? 12. 设{}4,3,2,1=A ,在)(A P 上规定关系R 如下:(){}T S A P T S T S R =∈=),(,,,证明R 是)(A P 上的等价关系,并写出商集R A P /)(.13. +I 上的关系R 定义如下:21Rn n 当且仅当21/n n 能表⽰成m2的样⼦, m 是任⼀整数.(1)证明R 是⼀等价关系;(2)R 下的等价类是什么?参考答案:1 B2 D3 A4 C 5√ 6√ 7√ 8. ()!,,2,222n n n nnn -9.()()(){},,,,,,1b c b b b a f =()()(){}c c b b b a f ,,,,,2=10. (){}r R i j i j I j i or j i (),,,1=∈-==(){}s R i j i j I j i (),,,1=∈-=(){}t R i j i j I j i (),,,=∈>11.12)(211121-=++--n n n n n C C C 12. R 满⾜⾃反、对称、传递性,所以是等价关系;(){}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{4,3,2,1,4,3,2,4,3,1,4,2,1,3,2,1 ,4,3,4,2,3,2,4,1,3,1,2,1,4,3,2,1,/Φ=R A P13. (1)02/=n n ,所以⾃反;m m n n n n -=?=2/ 2/1221,所以对称;lm l m n n n n n n +=?==2/2/,2/313221, 所以传递,所以R 是等价关系(2)[]{}++∈-=I n n R I 12 /RChapter3 命题逻辑单项选择:1. 下列哪个语句是命题?()(A )⼈可以长⽣不⽼. (B )真没劲!(C )本命题为假. (D )你吃过了吗?2. 下列语句中哪个是真命题?()(A )我在说假话. (B )如果1+2=3,那么雪是⿊的.(C )严禁吸烟!(D )如果疑问句是命题,那么地球将停⽌转动. 3. 下⾯哪个公式不是永真式?()(A )()Q P Q ∨→(B )()P Q P →∧(C )()()Q P Q P ∨?∧?∧? (D )()()Q P Q P ∨??→ 4. 下⾯哪个公式是永真式?()(A )R Q P ∨→(B )()()R P Q P →∧∨(C )()()R Q Q P ∨?∨(D )()()Q P Q P ∨??→ 5. 是错误的. ()(A )()P P Q P ∨∧= (B )()()P Q R P Q R→→=∧→(C )()()()P Q R Q P R Q →∧→=∨→(D )()()P Q Q R P R →∧→=→填空题:1. 公式()()()R P Q Q P ∧?→??→可化简为 .2. 公式()()R P Q P P →∨→?∨可化简为 .3. 公式Q P ∨的仅⽤→和?表⽰的逻辑等值式为 .4. 公式Q P ∧的仅⽤→和?表⽰的逻辑等值式为 .计算或证明:1. 求下列公式类型:(1) )()(P Q Q P ?→?→→(2))()(Q P Q p ∨?→? (北师⼤2000年考研试题)2. 给出真值表:(a) )()(Q P Q P ∧→∨ (b) )(R Q P ∨?→3. 形式证明:()()()E B S A B C F E C B A →??∧→?→?→∧→,,4. 形式证明:()()D C B A →∧→,E B →,F D →,()F E ∧?,C A → ? A ?.5. ⽤推理规则说明()C A C B B A ∧∧?→,,能否同时为真.6. 在某次研讨会的中间休息时间,3名与会者根据王教授的⼝⾳猜测他是哪⾥⼈:甲说王教授不是苏州⼈,是上海⼈;⼄说王教授不是上海⼈,是苏州⼈;丙说王教授既不是上海⼈,也不是杭州⼈.听完3⼈的判断后,王教授笑着说,3⼈中有⼀⼈说得全对,有⼀⼈说对了⼀半,另⼀⼈说得全不对.试⽤真值表⽅法判断王教授到底是哪⾥⼈?7. 公安⼈员审查⼀件盗窃案.已知的事实如下: (1) 甲或⼄盗窃了名画;(2) 若是甲盗窃了名画,则作案时间不可能在午夜前; (3) 若⼄的证词正确,则午夜时屋⾥灯光未灭; (4) 若⼄的证词不正确,则作案时间在午夜前; (5) 午夜时屋⾥灯光灭了,将各命题符号化,推断是谁盗窃了名画,并⽤形式⽅法证明推理的有效性.8. 将下⾯推理符号化并形式证明推理的有效性:如果甲努⼒⼯作,那么⼄或丙感到愉快;如果⼄愉快,那么甲不努⼒⼯作;如果丁愉快,那么丙不愉快;所以,如果甲努⼒⼯作,那么丁不愉快.参考答案:选择1-5: A D C D D 填空:1.()()()P Q Q P R R R 1→??→?∧=∧=;2. ()()R P Q P P →∨→?∨=()()R P Q P P →∨?∧∨()P P R P P R ()1=∨→=∨?∨= 3. P Q P Q ∨=?→4. P Q P Q P Q ()()∧=??∨?=?→?.计算证明:1.解(1))()(P Q Q P ?→?→→=)()(P Q Q P ?∨→∨? =)()(P Q Q P ?∨∨?∧=)()(P Q Q P Q P ?∨∨?∧?∨∨=1 永真式(2) 若P 和 Q 都为真, 命题为假; 若P 和 Q 都为假, 命题为真, 因此为中性式. 3.证(1) B P(附加) (2) ()S A B ?∧→ P(3) S A ?∧ T (1),(2)I (4) A T (3)I (5) ()C B A ∧→ P (6) C B ∧ T (4),(5)I (7) C T (6)I (8) ()C F E ?→?→ P(9) ()F E ?→? T (7),(8)I (10) ()F E ?∨?? T (9)E (11) F E ∧ T (10)E (12) E T (11)I(13) E B →CP 4.证(1) A P(附加) (2) ()()D C B A →∧→ P(3) B A → T(2)I (4) B T(1),(3)I (5) E B → P(6) E T(4),(5)I (7) C A → P(8) C T(1),(7)I (9) D C → T(2)I (9) DT(8),(9)I(10) F D → P(11) F T(9),(10)I (12) F E ∧ T(6),(11)I (13) ()F E ∧?P(14) ()()F E F E ∧?∧∧ T(12),(13)I 5.解(1)C A ∧ P(2)A T (1)I (3)B A → P(4)B T (2),(3)I (5)C T (1)I(6)C B ∧ T (4),(5)I (7)()C B ∧? P(8)()()C B C B ∧∧∧? T (6),(7)I 所以不能同时为真. 6.解甲⼄丙是杭州⼈是苏州⼈是上海⼈01∧ 01∧ 01∧ 00∧ 11∧ 11∧ 11∧ 00∧ 10∧所以是上海⼈.7.解设::P 甲盗窃了名画;:Q ⼄盗窃了名画;:R 作案时间在午夜前;:S ⼄的证词正确;:T 午夜时灯光灭了. T R S T S R P Q P , , , ,→??→?→∨证(1)TP(2)T S ?→ P(3)S ?T (1),(2)I (4)R S →? P (5)R T (3),(4)I(6)R P ?→P(7)P ?T (5),(6)I (8)Q P ∨P(9)Q T (7),(8)I 所以是⼄盗窃了名画.8.解设P :甲努⼒⼯作;Q :⼄感到愉快;R :丙感到愉快;S :丁感到愉快.S P R S P Q R Q P ?→??→?→∨→ , ,证:(1)PP(附加)(2)R Q P ∨→ P (3)R Q ∨ T (1),(2)I(4)P Q ?→P(5)Q ?T (1),(4)I (6)R T (3),(5)I (7)R S ?→ P(8)S ?T (6),(7)I(9)S P ?→CPChapter 5 群单项选择:1. 下列集合中, 对普通加法和普通乘法都封闭. ()(A ){}1,0 (B ){}2,1 (C ){}N n n ∈2 (D ){}N n n∈22. 在⾃然数集N 上,下⾯哪种运算是可结合的?()(A )b a - (B )),max(b a (C )b a 2+ (D )b a -3. 有理数集Q 关于下列哪个运算能构成代数系统?()(A )ba b a =*(B )()1ln 22++=*b a b a(C )()b a b a +=*sin (D )ab b a b a -+=*4. 下列代数系统,哪个是独异点?()(A )()22,,b a b a R +=(B )()333,,b a b a R +=**(C )()max ,I (D )()表⽰最⼤公约数GCD GCD I ,,+.5. 下列各个N 的⼦集,哪个关于加法封闭?()(A ){}整除的某次幂能被6x x (B ){}互质与5x x(C ){}的因⼦是30x x(D ){}N n x x n∈=,26. 下列运算中,哪种运算关于整数集I 不能构成半群?()(A )()b a b a ,max =* (B )b b a =* (C )ab b a 2=* (D )b a b a -=*7. 运算*定义为: b a b a ?=*,则代数系统()*,R 是()(A )半群(B )独异点(C )群(D )交换群 8. 设{}1,0=S ,则代数系统()?,S 是()(A )半群(B )独异点(C )群(D )交换群 9. 具有多个幂等元的半群,它()(A )不能构成群(B )不⼀定能构成群(C )必能构成群(D )能构成交换群10. 设实数集R 上的运算*定义为:x y x =*,则()*,R ()(A )不是代数系统(B )是半群,但不是独异点(C )是独异点,但不是群(D )是群.11. 运算*定义为:ab b a b a -+=*,则代数系统()*,Q 的单位元是()(A )a (B )不存在(C )1 (D )012. 代数系统()*,R 中*表⽰普通乘法,下列映射中是R R →的⼀个⼦集的同态. (A )2x x →(B )x x 2→(C )xx 2→(D )x x -→是⾮题1. 设),(*S 是代数系统,S B ?,则()*,B 是),(*S 的⼦代数系统. ()2. 设),(*S 是代数系统,S a ∈,若a 的左、右逆元均存在,则必相等.()3. 若代数系统的右零元存在,则必唯⼀. ()4. 若()()**,,,B A 都是群()*,G 的⼦群,则()*?,B A 也是()*,G 的⼦群.()5. 设),(*S 是半群,若l θ是左零元,则对l x S x θ*∈?,仍是左零元.()6. 设),(*S 为可交换独异点,{}x x x S x x T =*∈=,,则T 也是独异点.() 7. 设),(*G 为独异点,若对,,e a a G a =*∈?有其中e 是单位元,则),(*G 是交换群.()8. 除了单位元以外,⼀个群没有其他幂等元. () 9. 设{}I n m G n m ∈=,23,则()?,G 是群. ()计算与证明1.设{}0-=*R R ,在R R ?*上定义运算*如下: ()()()d bc ac d c b a +=*,,,,()()R R d c b a ?∈?*,,,,证明: ()*?*,R R 构成群. 2. 设()*,G 是群,若对任意G x ∈,有x x=-1,则()*,G 是交换群.3. 设()*,A 是⼀个半群,且满⾜以下条件:A b a b a a b b a ∈?=?*=*,,,证明:(1)A a ∈?,有a a a =*;(2)A b a ∈?,,有a a b a =**;(3)A c b a ∈?,,,有c a c b a *=**.4. 设u 是群()*,G 中取定的元素,在G 中定义运算b u a b a **=-1: ,其中1-u 为u 在群()*,G 中的逆元.证明:() ,G 也是⼀个群.5. 设()*,G 是交换群,()()**,,,B A 是它的⼦群,{}B b A a b a ABC ∈∈*==,,证明:()*,C 也是()*,G 的⼦群.6. 设()*,1H ,()*,2H 是群()*,G 的两个互不包含的⼦群.证明:G 中存在元素既不属于1H ⼜不属于2H .参考答案CBDBADABABDA FFFTTTTTT1.证 (1) 运算*在R R ?*上封闭,所以()*?*,R R 构成代数系统; (2) ()()()()),(,),(,,f e d bc ac f e d c b a *+=**()()f de bce ace f e d bc ace ++=++=,)(,,()()()()f de ce b a f e d c b a +*=**,,),(),(,()f de bce ace ++=,,所以满⾜结合律;(3)单位元()0,1=e ; (4) ()??-=-a b a b a ,1,1综上所述, ()*?*,R R 构成群.2.证 ()()x y x y y x y x *=*=*=*---111,即*可交换.3.证(1)由结合律,()()a a a a a a a a a *=?**=**;(2)()()()()a b a a a a b a a a b a a b a a a b a a **=?***=***=***=***;(3))()(c a c b a ****c b a c a c b a **=****=)()()()()(c b a c a c b a c a ****=****=, ? c a c b a *=**.4. 证由*的封闭性可以得到的封闭性,结合律显然,关于的⼳元为u ,a 关于的逆元为u a u **-1,其中1-a 为a 关于*的逆元.5. 证(1)C d c b a ∈**?,,即 B d b A c a ∈∈,,,,因为()()**,,,B A 是群,B d b A c a ∈*∈*, ,⽽*可交换, ()()()()()()C d b c a d b c a d c b a d c ∈***=***=***=***∴b a , 即*在C 中封闭;(2)C e e e ∈*= 所以C 有单位元;(3)()C b a a b b a ∈*=*=*-----11111,所以C 中的元素可逆; (4)*在C 中显然满⾜结合律 . 综上所述,()*,C 构成()*,G 的⼦群.6. 证因为1H ,2H 互不包含,所以1H a ∈?但2H a ?,2H b ∈?但1H b ?,若1H b a ∈*,则11)(H b a a b ∈**=-,⽭盾,故1H b a ?*;同理,2H b a ?*,所以21H H b a ?*.chap6,7 图论补充练习1. 在任何图中必有偶数个的结点. ( B )(A )度数为偶数(B )度数为奇数(C )⼊度为偶数(D )出度为偶数2. 下列序列中,哪⼀个可构成简单⽆向图的结点度数序列?( B )(A )()3,2,2,1,1 (B )()2,2,2,1,1 (C )()3,3,3,1,0 (D )()5,4,4,3,23. 设()m n ,图G 中有k N 个k 度结点,其余均为1+k 度结点,则k N 为( C )(A )2n(B )()1+k n (C )()m k n 21-+ (D )()m k n -+1 4. 附图不是 .( C )(A )欧拉图(B )哈密尔顿图(C )⼆部图(D )完全图1.证明:有k 个连通分⽀的简单⽆向图⾄多有)1)((21+--k n k n 条边.证设分⽀i G 是()i i m n ,图,k i ,,1 =,则()121-≤i i i n n m ,()11--≤≤k n n i ,∑==ki in n 1, ()()()()()k n k n n k n n n m m ki i k i k i i i i -+-=-+-≤-≤=∴∑∑∑===1211121121 1112. 设G 是边数30假设()n i v i ,,1,5deg =≥,由握⼿定理,()∑≥=n v m i 5deg 2,所以652363-?≤-≤m n m ,于是30≥m ,与已知条件⽭盾,于是结论成⽴. 3. 设G 是简单平⾯图,证明G 中⾄少有⼀个结点的度数⼩于等于5.证不妨设G 连通,否则考察G 的⼀个连通分⽀.设G 有n 个结点,m 条边,k 个⾯.若2≤m ,因为G 是简单图,结论成⽴;若3≥m ,()3≥∴i F d ,m k k m 32,32≤≥;假设()n i v d i ,,1,6 =≥,则n m 62≥,n m 3≥,由欧拉公式,032312=+-≤+-=m m m k m n ,⽭盾.4. 设G 为阶数11≥n 的简单⽆向图,且G 和G 均连通.证明:G 或G ⾄少有⼀个不是平⾯图.证 (反证)假设()1,m n G 和()2,m n G 都是平⾯图,⽽11≥n ,所以632,1-≤n m ,⽽()12121-=+n n m m ,所以()126121-≤-n n n ,或024132≤+-n n , 所以,1127313 <+≤n ,与条件⽭盾.所以G 和G ⾄少有⼀个不是平⾯图.5. 设G 为阶数7证假设G 和G 都不是平⾯图,由Kuratowsky 定理,G 和G 必含有与5K 或3,3K同胚的⼦图,即⾄少有9条边,于是G 和G 的边数之和()1812 1≥-n n ,7 ≥?n ,与7。
心之所向,所向披靡
华东理工大学 网 络 教 育 学 院
本科《离散数学》第一阶段练习
一、判断题(对的在括弧中打个“√”,错的在括弧中打个“⨯”)
1、“我正在说谎。
”是个悖论。
( √ )
2、“如果天气好,那么我去放风筝。
”是个原子命题。
( ⨯ )
3、“如果35>,那么小布什将连任美国总统。
”这个命题的真值为“T ”。
( √ )
4、T Q P P Q ⇔∧⌝∧→)()(。
( ⨯ ) 5、)()(Q P P P Q P ⌝→→⌝⇔→→ ( √ ) 6、Q P Q P ⌝∧⌝⇒→⌝)(
( ⨯ ) 7、)(R Q P ∨→⌝∧⌝是个命题公式。
( ⨯ ) 8、)()()()(Q P Q P Q P Q P ∧⌝∨⌝∧⇔∧⌝∨⌝∧
( √ )
二、试把原子命题表示为R Q P ,,等,然后用符号形式写出下列命题。
1、你不能既要熊掌又要鱼;
解:P :你要熊掌,Q :你要鱼,则有)(Q P ∧⌝; 2、仅当你走我将留下;
解:P :你走,Q :我留下,则有P Q →;
3、今晚8:00钟CCTV-6或者播放电影“飞侠小白龙”,或者播放“天下无贼”;
解:P :今晚8:00CCTV —6播放电影“飞侠小白龙”,Q :今晚8:00CCTV —6播
放电影“天下无贼”,则有Q P ∨;
4、假如明天不下雨,我们就去森林公园烧烤,否则就在家里上网或者看书。
解:P :明天下雨,Q :我们去森林公元烧烤,R :我们在家里上网,S :我们在家里看书,则有))(()(S R P Q P ∨→∧→⌝;
5、如果你来了,那么他唱不唱歌将视你是否伴奏而定。
解:P :如果你来了,Q :他唱歌,R :你伴奏,则有)(R Q P ↔→
三、化简以下各式
1、)()(C B A C B A ⌝∧∧∨∧∧
解:原式B A T B A C C B A ∧⇔∧∧⇔⌝∨∧∧⇔)()()(; 2、R P Q Q P ∧→⌝↔→⌝))()((
解:原式R R T R P Q Q P ⇔∧⇔∧∨↔∨⇔))()((; 3、)()()(Q P Q P Q P ⌝∧⌝∨∧⌝∨∧
解:原式)()())((Q P Q Q P Q P P ⌝∧⌝∨⇔⌝∧⌝∨∧⌝∨⇔
Q P Q P Q Q P Q →⇔∨⌝⇔⌝∨∧⌝∨⇔)()(
四、求下列命题公式的主析取范式、主合取范式
1、)()(Q P Q P ⌝↔→⌝∨⌝;
解:原式))()(()(P Q Q P Q P →⌝∧⌝→∨⌝∨⌝⌝⇔
))()(())()(()(P Q Q P T P Q Q P Q P ∨∨⌝∨⌝⌝∧⇔∨∧⌝∨⌝∨⌝∨⌝⌝⇔ ∏⇔⇔∨⇔∨∨∧∨∨⇔∨∨∧⇔000)()())()(M Q P P Q Q P Q P P Q Q P
∑⇔3,2,1
即主析取范式、主合取范式分别为∏
、
∑
3
,2,1
2、))((P Q P P →∧→;
解:原式T T T P Q P P P P Q P P ⇔∧⇔∨⌝∨⌝∧∨⌝⇔∨⌝∧∨⌝⇔)()())((
∑
⇔
3
,2,1,0即为主析取范式,且无主合取范式;
3、)()(Q P P Q ∧⌝∧→;
解:原式F F Q P P Q P Q Q P P Q ∨⇔∧⌝∧∨∧⌝∧⌝⇔∧⌝∧∨⌝⇔)()()()(
∏⇔⇔3,2,1,0F 即为主合取范式,且无主析取范式。
4、))(())((C B A C B A ⌝∧⌝→⌝∧∧→。
解:原式))(())((C B A C B A ⌝∧⌝∨∧∧∨⌝⇔
(按分配律展开)
)()()()(C B C B C B A A C B A A ⌝∧⌝∧∧∨⌝∧⌝∧⌝∨∧∧∨∧⌝⇔ ∑⇔∨⇔⌝∧⌝∧⌝∨∧∧⇔7,0000111)()(m m C B A C B A (主析取)
∏⇔6,5,4,3,2,1(主合取范式)
五、证明下列各式
1、)(B A ⌝∧⌝,C B ∨⌝,C ⌝⇒A ⌝;
证明: ①C ⌝
(已知) ②C B ∨⌝ (已知) ③B C ⌝→⌝ ② ④B ⌝
①、③ ⑤)(B A ⌝∧⌝ (已知) ⑥B A ∨⌝ ⑤ ⑦A B ⌝→⌝ ⑥ ⑧A ⌝
④、⑦
2、Q P ∨⌝,Q R ⌝→⇒R P ⌝→;
证明: ①P
(已知) ②Q P ∨⌝ (已知) ③Q P → ② ④Q
①、③ ⑤Q R ⌝→ (已知) ⑥R Q ⌝→ ⑤ ⑦R ⌝
④、⑥
3、Q S ⌝→,R S ∨,R ⌝,Q P ↔⌝⇒P 。
证明: ①P ⌝
(假设) ②Q P ↔⌝ (已知) ③Q
①、②
④R ⌝
(已知) ⑤R S ∨ (已知) ⑥S R →⌝ ⑤ ⑦S
④、⑥ ⑧Q S ⌝→ (已知) ⑨Q ⌝
⑦、⑧ ⑩Q Q ⌝∧
③、⑨
矛盾
六、某单位有四个人甲、乙、丙、丁,现在要派其中的两个人参加乒乓球比赛,试问:按
下述三个条件共有几种派法?如何派? (1)乙和丙不能都去; (2)丙去则丁要留下;
(3)若甲去则丙和丁要去一人。
解:设A :甲去,B :乙区,C :丙去,D :丁去,则条件转化为下列三式
)(C B ∧⌝,D C ⌝→,)(D C A ∨→
且它们三式同时成立。
又因为
)()()(D C D C D C ∧⌝∨⌝∧⇔∨
故
∧∧⌝))((C B ∧⌝→)(D C ))((D C A ∨→
∧⌝∨⌝∧⌝∨⌝⇔))()((D C C B )))()(((D C D C A ∧⌝∨⌝∧∨⌝ ∧⌝∧⌝∨⌝∧⌝∨⌝∧⌝∨⌝∧⌝⇔))()()()((D C C C D B C B
))()((D C D C A ∧⌝∨⌝∧∨⌝
(按分配律展开成12项)
)()()()(A D C A C C A D B A C B ⌝∧⌝∧⌝∨⌝∧⌝∧⌝∨⌝∧⌝∧⌝∨⌝∧⌝∧⌝⇔
)()()(D C C C D C D B D C C B ⌝∧∧⌝∧⌝∨⌝∧∧⌝∧⌝∨⌝∧∧⌝∧⌝∨
)(D C D C ⌝∧∧⌝∧⌝∨
)()()(D C C C D C D B D C C B ∧⌝∧⌝∧⌝∨∧⌝∧⌝∧⌝∨∧⌝∧⌝∧⌝∨
)(D C D C ∧⌝∧⌝∧⌝∨
上述析取式中,有些项不符合题意,比如)(A C B ⌝∧⌝∧⌝表示三个人都不参赛,另外如
)(D C C B ⌝∧∧⌝∧⌝等都是矛盾的,即真值为F ,应该在原式中删除,进而原式简化为
∨⌝∧⌝)(A C ∨⌝∧∧⌝)(D C B )()(D C D C B ∧⌝∨∧⌝∧⌝
所以有乙、丁去,或甲、丙去,或甲、丁去,三种派法,由于)(D C ∧⌝这项也表示可派乙、丁去,或甲、丁去,所以总共也只有三种派法——乙、丁去,或甲、丙去,或甲、丁去。
七、用谓词表达式描述下列句子。
1、非尔普斯是游泳运动员;
解:)(x W :x 是游泳运动员,c :非尔普斯,则有)(c W ;
2、没有哪个网络学院学生入学最初不是热血沸腾的。
解:)(x N :x 是网络学院学生,)(x E :x 入学最初是热血沸腾的,则有
))()()((x E x N x →∀;
3、每个有理数都是实数;
解:)(x Q :x 是有理数,)(x R :x 是实数,则有))()()((x R x Q x →∀;
4、并非每个实数都是有理数;
解:)(x Q :x 是有理数,)(x R :x 是实数,则有))()()((x Q x R x →∀⌝,或
))()(()(x Q x R x →⌝∃;
5、某些运动员是大学生;
解:)(x L :x 是运动员,)(x S :x 是大学生,则有))()()((x S x L x ∧∃;
6、不是所有的运动员都是大学生;
解:)(x L :x 是运动员,)(x S :x 是大学生,则有))()()((x S x L x →∀⌝;
7、所有士兵都崇拜某些将军。
解:)(x K :x 是士兵,)(x G :x 是将军,),(y x A :x 崇拜y ,则有勤劳的蜜蜂有糖
吃
)),()()(()()((y x A y G y x K x ∧∃→∀。