8.1幂的运算(1)
- 格式:ppt
- 大小:533.50 KB
- 文档页数:14
8.1 幂的运算2.幂的乘方与积的乘方一、教学要求、1. 体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题。
2. 会用幂的乘方、积的乘方性质进行计算,并能解决一些实际问题。
二、重点、难点: 1. 重点: (1)同底数幂的乘法性质及其运算。
(2)幂的乘方与积的乘方性质的正确、灵活运用。
2. 难点: (1)同底数幂的乘法性质的灵活运用。
(2)探索幂的乘方、积的乘方两个性质过程中发展推理能力和有条理的表达能力。
三. 知识要点:1. 同底数幂的意义几个相同因式a 相乘,即a a a n ··…·个,记作a n,读作a 的n 次幂,其中a 叫做底数,n 叫做指数。
同底数幂是指底数相同的幂,如:23与25,a 4与a ,()a b 23与()a b 27,()x y -2与()x y -3等等。
注意:底数a 可以是任意有理数,也可以是单项式、多项式。
2. 同底数幂的乘法性质 a a a m n m n ·=+(m ,n 都是正整数)这就是说,同底数幂相乘,底数不变,指数相加。
当三个或三个以上同底数幂相乘时,也具有这一性质,例如:a a a a m n p m n p ··=++(m ,n ,p 都是正整数)3. 幂的乘方的意义 幂的乘方是指几个相同的幂相乘,如()a 53是三个a 5相乘读作a 的五次幂的三次方,()a m n 是n 个a m 相乘,读作a 的m 次幂的n 次方()()a a a a a a a a a a n a n a m n m m m m m m m n 5355555553======++⨯+++⨯····…·个个…4. 幂的乘方性质()a a m n mn =(m ,n 都是正整数)这就是说,幂的乘方,底数不变,指数相乘。
注意:(1)不要把幂的乘方性质与同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)。
沪科版数学七年级下册8.1《幂的运算》教学设计一. 教材分析《幂的运算》是沪科版数学七年级下册第8.1节的内容,主要介绍了同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
这部分内容是初中学段数学的重要基础,也是后续学习代数式、函数等知识的前提。
教材通过具体的例子引导学生掌握幂的运算规律,培养学生的逻辑思维能力和运算能力。
二. 学情分析七年级的学生已经掌握了整数、分数和小数的四则运算,对于幂的概念和简单的幂运算可能还比较陌生。
因此,在教学过程中,需要通过生动的例子和生活中的实际问题,激发学生的学习兴趣,引导学生理解和掌握幂的运算规律。
同时,七年级学生的抽象思维能力正在发展,需要通过大量的练习和操作活动,来巩固和提高幂的运算能力。
三. 教学目标1.理解幂的运算概念,掌握同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
2.培养学生的逻辑思维能力和运算能力。
3.能够运用幂的运算知识解决生活中的实际问题。
四. 教学重难点1.重点:同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等幂的运算规则。
2.难点:理解幂的运算规律,能够灵活运用幂的运算知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过设置问题和情境,引导学生探究幂的运算规律。
2.运用直观教具和多媒体辅助教学,帮助学生形象地理解幂的运算概念。
3.采用分组讨论和合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重练习和操作活动,提高学生的运算能力和解决问题的能力。
六. 教学准备1.准备相关的教学材料和课件,如PPT、教案、练习题等。
2.准备一些实际问题,用于引导学生运用幂的运算知识解决实际问题。
3.准备一些直观教具,如幂的运算图表、幂的运算模型等。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,如“一个正方形的边长是2,求这个正方形的面积”,引导学生思考如何计算面积。
然后引出幂的运算概念,告诉学生,面积可以表示为边长的平方,即2的平方。
教学设计8.1 幂的运算----- 幂的乘方一、教学背景(一)教材分析本节课是在前面学习的基础上进一步学习幂的乘方,是对幂的意义的理解、运用和深化.让学生体会幂的乘方运算是一种比乘法还要高级的运算,提高学生数学运算能力.本节内容又是整式的乘法的主要依据,也为后面学习方程、函数做了准备.(二)学情分析学生已经学过乘方,并掌握代数式的意义,这为本课奠定了基础.从学生的认知规律看,学生已学习了乘方的意义﹑幂的意义以及同底数幂的乘法,为学习幂的乘方运算在教学中提供了引导学生讨论交流提供了保证.二、教学目标:1 经历探索幂的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.2 了解幂的乘方的运算的性质,培养学生综合运用知识的能力.三、重点、难点:重点:理解并正确运用幂的乘方的运算性质.难点:幂的乘方的运算性质的探究过程及运用.四、教学方法分析及学习方法指导教学方法:利用引导探究法,让学生以“体验-归纳-概括”为主要线索,在合作探索与交流中获得知识,使不同层次的学生都有收获和发展.把幂的乘方的性质应用于计算,培养学生使用一般原理进行演绎推理的能力.学法指导:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.本节主要学习幂的乘方性质后,学习了幂的两个运算性质,深刻理解幂的运算的意义,能熟练地进行幂的乘方运算.五、教学过程:(一)知识回顾:1 幂的意义是什么?2 同底数幂的乘法运算性质是什么?设计意图:复习旧知识,为学习新知识做铺垫。
(二)情境导入:一个正方体的边长是210cm,则它的体积是多少? 议一议: ()3210怎样计算呢?完成教材P47页填表:设计意图:从实例引入课题,强化数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生的思想,从而激发学生的求知欲.引导学生主动反思问题,回顾解决问题的方法,为进入新课做准备. (三)探究新知:计算下列各式(1) ()426=26×26×26×26= 22226+++=86(2) ()322= 22×22×22= 2222++ = 62(3) ()2m a= m a ⋅ m a =m ma+= 2ma(4) ()4m a = m m m m a a a a ⋅⋅⋅=m m m m a +++=4m a你能猜想出()nm a 的结果吗?()mn a nmm m m a a a a =⋅⋅⋅个 ( 乘方的意义)n mm m m a ++⋅⋅⋅+=个 (同底数幂相乘的法则)mn a =()nm a =mna(m 、n 都是正整数) 幂的乘方,底数不变,指数相乘.“一般”的过程,培养学生思维的严密性,也感受了数学学习的严谨性,积累了解决问题的经验和方法. (四)合作学习:例2 计算 (1)()3510 (2)()24x (3)()32a -(五)自主学习:1 判断题()()()()()()()()325326222232 3 2 3 3 2122225101 (x )2345 ()6 [()]()7 ()()n n n n mx x x x x x x x x x x x am a b b x y x y +⨯++=⋅=⋅⋅=⋅===-=+=+(六)拓展学习:2 ()3242a a a⋅+3435233243323)( 2 )() ( 3 )() ()() ()a x y y a a x x --⋅-⋅-⋅-3 计算(1)(-; ;; (4) (5) 设计意图:分层次训练学生对法则的掌握程度,使学生对法则的理解更加熟练、准确,解决本节课的重点内容. (六)课堂小结:1 本节主要学习幂的乘方性质()nm a =mna (m 、n 都是正整数)2 幂的乘方性质用语言表达为3 弄清同底数幂相乘与幂的乘方的区别:前者是指数___,后者是指数__(七)布置作业:1 必做:P54习题8.1:第2题2 选做: ()()32311 = 2,2 32,35,3x x n m m n a a +-===若则若则= 板书设计:预设反思:。
8.1 幂的运算(第1课时)-教案一、教学背景(一)教材分析本章所处的地位是整式加减的后续学习,同时也是初中代数关于式的学习的重要内容,可见本章既是对前面知识的运用和开拓,又是后续知识的基础,如一元二次方程的解法。
而本节幂的运算是本章的重点,是学习整式乘除的基础。
本章首先从幂的运算性质入手,掌握第一课时同底数幂的乘法有利于理解幂的其它运算性质。
(二)学情分析学生在七年级上学期学习了幂的概念,为推导和掌握同底数幂的乘法运算性质奠定了基础。
学生在经历乘方意义的数学活动经验基础上,初步为学习同底数幂乘法性质提供了思维方式.有利于分析和解决同底数幂的乘法运算。
七年级下学生的认知发展已具备了观察、猜想、计算、推理的能力,富有积极思考、主动探索、合作交流情感基础,为推导同底数幂的乘法运算性质提供了保证。
二、教学目标1. 经历探索同底数幂乘法运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2. 了解同底数幂乘法运算的性质,运用性质熟练进行计算,并能解决一些实际问题。
3. 通过参与数学学习活动,培养学生独立思考及与他人交流合作的学习习惯。
三、重点、难点重点:理解并正确运用同底数幂的乘法法则。
难点:同底数幂的乘法法则的探究过程。
四、教学方法分析及学习方法指导教学方法:教学时,创设教学情境,经历探索同底数幂的乘法的性质的发生形成过程,与同学们一道探究是怎样由特殊到一般,有具体到抽象概括得到性质的,在探究过程中,要给学生留出探索和交流空间,使学生在思考实践过程中概括出同底数幂的乘法运算性质。
学法指导:学习中,复习乘方的意义,引导学生通过具体数字的同底数幂的乘法的运算,经过观察、概括、猜想推理.让学生充分合作交流,确认同底数幂乘法的性质.通过例题与练习,使学生能够运用同底数幂的乘法的性质进行简单的运算。
五、教学过程(一)情景导入(视频播放)光在真空中的速度大约是3×510千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
安徽省固镇县七年级数学下册8.1 幂的运算零指数、负整数指数教案(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省固镇县七年级数学下册8.1 幂的运算零指数、负整数指数教案(新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省固镇县七年级数学下册8.1 幂的运算零指数、负整数指数教案(新版)沪科版的全部内容。
幂的运算教学目标知识与能力:了解零指数,负指数的意义;掌握负整数指数转化为正整数指数的方法过程与方法:利用“假设同底数幂的除法性质对于m≤n时仍成立”,再通过两种算法比较来说明零指数幂和负指数幂的合理性.情感态度与价值观:培养学生观察思考,合作交流的意识和认识知识发展的价值。
重难点重点:掌握负整数指数转化为正整数指数的方法.难点:理解负指数幂的意义。
教学过一、学习目标1,了解零指数,负指数的意义.2,掌握负整数指数转化为正整数指数的方法.3,会运用零指数.负整数指数幂的运算性质进行计算。
二、自学提纲看书本第51页到第52页内容,思考以下问题:1,根据除法运算中,一个数除以它本身商为1,口答:33÷33=_____;108108=______;a n÷a n=_____(a≠0)若按同底数幂的除法性质:a m÷a n=a m—n(a≠0)口答:33÷33=33—3=30 =____, 108÷108=108-8=100 =____ , a n÷a n=a n-n=a0 =____.你能得出什么结论?2,根据同底数幂相乘(除)运算及分数约分,填空:讨论补充记录程教学过(1),2225523333==____33___÷=⨯(2),104÷108=____=____=_____(3),若m<n,a m÷a n=_____=______=______若按同底数幂的除法运算,填空:(设p=n-m, n<m)32÷35=______=_______;104÷108=_____=_____;a m÷a n=_____=_____.你得出什么结论?3,自学例5三、合作探究1,根据除法运算中,一个数除以它本身商为1,得33÷33=1; 108÷108=1; a n÷a n=1(a≠0)若按同底数幂的除法性质,得33÷33=33-3=30; 108÷108=108-8=100; a n÷a n=a n-n=a0(a≠0)结论:30=1,100=1,a0=1(a≠0)于是约定:a0=1(a≠0)语言表述:任何一个不等于零的数的零指数幂等于1。
专题8.1 幂的运算【八大题型】【苏科版】【题型1 幂的基本运算】 (1)【题型2 幂的运算法则逆用(比较大小)】 (2)【题型3 幂的运算法则逆用(求代数式的值)】 (2)【题型4 幂的运算法则逆用(整体代入)】 (2)【题型5 幂的运算法则逆用(求参)】 (3)【题型6 幂的运算法则逆用(代数式的表示)】 (3)【题型7 幂的运算法则(混合运算)】 (3)【题型8 幂的运算法则(新定义问题)】 (4)【题型1 幂的基本运算】【例1】(2022•谷城县二模)下列各选项中计算正确的是( )A .m 2n ﹣n =n 2B .2(﹣ab 2)3=﹣2a 3b 6C .(﹣m )2m 4=m 8D .x 6y x 2=x 3y 【变式1-1】(2022秋•南陵县期末)(512)2005×(225)2004=( )A .1B .512C .225D .(512)2003 【变式1-2】(2022秋•孝南区月考)计算x 5m +3n +1÷(x n )2•(﹣x m )2的结果是( )A .﹣x 7m +n +1B .x 7m +n +1C .x 7m ﹣n +1D .x 3m +n +1【变式1-3】(2022秋•温江区校级期末)下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a =a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A.0个B.1个C.2个D.3个【题型2 幂的运算法则逆用(比较大小)】【例2】(2022春•宣城期末)已知a=8131,b=2741,c=961,则a、b、c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b【变式2-1】(2022春•晋州市期中)阅读:已知正整数a,b,c,若对于同底数,不同指数的两个幂a b和a c(a≠1),当b>c时,则有a b>a c;若对于同指数,不同底数的两个幂a b和c b,当a>c时,则有a b>c b,根据上述材料,回答下列问题.(1)比较大小:520420,9612741;(填“>”“<”或“=”)(2)比较233与322的大小;(3)比较312×510与310×512的大小.[注(2),(3)写出比较的具体过程]【变式2-2】(2022秋•滨城区月考)已知a=3231,b=1641,c=821,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>a>c【变式2-3】(2022春•泰兴市校级月考)若a=2555,b=3444,c=4333,d=5222,试比较a、b、c、d的大小.(写出过程)【题型3 幂的运算法则逆用(求代数式的值)】【例3】(2022春•巨野县期中)已知:52n=a,9n=b,则154n=.【变式3-1】(2022秋•西青区期末)若2x=a,16y=b,则22x+4y的值为.【变式3-2】(2022春•萧山区期中)若x m=5,x n=14,则x2m﹣n=()A.52B.40 C.254D.100【变式3-3】(2022春•高新区校级月考)已知32m=a,27n=b.求:(1)34m的值;(2)33n的值;(3)34m﹣6n的值.【题型4 幂的运算法则逆用(整体代入)】【例4】(2022•铁岭模拟)若a+3b﹣2=0,则3a•27b=.【变式4-1】(2022秋•淇滨区校级月考)当3m+2n﹣3=0时,则8m•4n=8.【变式4-2】(2022春•东台市期中)已知a﹣2b﹣3c=2,则2a÷4b×(18)c的值是.【变式4-3】(2022春•昌平区期末)若5x﹣2y﹣2=0,则105x÷102y=.【题型5 幂的运算法则逆用(求参)】【例5】(2022秋•西城区校级期中)若a5•(a y)3=a17,则y=,若3×9m×27m=311,则m的值为.【变式5-1】(2022春•建湖县期中)规定a*b=2a×2b,例如:1*2=21×22=23=8,若2*(x+1)=64,则x的值为.【变式5-2】(2022秋•卫辉市期末)已知2m=4n﹣1,27n=3m﹣1,则n﹣m=.【变式5-3】(2022春•兴化市期中)若(2m)2•23n=84,其中m、n都是自然数,则符合条件m、n的值有____组.【题型6 幂的运算法则逆用(代数式的表示)】【例6】(2022秋•崇川区校级期中)若a 2m+3y=a m+1x=1.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.【变式6-1】(2022•高新区校级三模)已知m=89,n=98,试用含m,n的式子表示7272.【变式6-2】(2022•高新区校级三模)(1)若x=2m+1,y=3+4m,用x的代数式表示y.(2)若x=2m+1,y=3+4m,用x的代数式表示y.【变式6-3】(2022春•新泰市期末)若a m=a n(a>0,a≠1,m、n都是正整数),则m=n,利用上面结论解决下面的问题:(1)如果2x•23=32,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)若x=5m﹣2,y=3﹣25m,用含x的代数式表示y.【题型7 幂的运算法则(混合运算)】【例7】(2022春•沭阳县校级月考)计算:(1)(﹣a)2•a3(2)(﹣8)2013•(18)2014(3)x n•x n+1+x2n•x(n是正整数)( 4 )(a2•a3)4.【变式7-1】(2022秋•道外区校级月考)计算:(1)y3•y2•y(2)(x 3)4•x 2(3)( a 4•a 2)3•(﹣a )5(4)(﹣3a 2)3﹣a •a 5+(4a 3)2.【变式7-2】(2022春•太仓市期中)用简便方法计算下列各题(1)(45)2015×(﹣1.25)2016.(2)(318)12×(825)11×(﹣2)3.【变式7-3】(2022春•漳浦县期中)计算(1)(m ﹣n )2•(n ﹣m )3•(n ﹣m )4(2)(b 2n )3(b 3)4n ÷(b 5)n +1(3)(a 2)3﹣a 3•a 3+(2a 3)2;(4)(﹣4a m +1)3÷[2(2a m )2•a ].【题型8 幂的运算法则(新定义问题)】【例8】(2022春•大竹县校级期中)我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:h (m +n )=h (m )•h (n );比如h(2)=3,则h (4)=h (2+2)=3×3=9,若h (2)=k (k ≠0),那么h (2n )•h (2022)的结果是( )A .2k +2021B .2k +2022C .k n +1010D .2022k 【变式8-1】(2022•兰山区二模)一般的,如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:由于23=8,所以3是以2为底8的对数,记作log 28=3;由于a 1=a ,所以1是以a 为底a 的对数,记作log a a =1.对数作为一种运算,有如下的运算性质:如果a >0,且a ≠1,M >0,N >0,那么(1)log a (M •N )=log a M +log a N ;(2)log a M N =log a M ﹣log a N ;(3)log a M n =n log a M .根据上面的运算性质,计算log 2(23×8)﹣log 2165−log 210的结果是 .【变式8-2】(2022春•泰兴市期中)规定两数a ,b 之间的一种运算,记作a ※b :如果a c =b ,那么a ※b =c .例如:因为32=9,所以3※9=2(1)根据上述规定,填空:2※16= , ※136=−2,(2)小明在研究这种运算时发现一个现象:3n ※4n =3※4,小明给出了如下的证明:设3n ※4n =x ,则(3n )x =4n ,即(3x )n =4n所以3x=4,即3※4=x,所以3n※4n=3※4.请你尝试运用这种方法解决下列问题:①证明:6※7+6※9=6※63;②猜想:(x﹣1)n※(y+1)n+(x﹣1)n※(y﹣2)n=※(结果化成最简形式).【变式8-3】(2022秋•南宁期末)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.我们叫(a,b)为“雅对”.例如:∵23=8,∴(2,8)=3.我们还可以利用“雅对”定义证明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5.∴3m•3n=3m+n=3×5=15.∴(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=;(5,25)=;(3,27)=.(2)计算:(5,2)+(5,7)=,并说明理由.(3)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c。