表面淬火和变形强化
- 格式:ppt
- 大小:1.37 MB
- 文档页数:43
表面淬火定义表面淬火是一种金属热处理技术,通过控制金属材料的加热和冷却过程,使其表面形成一层具有较高硬度和耐磨性的淬火层。
这种技术广泛应用于各种机械零件和工具的制造中,能够提高其使用寿命和性能。
表面淬火的过程可以分为加热、保温和冷却三个阶段。
首先,将金属材料加热到适当的温度,以激活材料内部的晶体结构。
然后,通过保温使材料中的晶体结构重新排列,形成一种具有高硬度的相态结构。
最后,通过迅速冷却来固定这种相态结构,使其在表面形成一层淬火层。
表面淬火的关键是控制加热和冷却的速度。
加热温度和时间的选择需要根据金属材料的性质和要求进行调整。
过高的温度和时间可能导致材料内部的晶体结构发生变化,影响淬火效果;过低的温度和时间则无法激活和重组晶体结构。
冷却过程一般采用水、油或盐浴等介质,通过迅速吸热来实现快速冷却。
冷却介质的选择取决于材料的类型和形状。
表面淬火的优点是能够在保持材料的韧性和强度的同时,提高其硬度和耐磨性。
淬火层的硬度一般远高于材料的基体,能够有效抵抗磨损和变形。
因此,表面淬火广泛应用于汽车发动机零件、工具刀具、轴承等高负荷和高磨损的零件制造中。
然而,表面淬火也存在一些局限性和注意事项。
首先,淬火层的深度一般较浅,只有几个毫米左右,对于需要较深淬火层的零件不适用。
其次,淬火过程中会产生应力,可能导致材料的变形和开裂。
因此,在淬火后需要进行适当的回火处理,以减缓应力并提高材料的韧性。
最后,表面淬火的工艺要求较高,需要严格控制加热和冷却的参数,以保证淬火效果的稳定性和一致性。
表面淬火是一种能够提高金属材料硬度和耐磨性的热处理技术。
通过控制加热和冷却的过程,能够在材料表面形成一层具有高硬度的淬火层。
这种技术在机械制造和工具制造中得到广泛应用,能够提高零件的使用寿命和性能。
然而,表面淬火也存在一些局限性和注意事项,需要在实际应用中进行合理选择和控制。
表面强化工艺
是一种通过某种工艺手段使零件表面获得与基体材料不同的组织结构和性能的技术。
这种技术可以提高零件的硬度、强度、耐磨性、疲劳强度以及抗冲击性能等,从而延长零件的使用寿命,节约稀有、昂贵材料,并促进高新技术的发展。
常见的表面强化方法有以下几种:
1. 喷丸强化:通过高速喷射具有一定硬度的丸粒(如钢丸、玻璃丸等)对零件表面进行冲击,使其产生冷态塑性变形,从而提高硬度和抗磨性。
2. 滚压加工:利用滚压工具在零件表面形成一定的压缩层,提高其硬度和抗磨性。
滚压加工包括滚压、滚磨、滚光等方法。
3. 液体磨料强化:采用一种特殊的液体介质(如珩磨油、乳化液等),其中含有具有一定硬度的磨料颗粒。
通过液体介质对零件表面进行磨擦,使表面产生冷态塑性变形,从而提高硬度和抗磨性。
4. 表面热处理:通过改变零件表面层的组织结构,使其获得一定的硬度和强度。
常见的表面热处理方法有淬火、回火、渗碳、渗氮等。
5. 化学表面处理:通过化学方法改变零件表面的组织结构和性能,如化学镀、化学转化膜等。
表面强化工艺是一种通过各种方法提高零件表面性能的技术,可以延长零件的使用寿命,节约材料,并提高零件的性能。
在汽车制造、航空航天、机械制造等领域有广泛的应用。
1.工艺性能:材料对各种工艺性的适应能力。
2.晶格:用于描述原子在晶体中排列规律的三维空间几何点阵成为晶格。
3.组织:在显微镜下看到的相和晶粒的形态、大小和分布(基本组织)。
4.相:合金中,化学成分相同、晶体结构相同并有界面与其他部分分隔开来的一个均匀区域。
5.固溶强化:融入液质元素形成固溶而使金属的强度、硬度升高的现象成为固溶强化。
6.固溶件:合金结晶成固态时,含量少的组元(溶质)原子分布在含量多的组元(溶剂)晶格中形成一种与溶剂油相同晶格的相,称为固溶件。
7.细晶强化:通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化。
8.同素异构转变:金属在结晶成固态以后继续冷却的过程中晶格类型随温度下降而发生变化的现象。
9.共晶转变:合金系中某一定化学成份的合金在一定的温度下(恒温),同时由液相中结晶出两种不同成份和不同晶体结构的固相。
10.共析转变:在某一恒定温度时,一定成分的固相又重新结晶成两个不同的固相的机械混合物。
11.过冷度:理论结晶温度与实际结晶之差称为过冷度。
12.加工硬化:随着金属材料变形量的增加,材料的强度和硬度增加而塑性下降的现象。
13.再结晶:P50.14.铁素体:铁素体是碳原子固溶到α—Fe中形成的间隙固溶体,代号为F或α。
15.奥氏体:碳原子固溶到γFe中形成的间隙固溶体,代号为A或γ。
16.珠光体:铁素体与渗碳体的两相机械混合物的共析体,代号为P,有固定化学成分Wc=0.77%17.相图:是表示在平衡状态下合金的化学成分、相、组织与温度的关系图。
18.退火:将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
19.正火:将钢材或钢件加热到Ac3(或Accm)以上30C~50C,保温适当的时间后,在静止的空气中冷却的热处理工艺。
20.淬火:是将钢件加热到Ac3或Ac1相变点以上某一温度,保持一定时间,然后以大于Vk的速度冷却获得马氏体和(或)下贝氏体组织的热处理工艺。
金工试题库一.填空题:1.工程材料的力学性能指标包括(强度)、(硬度)、(塑性)、(韧性)和疲劳强度。
s2.淬火钢和工具钢常用(洛氏硬度)、退火钢常用(布氏硬度)来测试其硬度。
3.金属材料承受无限次重复交变载荷而不断裂的最大应力称为(疲劳强度)。
4.承受冲击载荷的零件要求(冲击韧性)一定要高。
5.金属材料在拉断前所能承受的最大应力叫(抗拉强度),而产生塑性变形而不被破坏的能力叫(塑性)。
6、金属的结晶包括(晶核的形成)和(晶核的长大)两个过程。
7.常见金属的晶格有(体心立方晶格)、(面心立方晶格)和(密排六方晶格)。
8.普通热处理工艺包括(退火)、(正火)、(淬火)、(回火),淬火后高温回火的热处理合称为(调质处理)。
9.钢在加热时,影响奥氏体转变的因素有(加热温度)、(加热速度)、(含碳量)、(原始组织)和(合金元素)。
10.影响奥氏体晶粒长大的因素有(加热温度)、(保温时间)和(化学成分)。
11. 亚共析钢一般进行(完全)退火,过共析钢一般进行(球化)退火,铸钢件一般进行(扩散)退火,为消除毛坯件的残余应力,一般需进行(去应力)退火。
12.钢的回火分为(低温回火)、(中温回火)、(高温回火)。
13.钢的表面淬火分为(火焰加热)表面淬火和(感应加热)表面淬火。
14.钢的淬火分为(单液淬火)、(双液淬火)、(分级淬火)、(等温淬火)。
15. 丝锥要求又硬又韧,应进行(等温淬火)热处理,45钢轴要求综合机械性能好,应进行(调质)热处理,60钢弹簧要求弹性好,应进行(淬火+中温回火)热处理,T12钢锉刀要求高硬度,应进行(淬火+低温回火)热处理。
16.铜合金按加入元素分为(黄铜)、(青铜)和(白铜)三类。
17.变形铝合金按性能特点及用途分为(防锈铝)、(硬铝)、(超硬铝)和(锻铝)四种。
18.铸造铝合金分为(铝硅系合金)、(铝铜系合金)、(铝镁系合金)和(铝锌系合金)。
19.塑料按热性能分为(热塑性塑料)和(热固性塑料)两种。
影响淬火热处理变形的原因淬火是将钢件加热到临界温度以上,保温适当的时间,然后以大于临界冷却速度冷却,获得马氏体或贝氏体组织的热处理工艺,它是强化钢材的最重要的热处理方法。
大量重要的机器零件及各类刀具、刃具、量具等都离不开淬火处理。
需要淬火的工件,经过加热后,便放到一定的淬火介质中快速冷却。
但冷却过快,工件的体积收缩及组织转变都很剧烈,从而不可避免地引起很大的内应力,容易造成工件变形及开裂。
由于淬火变形影响因素非常复杂,导致变形控制十分棘手。
而采用校直办法纠正变形或通过加大磨削加工余量,都会增加成本,因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。
零件热处理变形原因分析1 热应力引起的变形钢件在加热和冷却过程中,将发生热胀冷缩的体积变化以及因组织转变时新旧相比容差而产生的体积改变。
零件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。
当应力超过屈服强度时,就会产生塑性变形,如果造成应力集中,并超过了材料的强度极限,就会使零件淬裂。
导热性很差的高碳合金钢,如合金模具钢Cr12MoV、高速钢W18Cr4V之类的工具钢,淬火加热温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形,而且会导致零件开裂而报废。
此外,铸钢件和锻件毛坯,如果表层存在着一层脱碳层,由于表层和心部导热性能不同,在淬火加热较快时,也会产生热应力而引起变形。
冷却时由于温差大,热应力是造成零件变形的主要原因。
2 组织应力引起的变形体积的变化往往与加热和冷却有关,因为它和钢的膨胀系数相关。
比容的变化导致零件尺寸和形状的变化。
组织应力的产生起源于体积的收缩和膨胀,没有体积的膨胀,就没有组织转变的不等时性,也就没有组织应力引起的变形,导致热处理变形的内应力是热应力和组织应力共同作用形成的复合应力,热应力和组织应力综合作用的结果是不定的,可能因冷却条件及淬火温度的不同而产生不同情况,淬火应力是由急冷急热应力及由组织转变不同时所引起的应力综合构成的。
钢的四种强化机制引言钢是一种非常重要的材料,在许多领域都得到广泛应用。
为了提高钢的性能和使用寿命,人们经过长期的研究和探索,发现了一些可以强化钢的方法。
这些方法包括合金化、冷变形、热处理和表面处理等。
本文将会全面、详细、完整地探讨钢的四种强化机制,以帮助读者更好地理解这些方法的原理和应用。
合金化合金化是一种常用的钢强化方法,通过向钢中添加合金元素来改变其组织和性能。
其中比较常见的合金元素包括铬、镍、钼、锰等。
这些合金元素可以通过固溶强化、析出强化、碳化物强化等方式来增强钢的硬度、强度、韧性等性能。
固溶强化固溶强化是通过使合金元素溶解在钢基体中来提高钢的性能。
当合金元素加入到钢中时,它们会在钢的晶格中溶解,形成固溶体。
这些合金元素可以扩散到钢的晶界和位错中,从而阻碍位错的移动和晶界的运动,提高钢的强度和硬度。
析出强化析出强化是指合金元素从固溶体中析出形成细小的沉淀物,通过阻碍位错和晶界的移动来提高钢的性能。
当钢经过热处理后,合金元素会从固溶体中分离出来,在晶粒内部形成细小的沉淀物。
这些沉淀物可以阻碍位错的运动,增加晶界的能量,从而提高钢的强度、硬度和韧性。
碳化物强化碳化物强化是指合金元素形成碳化物的过程,通过增加碳化物的数量和尺寸来增强钢的硬度和强度。
当钢中的合金元素与碳结合时,它们会形成稳定的碳化物。
这些碳化物可以阻碍位错的移动,增加晶界的能量,从而提高钢的硬度和强度。
冷变形是通过机械力的作用来强化钢材。
当钢材在常温下受到外力的作用时,其晶粒会发生塑性变形,并产生位错和晶界等缺陷。
这些缺陷可以阻碍位错和晶界的移动,从而增强钢的硬度、强度和韧性。
冷轧冷轧是一种常用的冷变形方法,适用于制备薄板、带材等钢材。
在冷轧过程中,钢材首先经过加热,然后通过辊压机进行轧制。
这种轧制过程会使钢材的晶粒发生塑性变形,并产生大量的位错和晶界。
这些位错和晶界可以阻碍晶粒的滑移和晶界的运动,从而提高钢的强度和硬度。
冷拉拔冷拉拔是一种常用的冷变形方法,适用于制备线材、型材等钢材。
材料强化方法材料强化是指通过一系列的方法和技术,使材料的性能得到提升和改善的过程。
在工程领域中,材料强化是非常重要的,它可以提高材料的强度、硬度、耐磨性等性能,从而使材料在各种工程应用中发挥更好的作用。
下面将介绍几种常见的材料强化方法。
一、热处理强化。
热处理是一种常见的材料强化方法,通过对材料进行加热和冷却,可以改变材料的晶体结构和性能。
常见的热处理方法包括退火、正火、淬火和回火等。
退火可以使材料的晶粒变细,提高材料的韧性和塑性;正火可以提高材料的硬度和强度;淬火可以使材料达到最高的硬度,但同时也会降低材料的韧性;回火可以减轻淬火带来的脆性,提高材料的韧性和强度。
二、表面强化。
表面强化是指通过改变材料表面的化学成分和结构,来提高材料的表面硬度、耐磨性和耐蚀性。
常见的表面强化方法包括渗碳、氮化、氧化、镀层和喷涂等。
渗碳可以在材料表面形成一层碳化物,提高表面硬度;氮化可以在材料表面形成一层氮化物,提高表面硬度和耐磨性;氧化可以在材料表面形成一层氧化物,提高表面的耐蚀性;镀层和喷涂可以在材料表面形成一层保护层,提高表面的耐磨性和耐蚀性。
三、变形强化。
变形强化是指通过对材料进行塑性变形,来提高材料的硬度和强度。
常见的变形强化方法包括冷加工、热加工和等温加工等。
冷加工可以使材料的晶粒变细,提高材料的硬度和强度;热加工可以通过热变形和再结晶来改善材料的组织和性能;等温加工可以在高温下对材料进行塑性变形,提高材料的硬度和强度。
四、合金强化。
合金强化是指通过合金元素的添加,来改善材料的组织和性能。
常见的合金强化方法包括固溶强化、析出强化和形变强化等。
固溶强化可以通过合金元素的固溶来提高材料的强度和硬度;析出强化可以通过合金元素的析出来提高材料的强度和硬度;形变强化可以通过合金元素的形变来提高材料的强度和硬度。
总结。
材料强化是提高材料性能的重要手段,热处理、表面强化、变形强化和合金强化是常见的材料强化方法。
不同的材料和工程应用需要采用不同的强化方法,以达到最佳的性能和效果。
金属表面处理工艺是利用现代物理、化学、金属学和热处理等学科的技术来改变零件表面的状况和性质,使之与心部材料作优化组合,以达到预定性能要求的工艺方法。
具体有以下几种处理工艺:
一、QPQ工艺处理
它是一种先进的表面处理工艺。
具有良好的耐磨性、良好的耐腐蚀性、良好的耐疲劳性、极小的变形、低碳环保、可替代多道工序,降低时间成本。
二、表面淬火
是指在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。
三、化学表面热处理
表面合金化技术的典型工艺就是化学表面热处理。
是将工件置于特定介质中加热保温,使介质中活性原子渗入工件表层从而改变工件表层化学成分和组织,进而改变其性能的热处理工艺。
四、喷丸
是将大量高速运动的弹丸喷射到零件表面上,犹如无数个小锤锤击金属表面,使零件表层和次表层发生一定的塑性变形而实现强化的一种技术。
焦作汇鑫恒机械制造有限公司成立于2011年,公司采用新的工艺和新的环保设备,对现有的金属表面梳理材料进行研发、改进,是表面加硬处理的专业性技术公司,主要采用QPQ处理工艺。