高中数学第二章数列24等比数列思维导图素材新人教A版必修50726328
- 格式:doc
- 大小:1.40 MB
- 文档页数:3
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
数列等差与等比等差数列通项公式是?_______________________________性质若m+n=p+s,则:_______________________________若m+n=2p,则:_______________________________求和公式的两种形式①_______________________________S=n②_______________________________S=n求和公式的特点:_______________________________等比数列通项公式是?_______________________________性质若m+n=p+s,则:_______________________________若m+n=2p,则:_______________________________求和公式的两种形式①_______________________________S=n②_______________________________S=n求和公式的特点:_______________________________数列中常用结论若,则_______________________________a=mn,a=nm(m= n)a=m+n若 ,则_______________________________S=mn,S=nm(m= n)S=m+n已知{}为等差数列,{}又成等比,则公比 _______________________________a n a n q=已知{}为等比数列,若{+}(0 )也成等比,则公比 _________________a n a nλλ= q=已知 分别是等差(或等比)数列的前m、2m、3m······项和,则结论是:_______________________________S,S,S⋅⋅⋅⋅⋅⋅m2m3m数列求通项方法一:累加,所适用题型是:_______________________________方法二:累乘,所适用题型是:_______________________________方法三:构造辅助数列①题型一: 构造方法:_______________________________a−n a=n+1pa⋅an n+1②题型二: 构造方法:_______________________________a=n+1pa+nq③题型三: 构造方法:_______________________________a=n+1pa+nqn+r④题型四: 构造方法:_______________________________a=n+1pa+nq n⑤题型五: 构造方法:_______________________________a=n+1qa+rnpa n题型四:_______________________________, 方法是_______________________________数列求和分组求和,所适用题型是:_______________________________并项求和,所适用题型是:_______________________________裂项相消形式1:_______________________________形式2:_______________________________形式3:_______________________________形式4:_______________________________形式5:_______________________________形式6:_______________________________形式7:_______________________________形式8:_______________________________错位相减,所适用题型是:_______________________________倒序相加,所适用题型是:_______________________________。
高中数学第二章数列2.4 等比数列思维导图素材新人教A版必修5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章数列2.4 等比数列思维导图素材新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章数列2.4 等比数列思维导图素材新人教A版必修5的全部内容。
第4节 等比数列【思维导图】【微试题】 1。
已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( )A 。
21 B. 22 C 。
2 D.2 【答案】B2。
对任意等比数列{a n},下列说法一定正确的是()A。
a1,a3,a9成等比数列 B. a2,a3,a6成等比数列C。
a2,a4,a8成等比数列 D. a3,a6,a9成等比数列【答案】D3. 在等比数列{a n}中,若a3a5a7a9a11=32,则错误!的值为()A.4 B.2 C.-2 D.-4【答案】B4. 数列{a n }中,a 1=2,a 2=3,且{a n a n+1}是以3为公比的等比数列,记b n =a 2n-1+a 2n (n ∈N *).(1)求a 3,a 4,a 5,a 6的值;(2)求证:{b n }是等比数列。
【答案】(1)a 3=2232a ⋅=6,a 4=3332a ⋅=9,a 5=4432a ⋅=18,a 6=5532a ⋅=27【解析】解: (1)∵{a n a n+1}是公比为3的等比数列,∴a n a n+1=a 1a 2·3n —1=2·3n ,∴a 3=2232a ⋅=6,a 4=3332a ⋅=9,a 5=4432a ⋅=18,a 6=5532a ⋅=27。