关联规则挖掘的过程
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
关联关系挖掘步骤
1.数据准备:选择需要挖掘的数据集,并进行数据清洗、转
换和预处理,以消除异常值、缺失值和重复值,确保数据的质量和准确性。
2.确定最小支持度和最小置信度:支持度和置信度是关联规
则挖掘中的两个关键参数,用于衡量规则在数据集中的重要性和可靠性。
根据数据集的大小和业务需求,设定合适的阈值。
3.关联规则挖掘:利用关联规则挖掘算法(如Apriori、FP-
Growth等),从数据集中发现满足最小支持度和最小置信度的关联规则。
4.规则评估和优化:对挖掘出的关联规则进行评估和优化,
包括删除冗余规则、合并相似规则等,以提高规则的可解释性和实用性。
5.结果可视化:将挖掘出的关联规则以可视化的方式呈现给
用户,如生成关联规则网络图、矩阵图等,帮助用户更好地理解数据之间的关联关系。
6.应用和实施:将挖掘出的关联规则应用于实际业务中,如
推荐系统、异常检测等,以实现数据的增值和业务的优化。
1.知识发现是一个完整的数据分析过程,主要包括以下几个步骤:确定知识发现的目标、数据采集、数据探索、数据预处理、__数据挖掘_、模式评估。
2._特征性描述_是指从某类对象关联的数据中提取这类对象的共同特征(属性)。
3.回归与分类的区别在于:___回归__可用于预测连续的目标变量,___分类__可用于预测离散的目标变量。
4.__数据仓库_是面向主题的、集成的、相对稳定的、随时间不断变化的数据集合,与传统数据库面向应用相对应。
5.Pandas的两种核心数据结构是:__Series__和__DataFrame__。
6.我们可以将机器学习处理的问题分为两大类:监督学习和_无监督学习__。
7.通常,在训练有监督的学习的机器学习模型的时候,会将数据划分为__训练集__和__测试集__,划分比例一般为0.75:0.25。
1.分类问题的基本流程可以分为__训练__和__预测_两个阶段。
2.构建一个机器学习框架的基本步骤:数据的加载、选择模型、模型的训练、__模型的预测_、模型的评测、模型的保存。
3.__回归分析_是确定两种或两种以上变量间相互依赖关系的一种统计分析方法是应用及其广泛的数据分析方法之一。
4.在机器学习的过程中,我们将原始数据划分为训练集、验证集、测试集之后,可用的数据将会大大地减少。
为了解决这个问题,我们提出了__交叉验证_这样的解决办法。
5.当机器学习把训练样本学得“太好”的时候,可能已经把训练样本自身的一些特点当作所有潜在样本都会具有的一般性质,这样会导致泛化性能下降。
这种现象在机器学习中称为__过拟合__。
6.常用的降维算法有__主成分分析__、___因子分析__和独立成分分析。
7.关联规则的挖掘过程主要包含两个阶段__发现频繁项集_和__产生关联规则__1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种7、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)8、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等9、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)10、OLAP的中文意思是指(在线分析处理)1、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种2、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)5、OLAP的中文意思是指(在线分析处理)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等2、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)3、OLAP的中文意思是指(在线分析处理4、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])5、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)6、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,l]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类3、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法4、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)5、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1如果dfl二pd.DataFrame([[l,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[&&NaN]]), 则dfl.fillna(100)=?([[l,2,3],[100,100,2],[100,100,100],[8,8,100]])2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10 ,15,20]})则df.groupby('key').sum()=?(A:15,B:30,C:45)3、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、OLAP的中文意思是指(在线分析处理)6、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类2、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法3、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,l]),ser*2=([8,6,4,2])6、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]})则df.groupby('key').sum()=?(A:15,B:30,C:45)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)5、OLAP的中文意思是指(在线分析处理)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)10、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤。
关联规则在数据挖掘的知识模式中,关联规则模式是比较重要的一种。
关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。
关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。
一、关联规则的定义和属性考察一些涉及许多物品的事务:事务1 中出现了物品甲,事务2 中出现了物品乙,事务3 中则同时出现了物品甲和乙。
那么,物品甲和乙在事务中的出现相互之间是否有规律可循呢?在数据库的知识发现中,关联规则就是描述这种在一个事务中物品之间同时出现的规律的知识模式。
更确切的说,关联规则通过量化的数字描述物品甲的出现对物品乙的出现有多大的影响。
现实中,这样的例子很多。
例如超级市场利用前端收款机收集存储了大量的售货数据,这些数据是一条条的购买事务记录,每条记录存储了事务处理时间,顾客购买的物品、物品的数量及金额等。
这些数据中常常隐含形式如下的关联规则:在购买铁锤的顾客当中,有70 %的人同时购买了铁钉。
这些关联规则很有价值,商场管理人员可以根据这些关联规则更好地规划商场,如把铁锤和铁钉这样的商品摆放在一起,能够促进销售。
有些数据不像售货数据那样很容易就能看出一个事务是许多物品的集合,但稍微转换一下思考角度,仍然可以像售货数据一样处理。
比如人寿保险,一份保单就是一个事务。
保险公司在接受保险前,往往需要记录投保人详尽的信息,有时还要到医院做身体检查。
保单上记录有投保人的年龄、性别、健康状况、工作单位、工作地址、工资水平等。
这些投保人的个人信息就可以看作事务中的物品。
通过分析这些数据,可以得到类似以下这样的关联规则:年龄在40 岁以上,工作在A 区的投保人当中,有45 %的人曾经向保险公司索赔过。
在这条规则中,“年龄在40 岁以上”是物品甲,“工作在A 区”是物品乙,“向保险公司索赔过”则是物品丙。
可以看出来,A 区可能污染比较严重,环境比较差,导致工作在该区的人健康状况不好,索赔率也相对比较高。
数据挖掘中的关联规则挖掘数据挖掘是一种从大量数据中自动发现有用信息的过程。
将数据挖掘应用于商业领域,可以帮助企业做出更明智的决策,发现潜在客户,提高销售业绩。
而关联规则挖掘则是数据挖掘中的一个重要方法,它可以帮助我们发现数据集中项集之间的关联关系。
什么是关联规则挖掘?在数据挖掘中,关联规则挖掘是指通过挖掘数据集中的关联规则,从而发现数据集中的频繁项集之间的关联关系。
举个例子,在超市购物场景中,如果我们发现顾客购买了尿布,并伴随着啤酒的购买,那么我们就可以发现尿布和啤酒之间存在关联规则。
这个规则的意义就在于,我们一旦发现顾客购买了尿布,就有可能会购买啤酒,因此我们可以在超市中增加这两种商品的陈列位置,以提高销量。
如何进行关联规则挖掘?关联规则挖掘的过程如下:1.确定数据集和支持度阈值关联规则挖掘需要一个数据集,并且需要指定一个最小支持度阈值。
支持度是指所有包含该项集的事务数除以总事务数,即$supp(X) = \frac{count(X)}{|D|}$其中,X指数据集中的一个项集,count(X)指包含该项集的事务数,D指整个数据集。
2.寻找频繁项集频繁项集是指在数据集中出现次数超过最小支持度阈值的项集,即$\{X | supp(X) \geq minsupp\}$3.生成关联规则根据频繁项集生成关联规则,关联规则的形式为$X \rightarrow Y$其中,X和Y是项集,表示在购买X的情况下,也会购买Y。
关联规则的质量可以通过支持度和置信度来衡量。
4.衡量关联规则的质量关联规则的置信度是指在购买X的情况下,也购买了Y的概率,即$conf(X \rightarrow Y) = \frac{supp(X \cup Y)}{supp(X)}$其中,conf代表置信度,X和Y是项集,supp(X∪Y)代表同时包含X和Y的事务数,supp(X)代表X的支持度。
同时,也可以通过提升度来衡量规则的质量。
提升度是指在购买X的情况下,购买Y的概率是在没有购买X的情况下购买Y的概率的多少倍,即$lift(X \rightarrow Y) = \frac{conf(X \rightarrow Y)}{supp(Y)}$关联规则挖掘的应用场景关联规则挖掘可以被广泛应用于各种业务场景中,例如:1.零售业在零售业场景中,关联规则挖掘可以帮助零售商发现顾客之间的购买模式和趋势,从而提高销售额和客户忠诚度。
关联规则算法过程关联规则算法,又称为关联分析算法,是一种数据挖掘算法,用于发现数据集中项目之间的关联关系。
这些关联关系可以用于预测未来事件,或者用于制定更好的商业策略。
一、算法介绍关联规则算法的目的是发现数据集中项目之间的关系,这种关系可以用频繁项集来表示。
频繁项集是一个包含频繁项的项集,频繁项是在数据集中出现频率较高的项。
关联规则算法的基本思想是:在数据集中找出频繁项集,然后从频繁项集中生成关联规则。
关联规则是由一个前项和一个后项组成,前项和后项都是频繁项集。
关联规则的意义是:如果一个事物包含前项,则它也很可能包含后项。
关联规则可以用以下形式表示:前项→ 后项。
二、算法流程关联规则算法的流程如下:1. 扫描数据集,计算每个项的出现频率。
2. 选取阈值min_sup,过滤掉出现频率低于min_sup的项。
3. 构造长度为2的候选集,并扫描数据集,计算每个候选集的出现频率。
4. 选取阈值min_sup,过滤掉出现频率低于min_sup的候选集。
5. 根据长度为2的频繁项集,构造长度为3的候选集,并扫描数据集,计算每个候选集的出现频率。
6. 选取阈值min_sup,过滤掉出现频率低于min_sup的候选集。
7. 根据长度为3的频繁项集,构造长度为4的候选集,并扫描数据集,计算每个候选集的出现频率。
8. 重复上述步骤,直到不能生成更长的候选集为止。
9. 根据频繁项集生成关联规则。
10. 用关联规则进行预测或制定商业策略。
三、算法优化关联规则算法的时间复杂度很高,因为它需要在数据集中生成大量的候选集。
为了提高算法的效率,可以采用以下优化方法:1. 压缩数据集:对于出现频率较低的项,可以将它们从数据集中删除,从而减少候选集的数量。
2. 停止生长:当生成的候选集中有一个子集不是频繁项集时,就可以停止生成更长的候选集了。
3. 剪枝:当一个候选集的所有子集都是频繁项集时,它自己也是频繁项集,可以将它加入频繁项集中。
关联规则的四种算法关联规则是数据挖掘领域中的一个基础方法,其主要用于寻找一个数据集中不同属性之间的关系和规律。
在实际的应用场景中,关联规则算法被广泛应用于市场营销、电商推荐、客户分析等领域。
本文将介绍关联规则的四种经典算法:Apriori算法、FP-growth算法、ECLAT算法和SPMF算法,并分别从算法原理、实现过程、优缺点等多个方面进行详细的介绍。
一、Apriori算法Apriori算法是关联规则中的一种基础算法,它是R. Agrawal和R. Srikanth于1994年提出的。
该算法的主要思想是:如果某个项集是频繁的,那么它的所有子集也应该是频繁的。
这意味着如果一个项集没有达到最小支持度的要求,那么包含这个项集的项集必定不能达到最小支持度要求。
Apriori算法的实现过程主要分为两个步骤。
第一步是生成候选项集,即根据原始数据集生成所有可能出现的项集,包括单项、双项、三项等。
第二步是计算每个项集的支持度,并根据最小支持度对项集进行筛选,得到频繁项集。
Apriori算法的优点是它的思想简单易懂,容易实现。
然而,由于该算法需要生成大量的候选项集,因此它的计算复杂度比较高,而且在处理大规模数据时不够高效。
二、FP-growth算法FP-growth算法是一种基于树结构的关联规则算法,它最早是由Han J.和Kamber M.在2000年提出的。
该算法主要采用基于前缀树的方法,先将原始数据集转换为一棵FP树(频繁模式树),然后通过对FP树的递归遍历,得到所有的频繁项集。
FP-growth算法的实现过程主要分为两个步骤。
第一步是构建FP树,即对原始数据集进行一个预处理,生成一棵FP树。
第二步是遍历FP树,根据FP树的头指针表和条件模式基,递归地生成频繁项集。
FP-growth算法的优点是它不需要生成大量的候选项集,可以减少计算复杂度,同时也具有较高的效率和准确率。
同时,该算法也具有较好的扩展性和灵活性,可以通过实现不同的优化方式来适应不同的数据集。
关联规则挖掘的过程
关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequentitemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。
关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。
高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。
一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则{A,B}称为高频项目组。
一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。
算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。
关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。
从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。
例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。
就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5% 且最小信赖度min_confidence=70%。
因此符合此该超市需求的关联规则将必须同时满足以上两个条件。
若经过挖掘过程所找到的关联规则「尿布,啤酒」,满足下列条件,将可接受「尿布,啤酒」的关联规则。
用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。
其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。
Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。
因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。
这个商品推荐的行为则是根据「尿布,啤酒」关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。
关联规则挖掘通常比较适用与记录中的指标取离散值的情况。
如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。