大学物理下经典计算题
- 格式:ppt
- 大小:3.52 MB
- 文档页数:73
第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E ρ的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+r r rC 点电场强度E ρ的大小方向为即方向与BC 边成33.7°。
9-5 两个点电荷6612410C,810C q q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E ρ。
解:如解图9-5所示1E ρ,2E ρ沿x 、y 轴分解 电场强度为9-12.一均匀带电球壳内半径16cm R =,外半径210cm R =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0d ε∑⎰=⋅q S E sϖϖ得解图9-5解图9-4当5=r cm 时,0=∑q ,得8=r cm 时,∑q 3π4p=3(r )31R - ()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -32(R )31R ()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅ 沿半径向外. 9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,(1)求图中三个区域的场强1E ρ,2E ρ,3E ρ的表达式; (2)若624.4310C m σ--=⨯⋅,那么,1E ρ,2E ρ,3E ρ各多大解:(1)无限大均匀带电平板周围一点的场强大小为在Ⅰ区域Ⅱ区域Ⅲ区域(2)若624.4310C m σ--=⨯⋅则9-17 如题图9-17所示,已知2810m a -=⨯,2610m b -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求: (1)D 点和B 点的电势;(2) A 点和C 点的电势;(3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。
【例题】火车驶过车站时,站台边上观察者测得火车鸣笛声的频率由1200 Hz 变为1000 Hz ,已知空气中声速为330 米/ 秒,求火车的速度。
【例题】在地球大气层外测得太阳辐射谱,它的极值波长为490 nm,设太阳为黑体,求太阳表面温度T 。
【例题】. 试计算能通过光电效应从金属钾中打出电子所需的光子最小能量及其相应的最小频率(阈值频率)和最大波长。
已知金属钾的逸出功为2.25电子伏特,hc =1240 nm · eV 。
339,2.897105.91049010mbT Kλ--⨯===⨯⨯由维恩位移公式得【例题】:试计算能通过光电效应从金属钾中打出0.25电子伏特的电子,必须使用多少波长的电磁波辐射?【例题】巳知紫光的波长λ= 400 nm,其光子的能量、动量各为多少?【例题】求能量 E = 1.0 keV 光子的波长λ与频率ν。
【例题】 已知氢原子两个能级为-13.58eV 和-3.4eV ,氢原子从基态受激吸收到高能级,所吸收光子的波长应该是多少(组合常数:hc =1240 nm · eV )【例题】. 试计算下列各粒子的德布罗意波长:1)能量为 150eV 的自由电子; 2)能量为 0.2eV 的自由中子;3)能量为 0.5eV 质量为2.5克的质点( mec2=511keV ,hc =1240nm ·ev )21hE E ν=玻尔公式 -【例题】. 在电子显微镜中假定电子的波长是0.01nm(比可见光小4个量级,比原子尺度小一个量级),求相应的电子动能是多少电子伏特。
【例题】设子弹的质量为0.01㎏,枪口的直径为0.5㎝, 试求子弹射出枪口时的横向速度的不确定量?【例题】:π- 介子是一种不稳定的粒子,从它产生到它衰变为μ- 介子经历的时间即为它的寿命,已测得静止π- 介子的平均寿命τ0 = 2 ⨯ 10-8s 。
某加速器产生的π-介子以速率u = 0.98 c 相对实验室运动。
大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。
弹簧的劲度系数k = 25N ·m -1。
(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。
解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。
5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。
解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。
大学物理下册期末复习计算题第7章真空中的静电场*1.一半径为R 的带电导体球,电荷为-Q 。
求:球内、外任意一点的电场强度。
1.解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)*2.一半径为R 的带电导体球,电荷为Q 。
求:(1)球内、外任意一点的电场强度;(2)球内、外任意一点电势。
解:由高斯定理可求出电场强度的分布(3分) (2分)当r>R 时 (3分) 当r ≤R 时 (4分)⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 042020πεπε=⎪⎩⎪⎨⎧<>R r R r r q E0 420πε=r qdr r q V r 02044πεπε=⎰∞=R qdr r q dr V RRr 020440πεπε=+⎰⎰∞=⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 0 4202πεπε=*3. 如图所示,一长为L ,半径为R 的圆柱体,置于场强为E 的均匀电场中,圆柱体轴线与场强方向平行,求穿过圆柱体下列端面的电通量。
(1)左端面(2)右端面 (3)侧面 (4)整个表面解: 根据电通量定义 (1)左端面⎰⎰⎰-=-==⋅=121cos s s R E dS E EdS s d E ππφ(4分)(2)右端面⎰⎰===⋅=2030cos R E ES EdS s d E s πφ(4分) (3)侧面⎰⎰==⋅=02cos 2πφEdS s d E s (1分)(4)整个表面0321=++=s s s s φφφφ(3分)4. 三个点电荷1q 、2q 和3q -在一直线上,相距均为R 2,以1q 与2q 的中心O 作一半径为R 2的球面,A 为球面与直线的一个交点,如图。
大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。
⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。
求 (1)导体内部各点的磁感应强度。
(2)导体内壁和外壁上各点的磁感应强度。
解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。
由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。
解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。
)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。
O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。
物理学练习§14-1(总17)三、算题:1.一远洋货轮,质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期。
2.一放置在水平桌面上的弹簧振子,振幅m A 2100.2-⨯=,周期T =0.50s 。
当t =0时,⑴物体在正方向端点;⑵物体在平衡位置、向负方向运动;⑶物体在m x 2100.1-⨯=处,向负方向运动;求以上各种情况的运动方程。
07082b(1) 初相位:00=ϕ 2分 运动方程: )S I ()π4cos(100.22t -⨯ 3分(2) 初相位:2π0=ϕ 2分 运动方程: )SI ()2ππ4cos(100.22+⨯-t 3分3.一质点作谐振动,其振动方程为:)(),4/3/cos(100.62SI πt πx -⨯=-⑴振幅、周期、频率及初位相各为多少?⑵当x 值为多大时,系统的势能为总能量的一半?⑶质点从平衡位置移动到此位置所需最短时间为多少?4.某振动质点的x-t 曲线如图所示,试求:⑴运动方程; ⑵点P 对应的相位;⑶到达点P 相应位置所需的时间。
05061b 取P 、Q 两点,确定初相位: t =0时,3πϕ-=,t =4s 时,2πϕ=. 2分则6532)(0πππω=+=-t t ,而65)04(πω=-,∴1245-=s πω, 1分 ∴⎥⎦⎤⎢⎣⎡-=3245cos 1.0ππt x . 2分物理学练习§15-1(总18)三、计算题:1.某质点作简谐振动,周期为2s ,振幅为0.06m ,开始计时 (t =0),质点恰好处在A /2处且向负方向运动,求:⑴该质点的振动方程;⑵此振动以速度u =2m/s 沿X 轴正方向传播时,形成的平面简谐波的波动方程;⑶该波的波长。
05061a 06071a 07081a,b (1) 振动方程)22cos(06.00π+π=ty )ππcos(06.0+=t (SI) 4分(2) 波动表达式]π)/(πcos[06.0+-=u x t y]π)21(πcos[06.0+-=x t (SI) 4分 (3) 波长 4==uT λ m 2分2.一平面简谐波在介质中以速度u =20m/s 自左向右传播,已知在波线上的某点A 的振动方程为)(),4cos(3SI πt πy -=另一点D 在A 点右方18米处。
大学物理50道计算题第1章(10道,考1道)(2道例题)p17 例1.3 p22例1.5 (4道作业题)1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =.由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为as -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+. 即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为v21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t =.算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕. (4道补充的)(PPT 转格式的,所以有些图片格式的字体格式不想改了,一个个改很麻烦。
大学物理复习计算题1 一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求:(1) 物体能够上升的最大高度h ;(2) 该物体达到最高点后,沿斜面返回到原出发点时的速率v .2 如图所示,在与水平面成α角的光滑斜面上放一质量为m 的物体,此物体系于一劲度系数为k 的轻弹簧的一端,弹簧的另一端固定.设物体最初静止.今使物体获得一沿斜面向下的速度,设起始动能为E K 0,试求物体在弹簧的伸长达到x 时的动能.3 某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为 F =52.8x +38.4x 2(SI )求:(1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.(3)此弹簧的弹力是保守力吗?24 一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).5 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).6 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)3)57 两导体球A 、B .半径分别为R 1 = 0.5 m ,R 2 =1.0 m ,中间以导线连接,两球外分别包以内半径为R =1.2m 的同心导体球壳(与导线绝缘)并接地,导体间的介质均为空气,如图所示.已知:空气的击穿场强为3×106 V/m ,今使A 、B 两球所带电荷逐渐增加,计算:(1) 此系统何处首先被击穿?这里场强为何值?(2) 击穿时两球所带的总电荷Q 为多少?(设导线本身不带电,且对电场无影响.) (真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 )8 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.。
22q 计算题和证明题1、照相机镜头呈现蓝紫色——为了消除黄绿色的反射光而镀了膜。
在折射率1n =1.52的镜头表面镀一层折射率2n =1.38的Mg 2F 增透膜。
试证明:如果此膜适用于波长λ=5500 oA 的光,则镀膜的最薄厚度应取996oA .证明:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即2、传输微波信号的无限长圆柱形同轴电缆,各通有电流I ,流向相反。
内、外导体的截面半径分别为1R 和2R (1R <2R ),两导体之间磁介质的磁导率假设为μ,试求:(1)介质中的磁场强度和磁感应强度的大小;(2)长为L 的一段同轴电缆中磁场的能量.3、利用空气劈尖可以精确测量金属细丝的直径。
如图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径为d 的细钢丝隔开.若两玻璃片间的夹角=θ44.010-⨯弧度,求: (1)细钢丝的直径是多少?(2)相邻两暗条纹的间距是多少?4、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i ' 4、解:tg i 0=1.56 / 1.33 i 0=49.6° 光自玻璃中入射到水表面上时,tg 0i '=1.33 / 1.56 0i '=40.4° (或 0i '=90°-i 0=40.4°)5、两个均匀带电的金属同心球壳,内球壳半径为1R ,带电1q ,外球壳半径为2R ,带电2q ,试求两球壳之间任一点12()P R r R <<的场强与电势? 5、解:由高斯定理:Ci 内外球壳在P 点产生的场强2014r q E P πε=内外球壳在外球壳外产生的场强20214rq q E πε+=P 点的电势01221012021201411444222121πεπεπεπεq q R r q drrq q dr rq dr E dr E UR R R r R r p p-+⎪⎪⎭⎫ ⎝⎛+=∙+∙=∙+∙=+⎰⎰⎰⎰6、一根很长的直导线载有交变电流0i I sin t ω=,它旁边有一长方形线圈ABCD ,长为l ,宽为b a -, 线圈和导线在同一平面内,求:(1) 穿过回路ABCD 的磁通量m Φ; (2 ) 回路ABCD 中的感应电动势。
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。